Computational Intractability: A Guide to Algorithmic Lower Bounds*

by

Erik D. Demaine,
William Gasarch, and Mohammad Hajiaghayi

DRAFT from October 15, 2023

hardness-book@mit.edu
https://hardness.mit.edu

[^0]

Contents

0 Computational Complexity Crash Course 17
0.1 Introduction 17
0.2 Boolean Formulas and SAT 17
0.3 P: Polynomial Time 19
0.4 Reductions 21
0.5 NP: Nondeterministic Polynomial Time 22
0.6 coNP 26
0.7 The Winner is $\mathrm{P} \neq \mathrm{NP}$ 27
0.8 Strong NP-Completeness [Ch. 6] 28
0.9 Intermediate Problems 28
0.10 ETH [Ch. 7] 30
0.11 FPT: Fixed-Parameter Tractability [Ch. 8] 31
0.12 Complexity of Functions and Approximation [Ch. 9 \& 10 \& 11] 31
0.13 Complexity Classes that Use Randomization 32
0.14 Counting Problems [Ch. 12] 34
0.15 Polynomial Hierarchy 34
0.16 EXPTIME, PSPACE, and EXPSPACE [Ch. 14 \& 15 \& 17] 36
0.17 NSPACE: Nondeterministic Space 37
0.18 R: Decidable Sets [Ch. 16 \& 17] 38
0.19 Arithmetic Hierarchy 38
0.20 A Few Separations of Complexity Classes 39
0.21 Polynomial Lower Bounds [Ch. 18 \& 19] 40
0.22 Online Algorithms [Ch. 20] 40
0.23 Streaming Algorithms [Ch. 21] 41
0.24 Parallel Algorithms [Ch. 22] 41
0.25 Game Theory [Ch. 23] 41
I NP and Its Variants 43
1 SAT and Its Variants 45
1.1 Introduction 45
1.2 Variants of SAT 45
1.2.1 CNF SAT, DNF SAT, and Circuit SAT 45
1.2.2 Variants of SAT that are Mostly NP-Complete 47
1.2.3 Variants of SAT that are in P 52
1.2.4 More Variants of 3SAT that are Mostly NP-Complete 52
1.3 NP-Complete Problems Proven Using Variants of SAT 54
1.3.1 Clique, Ind. Set, and Vertex Cover 54
1.3.2 2-Colorable Perfect Matching is NP-Complete 56
1.3.3 CRyptarithm is NP-Complete 57
1.3.4 Exercises 62
1.4 The Complexity of Games 62
1.5 Pushing 1×1 Blocks 62
1.5.1 PuSh-* is NP-Complete 64
1.5.2 PushPush-1 In 3D is NP-Complete 66
1.6 Video Games that are NP-Hard 67
1.6.1 Super Mario Bros 67
1.7 How to Reduce from 3SAT 68
1.8 Schaefer's Dichotomy Theorem 69
1.9 Phutball (Philosopher's Football) 71
1.10 Further Results 73
2 NP-Hardness via SAT and Planar SAT 75
2.1 Introduction 75
2.2 Graph Coloring and Planar Graph Coloring 76
2.3 Planar 3SAT 81
2.4 Linked Planar 3SAT 83
2.5 How to Reduce from Planar 3SAT 86
2.6 Vertex Cover and Variants 87
2.7 Dom. Set and Planar Dom. Set 88
2.8 Planar Directed Hamiltonian Graphs and Variants 89
2.9 Using Planar Problems in Reductions 91
2.9.1 SHAKASHAKA 91
2.9.2 MetaFont 92
2.10 Planar NAE 3SAT 96
2.11 Flattening Fixed-Angle Chains 96
2.12 Further Results 98
2.12.1 Using NP-Complete Planar Graph Problems 98
2.12.2 A Generalization of 3COL 98
2.12.3 Problems with a Point 99
3 NP-Hardness via Circuit SAT 101
3.1 Introduction 101
3.2 How to Reduce from Circuit SAT 101
3.2.1 Planar Circuit SAT 102
3.3 Puzzles 103
3.3.1 Light Up 103
3.3.2 Minesweeper 104
4 NP-Hardness via Hamiltonian Cycle 111
4.1 Overview 111
4.2 Variants of Hamiltonian Cycle 111
4.2.1 Degree-3 Planar Graphs: Directed and Undirected 114
4.2.2 Hamiltonicity in Grid Graphs and Applications 115
4.2.3 Degree-3 Grid Graphs and Applications 119
4.2.4 Grid Graph Hamiltonicity Taxonomy 121
4.3 Using Ham Cycle and Variants to show Other Problems NP-complete 122
4.3.1 Settlers of Catan Longest Road Card 122
4.3.2 Slitherlink 122
4.3.3 Lawn Mowing and Milling 125
4.4 Metatheorems on Reductions Using Hamiltonian Cycle 125
4.4.1 Metatheorem 1 125
4.4.2 Metatheorem 2 128
5 Chains of Reductions 131
5.1 Introduction 131
5.2 Vertex Cover and Steiner Tree 131
5.2.1 Vertex Cover 132
5.2.2 The Steiner Tree Problem and Its Variants 133
5.3 Two More Push Games 135
5.4 Graph Orientation 135
5.4.1 Packing Trominoes into a Polygon 136
5.5 Linear Layout 137
5.5.1 Bipartite and General Crossing Number 142
5.6 Rubik's Square and Rubik's Cube 144
5.7 Further Results 147
6 NP-Hardness via 3-Partition 149
6.1 Introduction 149
6.2 Types of NP-Hardness 149
6.3 Partition Problems 150
6.3.1 Partition 151
6.3.2 3-Partition 152
6.4 Scheduling 154
6.5 1-Planar 155
6.6 Packing Problems 156
6.7 Disk Packing 160
6.8 Puzzles 162
6.8.1 Edge Matching 162
6.8.2 Signed Edge Matching Puzzle 164
6.8.3 JigSAW 166
6.8.4 Polyomino 167
6.8.5 Closing the Loop 168
6.9 Computer Games 169
6.9.1 Clickomania 169
6.9.2 Tetris 170
6.10 Three Dimensional Geometry 172
6.10.1 Edge Folding Polyhedron 172
6.10.2 Ivan's Hinge 173
6.10.3 Carpenter's Rule 173
6.11 Further Results 173
7 The Exponential Time Hypothesis 175
7.1 Introduction 175
7.2 Conjectures on the Runtime for $k S A T$ 175
7.3 Number of Variables vs Actual Length 176
7.4 Linear Blowup and Quadratic Blow up Reductions 178
7.5 ETH Yields $2^{\Omega(L)}$ Lower Bounds 180
7.6 ETH Yields $2^{\Omega(\sqrt{L})}$ Lower Bounds 181
7.7 Further Results 182
7.7.1 Some Consequences of SETH 182
7.7.2 Some More Consequences of ETH 184
7.8 We Will Return to ETH and SETH Later 185
8 Parameterized Complexity 187
8.1 Introduction 187
8.2 A Good Algorithm for Vertex Cover 188
8.3 A Better Algorithm for Vertex Cover 189
8.4 Fixed-Parameter Tractable 190
8.5 Kernelization 190
8.6 Parameterized Reductions 191
8.7 The Complexity Class W[1] 192
8.8 Ind. Set and Clique are W[1]-Complete 194
8.8.1 Ind. Set and Clique 194
8.8.2 Using Ind. Set and Cligue to Prove Problems W[1]-Complete 195
8.9 Dom. Set 197
8.10 Circuit SAT and Weighted Circuit SAT 199
8.11 W-Hierarchy 200
8.12 Lower Bounds on Approximations via W[1]-Hardness 203
8.13 Grid Tiling 206
8.13.1 Grid Tiling 206
8.13.2 Grid tiling with \leq 209
8.13.3 The k-Unit Disk Graphs Problem $\left(\mathrm{UDG}_{k}\right)$ 211
8.14 Further Results 212
8.14.1 Another Look at Dom. Set 212
8.14.2 Restrictions on Graphs 213
8.14.3 Perfect Codes: A Problem With an Interesting History 213
8.14.4 Consequence of ETH for Parameterized Complexity 214
9 Basic Lower Bounds on Approximability via PCP and Gap Reductions 217
9.1 Introduction 217
9.2 Approximation Algorithms 219
9.3 The Basic Hard-to-Approximate Problems 221
9.4 Lower Bounds on Approximating TSP 222
9.5 The Gap Lemmas 223
9.6 The PCP Machinery 225
9.7 Clique is Hard to Approximate 227
9.8 Set Cover is Hard to Approximate 229
9.9 Max 3SAT is Hard to Approximate 231
9.10 Vertex Cover is Hard to Approximate 233
9.11 Projects 235
10 Inapproximability 237
10.1 Introduction 237
10.2 Lower Bounds on Approximability 238
10.3 Max 3SAT and Its Variants 242
10.4 Reductions from Max 3SAT and Its Variants 242
10.5 Formulas and Graphs and Formulas and Graphs 246
10.6 Edge Matching Approximation 252
10.7 Other Complexity Classes for Approximations 254
10.7.1 Log-APX-Completeness 254
10.7.2 Poly-APX-Complete 260
10.7.3 EXPTIME-APX-Complete 260
10.7.4 NPO-Complete 260
10.8 Further Results 261
10.8.1 Maximum Feasible Linear System (Max FLS) 261
10.8.2 Shortest Vector Problem and Its Variants 262
10.8.3 Online Nearest Neighbor 263
10.8.4 APX-Intermediate Problems 264
11 Unique Games Conjecture 265
11.1 Introduction 265
11.2 Our Failure to Obtain Matching Upper and Lower Bounds on Approximation 265
11.3 The 2-Prover-1-Round Game 267
11.4 The Unique Games Conjecture 269
11.5 Assuming UGC 270
11.5.1 Problems Where UGC Implies Optimal Lower Bounds 271
11.5.2 Problems Where UGC Implies Good but Not-Optimal Lower Bounds 271
11.5.3 Problems Where UGC is Used to Obtain Lower Bounds 272
11.6 UGC Implies Integrality Bounds 273
11.6.1 Linear Programming and Set Cover 274
11.6.2 Semi Definite Programming and Max Cut 276
11.6.3 Semi Definite Programming and Sparsest Cut 277
11.7 Is UGC True? 278
11.8 Open Problems 278
II Above NP 279
12 Counting Problems 281
12.1 Introduction 281
12.2 \#SAT and \#P 281
12.3 Reductions and Completeness 282
12.4 Another Solution Problems (ASP-A) 283
12.5 Thoughts on "For which $A \in \mathrm{NP}$ is \# A \#P-Complete?" 285
12.6 For Many $A \in N P, \# A$ is $\# P$-Complete 286
12.6.1 \#3SAT, \#Clique, and \#3SAT-3 286
12.7 \#Planar 3SAT and Variants 287
12.8 \#Planar Directed Ham Path is \#P-Complete 288
12.9 Slitherlink 290
12.10 Permanent 291
12.11 Counting Bipartite Matchings: Perfect and Maximal 292
12.12 Counting Versions of 2SAT and Several Graph Problems 293
12.13 Fewest Clues Problem 295
12.14 Open Problems 295
13 Existential Theory of the Reals 297
13.1 Introduction 297
13.2 Existential Theory of the Reals (ETR) 298
13.3 The Complexity of ETR 298
13.4 ETR in the Real World 301
$13.5 \exists \mathbb{R}$ and $\exists \mathbb{R}$-Hardness 301
$13.6 \exists \mathbb{R}$-Complete Problems 303
13.6.1 $\exists \mathbb{R}$-Complete Problems about Graph Realizability 303
13.6.2 Non-Graph $\exists \mathbb{R}$-Complete Problems 305
13.7 Further Results 306
13.7.1 Possibly Between $\exists \mathbb{R}$ and PSPACE 306
13.7.2 SQRT-SUM: A Hard to Classify Problem 307
14 PSPACE-Hardness 309
14.1 Overview 309
14.2 Definitions 309
14.3 PSPACE 309
14.3.1 PSPACE-Complete Problems 310
14.3.2 Schaefer-Style Dichotomy Theorem 310
14.4 Metatheorem 3 311
14.4.1 Reduction from Q3SAT 311
14.4.2 First Person Shooter (FPS) Games 314
14.4.3 Role Playing Games (RPG) 314
14.4.4 Script Creation Utility for Maniac Mansion (SCUMM) Engine 314
14.4.5 Prince of Persia 314
14.5 Metatheorem 4 314
14.5.1 Examples 314
14.6 Doors and Crossovers 314
14.6.1 Legend of Zelda: A Link to the Past 315
14.6.2 Donkey Kong Country 1, 2 and 3 315
14.6.3 Super Mario Bros 318
14.6.4 LEMMINGS 319
14.7 Stochastic Games 320
14.8 Other Kinds of Games 320
14.9 Open Problems 324
15 Beyond PSPACE But Decidable 325
15.1 Introduction 325
15.2 Types of Games 325
15.3 SAT Games 327
15.4 Games People Don't Play 329
15.4.1 PEEK 329
15.4.2 Ham Game 329
15.4.3 BlOCK 330
15.5 Games People Play 330
15.5.1 Checkers 333
15.5.2 Chess 333
15.5.3 Go 335
15.5.4 Hard Variants of Games People Play 335
15.6 Further Results 336
16 Undecidable Problems 337
16.1 Basic Undecidable Problems 337
16.2 Conway's Game of Life 338
16.3 The Video Game Recursed 339
16.4 Other Undecidable Games 340
16.5 Diophantine Equations: Hten 340
16.6 Mortal Matrices 341
16.7 Further Results 341
17 Constraint Logic 343
17.1 Introduction 343
17.2 Constraint Logic Graphs 343
17.3 Constraint Graph Satisfaction (CGS) 344
17.4 Nondeterministic Constraint Logic (NCL) 345
17.5 Deterministic Constraint Logic (DCL) 349
17.6 2-Player Constraint Logic (2CL) 350
17.7 Team Private Constraint Logic (TPCL) 353
III Below NP 355
18 The 3SUM-Conjecture: A Method for Obtaining Quadratic Lower Bounds 357
18.1 Introduction 357
18.2 The 3SUM Problem 357
18.3 The 3SUM-Conjecture 359
18.4 Three Variants of 3SUM 361
18.5 3SUM-hard Problems in Computational Geometry 362
18.5.1 Geombase and Geombase' 362
18.5.2 Collinear 364
18.5.3 Concurrent 364
18.5.4 Separator 365
18.5.5 Covering Problems 366
18.5.6 Visibility Between Segments 368
18.5.7 Planar Motion Planning 369
18.6 Other Lower Bounds from 3SUM-Hardness 371
18.7 dSUM and Its Relation to Other Problems 372
18.8 Lower Bounds on Data Structures via the 3SUM-Conjecture 373
18.9 The Orthogonal Vectors Conjecture 374
18.10 Further Results 376
19 The APSP-Conjecture: A Method for Obtaining Cubic Lower Bounds 377
19.1 Introduction 377
19.2 APSP: All Pairs Shortest Paths 377
19.3 The APSP-Conjecture 379
19.4 Problems of Interest: Centrality Measures 380
19.5 Other Measures 381
19.6 Subcubic Equivalence 382
19.7 Diam and PosBetCent are Subcubic Equivalent 382
19.8 NegTri 384
19.9 Connection to SETH 387
19.10 Further Results 387
19.10.1 More APSP-Complete and APSP-Hard Problems 387
19.10.2 Using the Unweighted APSP Problem For a Hardness Assumption 388
19.10.3 Unusual Hardness Assumptions, Proofs, or Results 388
19.10.4 Using the OR of APSP, SETH, and 3SUM-Conjecture 389
19.11 Open Problems 389
20 Lower Bounds for Online Algorithms 391
20.1 Introduction 391
20.2 Online Algorithms 391
20.3 Warm-Up: Bin Packing 392
20.4 Prophet Inequality, Secretary, and Prophet Secretary 394
20.5 Caching Problem 396
20.6 Yao's Lemma 399
20.7 Online Matching 399
20.8 Online Set Cover 401
20.9 Further Results 403
21 Lower Bounds on Streaming Algorithms 405
21.1 Overview 405
21.2 Streaming Algorithms 405
21.3 Streaming for Graph Algorithms 407
21.4 Semi-Streaming Algorithm for Maximum Matching 407
21.5 Communication Complexity 408
21.6 Lower Bounds on Graph Streaming Problems 410
21.6.1 Lower Bound Using Index: Max-Conn-Comp 410
21.6.2 Lower Bound Using Index-SAme: Is-Tree 412
21.6.3 Lower Bound Using Index: PerfMat 413
21.6.4 Lower Bounds Using Index: Shortest-Path 415
21.7 Further Results 417
21.7.1 Graph Problems 417
21.7.2 Non-Graph Problems 418
21.7.3 Frequency Moments 418
22 Parallel Algorithms: The MPC and AMPC Models 419
22.1 Introduction 419
22.2 An Overview of Models of Parallelism 419
22.3 The Massively Parallel Computing Model (MPC) 421
22.4 Some Algorithms in the MPC Model 422
22.4.1 Connected Components 422
22.4.2 Maximal Ind. Set 424
22.4.3 Fast Fourier Transform and Pattern Matching 425
22.5 Unconditional MPC Lower Bounds 426
22.5.1 Polynomials 426
22.5.2 Lower Bounds in the MPC Model for Monotone Graph Properties 427
22.6 Conditional MPC Lower Bounds 428
22.7 The Adaptive Massively Parallel (AMPC) Model 430
22.7.1 AMPC Power: 1vs2cycle Revisited 431
22.7.2 Unconditional AMPC Lower Bounds 432
22.8 Future Directions 436
23 Nash Equilibria and Polynomial Parity Arguments for Directed Graphs 437
23.1 Introduction 437
23.2 The EOL Problem 437
23.3 Game Theory 439
23.3.1 Prisoners' dilemma 440
23.3.2 The Penalty Shot Game 440
23.3.3 Formal Game Theory 441
23.4 Brouwer's Fixed Point Theorem 442
23.5 Sperner's Lemma 445
23.6 Total Search Problems in NP 448
23.7 Reductions and PPAD 450
23.8 2-NASH is PPAD-Complete 451
23.8.1 PPAD-completeness of 2-Nash (High Level) 451
23.8.2 Arithmetic Circuit SAT 452
23.8.3 Graphical Games 453
23.8.4 Reduction: Arith Circuit SAT to Poly Matrix Nash 454
23.8.5 Reduction: Poly Matrix Nash to 2-Nash 455
23.9 Other arguments of existence and resulting complexity classes 458
23.9.1 There are an Even Number of Vertices of Odd Degree 458
23.9.2 Every Directed Acyclic Graph has a Sink 460
23.9.3 The Pigeonhole Principle 461
23.10 How do the Classes Relate? 462
24 Quantum Computing 463
24.1 Introduction 463
24.2 Since the Hype is False, Why Study Quantum Computation? 464
24.3 Factoring 465
24.4 Discrete Log 466
24.5 The Search Problem 467
24.6 The Traversal Problem 468
24.7 Subquadratic Approximate Edit Distance 469
24.8 Quantum Streaming Algorithms 470
24.8.1 Classical Streaming for Triangle Counting and Distinguishing 470
24.8.2 Quantum Streaming for Triangle Counting and Distinguishing 471
24.8.3 Classical Streaming for k-Clique Counting and Distinguishing 472
24.8.4 Separations 473
24.9 MIP* $^{*}=$ RE 474
24.10 Quantum Games 474
24.10.1 The CHSH Game 475
24.10.2 Magic Square Game 475
24.10.3 Comparing the CHSH Game with The MS Game 476
24.11 Quantum Supremacy 477
24.11.1 Quantum Sampling 477
24.11.2 Gaussian Boson Sampling 478
24.11.3 Has Quantum Supremacy Happened? 478

Preface

Some Problems Are Easy, Some Are Probably Hard

The following question permeates all of computer science and mathematics:
Given a problem, how hard is it to solve?
There are many aspects to hardness: time, space, communication, number-of-disk-calls, and others.

Why is it important to know that a problem is hard? If you know that obtaining (say) an exact solution to a problem is hard then you may look for an approximation. If you know that the general case is hard then you may want to look at special cases. There are many other scenarios.

Consider the following two problems:

1. Given a graph G is there an Eulerian Cycle, which is a cycle that visits every edge exactly once? We call this problem Euler Cycle.
2. Given a graph G, is there a Hamiltonian Cycle, which is a cycle that visits every vertex exactly once? We call this problem Ham Cycle.

For these two problems we will consider polynomial time (P) to be easy and NP-completeness to be hard. We will define both of these terms in Chapter 0.

In 1736 Euler showed (in modern terminology) that a graph G has an Eulerian Cycle if and only if every vertex has even degree. Hence Euler Cycle is easy. Mathematicians later tried to find a characterization for HAM Cycle. Note that the problem of finding a "characterization" was not well defined. In 1970 Cook [Coo71] and Levin [Lev73] developed the theory of NP-completeness and in 1972 Karp showed that Ham Cycle is NP-complete, meaning that it is unlikely to be in P. Thus the theory of NP-completeness not only showed that it is unlikely Ham Cycle has a characterization, it also provided a way to state the questions rigorously.

P, NP, NP-Complete, and Our Book

In 1910 Pocklington [Poc10] analyzed two algorithms for solving quadratic congruences $\bmod m$ (note that m takes $\lg m$ bits to represent) and noticed that

- one took time proportional to a power of $\lg m$, where as
- the other took time proportional to \sqrt{m}.

In modern terms he was saying that one algorithm ran in polynomial (actually $O(\log m)$) time and the other algorithm took time non-polynomial (actually $2^{O(\log m)}$) time. Unfortunately neither Pocklington, nor anyone else, pursued this distinction. Indeed, the notion that someone had earlier seen the distinction was not that well known until way after P and NP were defined (we did not know of Pocklington until we began working on this book). Pocklington's paper is earliest reference to polynomial time that we know of.

In 1956 Gödel postal mailed (there was no email back then) a letter to von Neumann that, in modern terms, asked whether a problem that is NP-complete is actually in P. Unfortunately von Neumann never responded, and neither Gödel nor anyone else pursued the distinction. Indeed, this letter itself only came to light in 1989. Urquhart [Urq10] tells the entire story, plus why theoretical computer science did not emerge as a separate discipline until the 1960's.

In the early 1960's Cobham [Cob64] and Edmonds [Edm65] defined P and suggested it as a notion of efficient. Fortunately their definition was accepted and the stage was set for NP and NP-completeness.

Cook [Coo71] and Levin [Lev73] (see [Tra84] for a translation of Levin's article into English and some historical context) independently proved that SAT (given a boolean Formula, is there a satisfying assignment?) is NP-complete. Shortly thereafter Karp [Kar72] showed that 21 more natural problems are NP-complete problems. Ham Cycle was one of them. Since then literally thousands of problems have been proven NP-complete.

The initial papers used different definitions and notation. Garey \& Johnson [GJ79] wrote a book that unified the definitions and notation, included most of what was known at the time, and became a bible for the field.

Garey \& Johnson's book was published in 1979. There has been a lot of work since then on proving problems hard to solve. Hence a sequel is needed. While it is impossible for one book to encompass all of the work since then, this book will present some of that material. In particular we will cover, in broad terms, the following.

1. Since Garey \& Johnson, several specific techniques have emerged for proving NP-hardness. We try to cover many of the major techniques, often illustrating them with examples that involve games and puzzles. In addition to personal preference, these examples make explicit the fun of finding reductions, and are useful for getting students excited about computer science.
2. Nuances on NP-completeness: hardness of approximation, counting (e.g., the number of satisfying assignments), truly exponential lower bounds (ETH), fixing parameters (FPT), and others.
3. Problems that are likely harder than NP (e.g., PSPACE, EXPTIME). For example, EXPTIMEcomplete problems are definitely not in P.
4. Problems that are in P but seem to require a certain polynomial amount of time (e.g., 3SUMhard, APSP-hard).

Who Is the Audience for This Book

This book is based on a graduate course on the complexity of problems that Erik Demaine taught at MIT and Mohammad Hajiaghayi taught at the University of Maryland. The prerequisites for that course, and for the readers of this book, are (1) an undergraduate course in algorithms (2) some exposure to NP-completeness, and of course (3) mathematical maturity.

Acknowledgments

This book evolved from scribe notes taken by students in a graduate course taught by Erik Demaine and Mohammad Hajiaghayi in the Fall of 2014. We thank the scribes from both courses:

Scribes for Erik Demaine's course:

Aviv Adler, Hugo Akitaya, Jeffrey Bosboom, Aahlad Gogineni, Neil Gurram, Chennah Heroor, Adam Hesterberg, James Hirst, Justin Kopinsky, Jason Ku, Andrea Lincoln Quanquan Liu, Fermi Ma, Billy Moses, Asa Oines, Nathan Pinsker, William Qian, Mikhail Rudoy, Ariel Schvartzman, Jeffrey Shen, Rajan Udwani, Chelsea Voss, Erik Waingarten, Jonathan Weed, Kevin Wu, Patrick Yang, and Yun William Yu. Edited by TAs Sarah Eisenstat and Jayson Lynch.

Scribes for Mohammad Hajiaghayi's course:

Karthik Abinav, Melika Abolhassani, Aditya Acharya, Ahmed Abdelkader, Yingkang Cao, Joseph Carolan, Connor Clayton, Rushil Dandamudi, Philip Dasler, Sina Dehghani, Suchetan Dontha, Soheil Ehsani, Amin Shiraz Gilani, Huijing Gong, Thomas Pensyl, Manish Purohit, Saaed Seddighin, and Ateeq Sharfuddin.

We thank the following people for proofreading and helpful suggestions: Divesh Aggarwal, Victor Albert, Eric Allender, Ashwani Anand, Sricharan AR, Kiarash Banihashem, Huck Bennett, Gaėtan Berthe, Rob Brady, Gaston Brito, Yingkang Cao, Joseph Carolan, Juan Chang, Nathan Cho, Connor Clayton, Rushil Dandamudi, Suchetan Dontha, Hossein Esfandiari, Yuval Filmus, Jon Forrest, Auguste Gezalyan, Amin Shiraz Gilani, Jacob Gilbert, Jacob Ginzburg, Evan Golub, Tom Hanson, Nathan Hayes, Edmund Horsch, Gihan Jayatilaka, Matt Kovacs-Deak, Yi Lee, Harry Lewis, George Li, Vahid Liaghat, Issac Mammel, David Marcus, Erika Melder, Adam Melrod, Alexander Mendelson, Erik Metz, Seyed Sajjad Nezhadi, Anthony Ostuni, Amadeo David De La Vega Parra, Grant Passmore, Jacob Prinz, Joel Rajakumar, Keivan Rezaei, Rin Saito, Eashwar Sathyamurthy, Marcus Schaefer, Loren Schwiebert, Benjamin Sela, Jeffrey Shallit, Suho Shin, Max Springer, Noah Stephens-Davidowitz, Samuel Tan, Georgios Tsimos, Ryan Williams, Patrick Yang, and Shaopeng Zhu.

We thank the following people for extra proofreading and scribe notes: Kiarash Banihashem, Samira Goudarzi, Jacob Gilbert, Nathan Hayes, Peyman Jabarzade, Erika Melder, and Jan Olkowski.

We thank Yaelle Goldschlag, Auguste Gezalyan, and Daniel Smolyak for many of the figures. We thank Auguste Gezalyan for technical support. We thank Costis Daskalakis who was a guest lecturer in the course.

We thank Robert Hearn who was an initial collaborator on this book, in particular setting up the repository and the software used to write this book.

The first author thanks his father Martin for support throughout his life, in particular when creating this course and then book, and specifically for cinematography recording the lecture videos.

The second author thanks his wife Carolyn for her moral support and for helping him out when GitHub did something unexpected.

The third author thanks his wife Arefeh and his three children Ilya, Sana, and Sarah for their moral support and help. In particular thanks goes to Sana (7) and Ilya (9) for not proving P $=$ NP hence not making the book obsolete.

Chapter 0

Computational Complexity Crash Course

0.1 Introduction

We begin with a brief introduction to the computational complexity needed to understand the rest of this book. In particular, we define some basic complexity classes, such as P, NP, coNP, PSPACE, EXPTIME, R, and how reductions define hardness and completeness. Figure 0.1 gives a visual overview of several of these classes and their relative difficulty. This chapter also serves as a general introduction to the entire book, with explicit pointers to the more advanced chapters.

0.2 Boolean Formulas and SAT

Boolean formulas and the problem SAT both motivate the definitions of P and NP, and are important in the study of NP.

Definition 0.1.

1. A boolean variable is a variable that takes on the values true and false.
2. If x, y are boolean variables then the expression $x \wedge y$ is the AND of x and y. If x, y are both set to true then $x \wedge y$ is true. All other settings set $x \wedge y$ to false.
3. If x, y are boolean variables then the expression $x \vee y$ is the OR of x and y. If x, y are both set to false then $x \vee y$ is false. All other settings set $x \wedge y$ to true.
4. If x is a boolean variable then the expression $\neg x$ is the negation of x. If x is set to true (fALSE) then $\neg x$ is set to false (TRUE).
5. A

Definition 0.2. boolean formula is defined inductively:
(a) Any boolean variable is a boolean formula.
(b) if A and B are boolean formulas than so are $(A \wedge B),(A \vee B)$ and $\neg A$.

Figure 0.1: Hierarchy of classes.

Let $\varphi\left(x_{1}, \ldots, x_{n}\right)$ be a boolean formula. The truth table for φ is a table of 2^{n} rows that gives, for each setting of the variables,

A literal is either a boolean variable or its negation.

Convention 0.3. $\left(\left(x_{1} \wedge \neg x_{2}\right) \wedge x_{3}\right)$ is a boolean formula. However, the parenthesis are not needed. Hence we write this as ($x_{1} \wedge \neg x_{2} \wedge x_{3}$). More generally we do not need parenthesis when we have an \wedge or an \vee of many variables.

Example 0.4.

1. We give the truth table for

$$
\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge \neg x_{3}
$$

x_{1}	x_{2}	x_{3}	$\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge \neg x_{3}$
TRUE	TRUE	TRUE	FALSE
TRUE	TRUE	FALSE	TRUE
TRUE	FALSE	TRUE	FALSE
TRUE	FALSE	FALSE	TRUE
FALSE	TRUE	TRUE	FALSE
FALSE	TRUE	FALSE	FALSE
FALSE	FALSE	TRUE	FALSE
FALSE	FALSE	FALSE	TRUE

2. Assume you are given the formula $\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge \neg x_{3}$. and you are asked whether there is some way to set the variables so that it returns true. How would you do it? You could do the truth table in Part 1 . For 3 variables thats $2^{3}=8$ rows which isn't that many; however, you would not want to do this for (say) 20 variables. In this particular case is there a shortcut? Yes. To make this formula true you need to make $\neg x_{3}$ true, so you need to set x_{3} to false. Then to make the first part true set either x_{1} to true or x_{2} to false.

The example is a case of the following problem.
SAT (short for Satisfiability)
Instance: A boolean formula $\varphi\left(x_{1}, \ldots, x_{n}\right)$.
Question: Is there a satisfying assignment for φ ? That is, does there exist $\left(b_{1}, \ldots, b_{n}\right) \in\{\text { TRUE, FALSE }\}^{n}$ such that $\varphi\left(b_{1}, \ldots, b_{n}\right)=$ TRUE $?$

The naive algorithm is to try all $2^{n} b_{1}, \ldots, b_{n} \in\{\text { TRUE, FALSE }\}^{n}$. This shows SAT can be solved in time roughly 2^{n}. Can we do better? Let's say that someone came up with an algorithm that worked in $2^{n / 10}$. Would that be impressive? In practice it would work better than the naive algorithm; however, it still looks like brute force with some tricks. How fast would an algorithm have to be so that its not regarded as a variant of brute force?

If someone had an algorithm that worked in time n^{100} it would not be practical but the algorithm would not be using any variant of brute force. In Section 0.3 we will define Polynomial Time to make this notion rigorous.

0.3 P: Polynomial Time

Let A be a set of strings. The set membership problem for A asks for an algorithm that, given an input string x, quickly determines whether $x \in A$. How can we measure speed? Intuitively, we expect that longer strings take more time. Hence, to answer our question, we will study the algorithm's running time as a function of $n=|x|$, the length of the input x.

Definition 0.5.

1. A decision problem is a set membership problem. For example, "given a graph, does it have an Euler circuit?" is a decision problem, equivalent to set membership in the set of all Eulerian graphs.
2. A problem will usually mean decision problem. It will sometimes mean function evaluation: given x, compute $f(x)$. On rare occasions it will mean relations: given x, find some y such that $R(x, y)$ is true.
3. We use the term instance to refer to the input x for a problem.

Definition 0.6.

1. P is the set of decision problems that can be solved in time that is bounded above by a polynomial in n, the length of the input.
2. FP is the set of functions that can be computed in time that is bounded above by a polynomial in n, the length of the input.

For both P and FP we sometimes use another notion of size that is polynomially related to the input length. For example, a dense graph on n vertices takes $\Theta\left(n^{2}\right)$ to represent; however, we will cheat and take n to be the length of the input. For the purpose of telling whether a problem is in P, this cheat does not matter. We note that we cannot always cheat. When discussing more linear and quadratic reductions for problems in NP, which we will do in Chapters 2 and 7. We will be very careful about what we do and do not count for length-of-input.

To prove that a problem is in P , one can write an algorithm and show that its running time is bounded above by some polynomial. How do you prove that a problem is not in P? This needs a model of computation (as does making the definition of P rigorous). One common formal model is the Turing machine, which we will not define. A more familiar and equivalent model is the word RAM, where an algorithm consists of a sequence of steps like "add the two integers in these locations in memory and put the result in this memory location" or "if this location in memory stores a positive integer, go to step 5 ", and each integer is limited to a number of bits equal to the machine word size w. All you need to know is the following:

1. Turing machines and word RAM work in discrete steps. Hence one can measure the number of executed steps and thus running time.
2. Let A be a decision problem. The following are equivalent:
(a) There exists a program M in Python (or whatever your favorite programming language is) and a polynomial p such that, on input $x, M(x)$ will output $A(x)$ and terminate in $\leq p(|x|)$ steps.
(b) There exists a word-RAM algorithm M and a polynomial q such that, on input $x, M(x)$ will output $A(x)$, and terminate in $\leq q(|x|)$ steps.
(c) There exists a Turing machine M and a polynomial r such that, on input $x, M(x)$ will output $A(x)$, and terminate in $\leq r(|x|)$ steps.
3. We believe that anything that can be computed at all can be computed by a Turing machine or a word RAM. This assumption is often called the Church-Turing Thesis. See Soare's article [Soa13] for a historical prospective on this thesis.
4. The extended Church-Turing thesis says furthermore that anything that can be computed in polynomial time can be computed in polynomial time by a Turing machine (or a word RAM). But this stronger thesis might be inconsistent with some modern models of computation, such as quantum computing, leading to other complexity classes than P like BQP.

The Turing machines and WORD Ram just described are deterministic which is the default. We now discuss nondeterministic Turing machines. One can similarly define nondeterministic Python (or your favorite programming language) or nondeterministic WORD Ram's. Nondeterministic Turing machines are only used for set membership. They are not used to compute functions. We will not describe them formally; however, we will give two contrasts to deterministic Turing machines and then discuss their robustness under polynomial time.

1. When a deterministic Turing machine operates, given the state of the machine (what is in memory, what the input is, what memory location it is looking at) the next operation it does is determined. For example, the instruction might be if memory location 84 has a 1 in it then erase that 1 and put in a 0.
2. When a nondeterministic Turing machine operates, given the state of the machine (what is in memory, what the input is, what memory location it is looking at) there is a set of next operations it can do. For example, the instruction might be if memory location 84 has a 1 in it then erase that 1 and put in a 0 OR shift left to look at the 83 rd memory location.
3. A deterministic Turing machine accepts an input x if when it is run it halts and outputs 1 .
4. A nondeterministic Turing machine accepts an input x if there is some sequence of choices of instructions such that using those choices it will halt and output 1 .

Nondeterministic Turing machines are not actual devices. They are a mathematical construct.
For deterministic Turing machines, polynomial time was a robust notion in that poly-time on a deterministic Turing machine, a WORD Ram, a Python program, were equivalent. The same holds for nondeterministic Turing machines, nondeterministic WORD Rams, and nondeterministic Python programs.

0.4 Reductions

To show that a problem is not in P (or likely to not be in P) we need a notion of the following: if B can be solved (quickly) then A can be solved (quickly).

Definition 0.7. Let A and B be decision problems. $A \leq_{p} B$ if there exists $f \in \mathrm{FP}$ such that, for all x,

$$
x \in A \text { if and only if } f(x) \in B .
$$

We say A reduces to B or there is a reduction from A to B.
Exercise 0.8. Prove the following:

1. If $A \leq_{p} B$ and $B \leq_{p} C$, then $A \leq_{p} C$.
2. If $B \in \mathrm{P}$ and $A \leq_{p} B$, then $A \in \mathrm{P}$.
3. If $A \notin \mathrm{P}$ and $A \leq_{p} B$, then $B \notin \mathrm{P}$. (This is just the contrapositive of the last item; however, it is very important.)

Exercise 0.8.3 gives a technique to show that a problem is not in P : to show $B \notin \mathrm{P}$, show that $A \leq_{p} B$ for some $A \notin \mathrm{P}$. Great! But we need some $A \notin \mathrm{P}$ to start with. Alas: proving $A \notin \mathrm{P}$ is hard. We consider a particular problem which will motivate our approach.

The reduction $A \leq_{p} B$ is defined so that, to answer whether $x \in A$, you get to ask one question to B and the answer must be the same. These are called polynomial-time many-one reductions ${ }^{1}$ or Karp reductions. Polynomial-time reductions where you are allowed to ask many questions are called polynomial-time Turing reductions or Cook reductions. In this book we will almost always deal with Karp reductions.

Consider the following classic decision problem:

SAT (short for Satisfiability)

Instance: A boolean formula $\varphi\left(x_{1}, \ldots, x_{n}\right)$.
Question: Is there a satisfying assignment for φ ? That is, does there exist $\left(b_{1}, \ldots, b_{n}\right) \in\{\text { TRUE, FALSE }\}^{n}$ such that $\varphi\left(b_{1}, \ldots, b_{n}\right)=$ TRUE?

0.5 NP: Nondeterministic Polynomial Time

Recall the problem SAT:
SAT (short for SATISFIABILITY)
Instance: A boolean formula $\varphi\left(x_{1}, \ldots, x_{n}\right)$.
Question: Is there a satisfying assignment for φ ? That is, does there exist $\left(b_{1}, \ldots, b_{n}\right) \in\{\text { TRUE, FALSE }\}^{n}$ such that $\varphi\left(b_{1}, \ldots, b_{n}\right)=$ TRUE ?
Note: We will almost always take the length of a boolean formula to be the number of variables in it.

As discussed earlier, the naive algorithm runs in time roughly 2^{n} time. But note the following: if you already had b_{1}, \ldots, b_{n} it would be easy to tell whether $\varphi\left(b_{1}, \ldots, b_{n}\right)=$ true. This does not make SAT any easier; however, this motivates our definition of NP below.

First we define some very useful notation and give an example of it.
Notation 0.9. Let $\exists^{p} \boldsymbol{y}$ denote "there exists y of length $p(|x|)$ ", where p is a polynomial and x is understood. Similarly, let $\forall^{p} \boldsymbol{y}$ denote "for all y of length $p(|x|)$ ", where p is a polynomial and x is understood.

Example 0.10. Let

$$
A=\{(G, y): y \text { is a 3-coloring of } G\} .
$$

The set of graphs that are 3-colorable can be expressed as

[^1]$$
3 \mathrm{COL}=\{G: \exists y:(G, y) \in A\} .
$$

The coloring y can be represented as a string over $\{0,1\}$ of length $2 n$, where n is the number of vertices in G.

Hence

$$
3 \mathrm{COL}=\{G: \exists y:|y|=2 n \wedge(G, y) \in A\} .
$$

The length of y does not really matter to us so long as it is a polynomial. Hence

$$
3 \mathrm{COL}=\left\{G: \exists^{p} y:(G, y) \in A\right\} .
$$

Exercise 0.11.

1. Show how to represent a (not necessarily proper) 3-coloring of a graph on n vertices with an element of $\{0,1\}^{2 n}$.
2. Let $c \geq 3$. Find r such that any (not necessarily proper) c-coloring of a graph on n vertices can be represented by an element of $\{0,1\}^{r n}$.

We give two equivalent definitions of NP. We will mostly use the first one. The second one is the original definition. We will use it on occasion.

Definition 0.12.

1. $A \in \mathrm{NP}$ if there exists a set $B \in \mathrm{P}$ such that

$$
A=\left\{x: \exists^{p} y:(x, y) \in B\right\} .
$$

2. $A \in N P$ if it is accepted by a nondeterministic Turing machine that runs in polynomial time.

The intuition is that

- If $x \in A$, then there is a short witness (y) that can be used to verify $x \in A$ quickly.
- If $x \notin A$, then there is no such witness.

We list many NP problems. For the first few we supply the witness. For the rest we leave finding the witness and hence proving the problem is in NP as an exercise.

Example 0.13.

1. 3COL: Given a graph, is it 3-colorable? The 3-coloring is the short quickly verified witness.
2. Clique: Given a graph G and a number k, does G have a clique of size k ? (A clique is a set $U \subseteq V$ such that all distinct $u, v \in U$ satisfy $\{u, v\} \in E$.) The clique is the short quickly verified witness.
3. Ind. Set: Given a graph G and a number k, does G have an independent set of size k ? (An independent set is a set $U \subseteq V$ such that all distinct $u, v \in U$ satisfy $\{u, v\} \notin E$.)
4. Vertex Cover: Given a graph $G=(V, E)$ and a number k, does G have a vertex cover of size k ? (A vertex cover is a set $U \subseteq V$ such that every edge $e \in E$ has an endpoint in U.)
5. Euler Cycle: Given a graph, does it have an Eulerian cycle (a cycle that visits every edge exactly once)? This problem happens to also be in P because a graph is Eulerian if and only if every vertex has even degree. So the statement Euler Cycle \in NP is correct but not as interesting as Euler Cycle \in P.
6. Factoring: Given a pair of numbers (n, a), is there a non-trivial factor of n that is $\leq a$? The factor is the short quickly verified witness. Note that the length of the input (n, a) is roughly $\lg n+\lg a$ because we represent numbers in binary.
7. Graph Isomorphism: Given a pair of graphs (G, H), are they isomorphic? In other words, is there a bijection between the vertices of G and the vertices of H that preserves the existence of edges?
8. Ham Cycle: Given a graph, does it have a Hamiltonian cycle (a cycle that visits every vertex exactly once)? (Hamiltonian cycle is named for William Rowan Hamilton, an Irish mathematician, who studied Hamiltonian cycles on the dodecahedron. Hamilton commercialized his study as the Icosian Game (so named because the dodecahedron is the dual of the icosahedron).)
9. TSP: Given a weighted graph and a number k, is there a Hamiltonian cycle of weight $\leq k$? Note that Ham Cycle is a subcase of TSP.
10. Set Cover: Given sets $S_{1}, \ldots, S_{m} \subseteq\{1, \ldots, n\}$ and an integer k, are there k of the S_{i} 's whose union is all of $\{1, \ldots, n\}$?
11. shortest path: Given a graph G, two vertices s, t, and an integer c, is there a path from s to t that uses $\leq c$ edges? This problem is in P by using Breadth-First Search or Dijkstra's algorithm. So the statement shortest path $\in N P$ is correct but not as interesting as SHORTEST PATH $\in \mathrm{P}$.
12. Subset Sum: Given integers $\left(a_{1}, \ldots, a_{n}, B\right)$ does some subset of a_{1}, \ldots, a_{n} sum to B ? The integers a_{1}, \ldots, a_{n}, B are in binary, hence the length of the input is approximately $\lg a_{1}+$ $\cdots+\lg a_{n}+\lg B$.
13. Tetris: Given a position of a Tetris game, and knowledge of future falling pieces, is there a sequence of moves that does not lose the game? This puzzle or "perfect-information" version of Tetris is not how the game is usually played, where a player does not know the future falling pieces. Intuitively, though, if this problem is hard, then the version where the player does not know the future pieces is also hard.
14. 0-1 Programming: Given a matrix M of integers, vectors \vec{b}, \vec{c} of integers, and d an integer, does there exist a vector \vec{x} where each component is 0 or 1 such that $M \vec{x} \leq \vec{b}$ and $\vec{x} \cdot \vec{c} \geq d$?
15. Integer Programming: Given a matrix M of integers, vectors \vec{b}, \vec{c} of integers, and d an integer, does there exist a vector \vec{x} of integers such that $M \vec{x} \leq \vec{b}, \vec{x} \geq \overrightarrow{0}$, and $\vec{x} \cdot \vec{c} \geq d$? For this problem, membership in NP is more challenging than for any other problem on this list. The reason is that you need to show that, if there is some \vec{x}, then there is an \vec{x} whose components are not too big.

Some of the problems in NP have been worked on for many years (predating the formal definition of P); however, no polynomial-time algorithm for them is known. We need a way to say "these are the problems in NP that we think are not in P".

Definition 0.14. Let B be a problem.

1. B is NP-hard if, for all $A \in \mathrm{NP}, A \leq_{p} B$.
2. A problem B is $\boldsymbol{N P}$-complete if $B \in N P$ and B is NP-hard.

It seems like it would be hard to find a natural problem that is NP-complete. To show B is NP-complete one needs to show that $A \leq_{p} B$ for every $A \in$ NP. Every $A \in$ NP! Really! However, there is a natural NP-complete problem. Actually there are thousands! In the early 1970's, Cook [Coo71] and Levin [Lev73] (see [Tra84] for a translation of Levin's article into English and some historical context) independently proved the following:

Theorem 0.15 (Cook-Levin Theorem). SAT is NP-complete.
Shortly after Cook showed there is one natural NP-complete problem, Karp [Kar72] showed 21 natural problems are NP-complete. We mention a few to give a sense of the variety of the problems: Ham Cycle, Subset Sum, and 0-1 Programming.

The proof of Theorem 0.15 codes Turing machine computations into formulas. Once SAT was shown to be NP-complete, Turing machines are no longer needed: to show A is NP-complete, just show SAT $\leq_{p} A$. Or if B is already known to be NP-complete then show $B \leq_{p} A$.

The problems in Example 0.13 are NP-complete except (1) Euler Cycle \in P, (2) shortest path $\in P$, (3) Factoring and Graph Isomorphism are in NP but not known to be either in P or NP-complete. We discuss these two problems later in this chapter.

For all the problems in Example 0.13 (except Integer Programming) the proof that they are in NP is very easy. This is typical. When proving that a problem B is NP-complete we will usually omit the (easy) proof that $B \in \mathrm{NP}$. In the rare case that proving $B \in \mathrm{NP}$ is hard or unknown, we will point it out.

The following notation is probably familiar to you; however, we include them for completeness (not NP-completeness) because they are needed for the next exercise.

Notation 0.16. Let Σ be an alphabet. Let $A, B \subseteq \Sigma^{*}$.

1. $A \cdot B=\{x y: x \in A$ and $y \in B\}$. This is called the concatenation of A and B.
2. $A^{0}=\{e\}$ where e is the empty string.
3. $A^{i}=A \cdot A \cdots \cdot A$ where the A appears i times.
4. $A^{*}=A^{0} \cup A^{1} \cup A^{2} \cup \cdots$.

$$
\text { 5. } \bar{A}=\Sigma^{*}-A
$$

Exercise 0.17. For each of the following statements, either prove it, disprove it, or state that it is unknown to science.

1. If $A, B \in \mathrm{P}$, then $A \cup B \in \mathrm{P}$.
2. If $A, B \in \mathrm{P}$, then $A \cap B \in \mathrm{P}$.
3. If $A, B \in \mathrm{P}$, then $A \cdot B \in \mathrm{P}$.
4. If $A \in \mathrm{P}$, then $\bar{A} \in \mathrm{P}$.
5. If $A \in \mathrm{P}$, then $A^{*} \in \mathrm{P}$.
6. If $A, B \in \mathrm{NP}$, then $A \cup B \in \mathrm{NP}$.
7. If $A, B \in \mathrm{NP}$, then $A \cap B \in \mathrm{NP}$.
8. If $A, B \in \mathrm{NP}$, then $A \cdot B \in \mathrm{NP}$.
9. If $A \in \mathrm{NP}$, then $\bar{A} \in \mathrm{NP}$.
10. If $A \in \mathrm{NP}$, then $A^{*} \in \mathrm{NP}$.

0.6 coNP

The complement of SAT is the set of all formulas that have no satisfying assignment. We call this set CONTRA (for "contradiction"). Formally:

$$
\text { CONTRA }=\{\varphi: \forall \vec{b}: \varphi(\vec{b})=\text { FALSE }\} .
$$

In terms of polynomial time, clearly SAT $\in \mathrm{P}$ if and only if CONTRA $\in \mathrm{P}$ because $\varphi \in$ SAT if and only if $\varphi \notin$ CONTRA. Is CONTRA in NP? Probably not. Contrast the following:

1. For Alice to convince Bob that $\varphi \in S A T$, Alice can give Bob a satisfying truth assignment. The assignment is short and can be verified by Bob in polynomial time.
2. For Alice to convince Bob that $\varphi \in$ CONTRA, Alice can give Bob the truth table for φ. This is exponential in the size of φ and would take Bob exponential time to verify.

The question "is CONTRA in NP?" is asking whether there is a short verifiable witness that $\varphi \in$ CONTRA. This does not appear to be the case.

So how to classify CONTRA? We define a class coNP in two ways. This class is where CONTRA naturally lies.

Definition 0.18. $A \in$ coNP if there exists a set $B \in \mathrm{P}$ such that

$$
A=\left\{x: \not \forall^{p} y:(x, y) \in B\right\} .
$$

(coNP stands for "co-Nondeterministic Polynomial" which comes from an equivalent definition of NP which we do not use.)

The intuition is that

- If $x \notin A$, then there is a short witness (y) that can be used to verify $x \notin A$ quickly.
- If $x \in A$, then there is no such witness.

Another definition:
Definition 0.19. $A \in \operatorname{coNP}$ if $\bar{A} \in N P$.

It is widely believed that $\mathrm{NP} \neq$ coNP.
We can define coNP-hardness and coNP-completeness similar to Definition 0.14. CONTRA is coNP-complete. Assuming NP \neq coNP, CONTRA is not NP-complete.

0.7 The Winner is $\mathbf{P} \neq \mathbf{N P}$

Gasarch [Gas19] has done three polls of what theorists think of P vs. NP, and other questions. In the last one, in 2019, 88% thought $P \neq N P$. Why do theorists largely think $P \neq N P$? Why do we think so?

1. There are thousands of problems that are NP-complete. For many of them people have worked on getting fast algorithms for a long time, predating the definition of P and NP. In a nutshell: if (say) SAT is in P then someone would have discovered the algorithm for it by now.
2. Intuitively, verifying seems easier than finding. As an example: finding a proof of a theorem is often hard, but verifying a proof is easy (or should be).
3. The assumption $\mathrm{P} \neq \mathrm{NP}$ has great explanatory power. We give one example. Consider the function version of Set Cover which is, given $S_{1}, \ldots, S_{m} \subseteq\{1, \ldots, n\}$, find the minimal k such that k of the S_{i} 's cover $\{1, \ldots, n\}$.
(a) In 1979 Chvatal [Chv79] showed that a simple greedy algorithm yields a polynomialtime $\ln n$-approximation. That is, if the algorithm outputs x, then the answer is \leq $x \ln n$. Much work went into trying to obtain a $(1-\varepsilon) \ln n$ approximation.
(b) In 2013 Dinur and Steurer [DS13] showed that, if there exists $\varepsilon>0$ such that there is a $(1-\varepsilon) \ln n$ approximation, then $\mathrm{P}=\mathrm{NP}$.

The algorithm and the lower bound (based on $P \neq N P$) are independent of each other. This phenomenon-where a long-standing approximation is shown to be optimal assuming $P \neq N P-$ is common. Hence the assumption $P \neq N P$ seems to settle many open problems in the direction we think they should go.

0.8 Strong NP-Completeness [Ch. 6]

Recall Subset Sum. The input consists of $n+1$ numbers in binary. As such the problem is NPcomplete. But what if the input numbers were specified in unary? Then the problem turns out to be in P :

Exercise 0.20. Show that, if the inputs are in unary, then Subset Sum $\in P$.
Hint: Use dynamic programming.
Hence the NP-completeness of Subset Sum is related to the fact that the inputs are in binary. Some problems are NP-hard even when the inputs are in unary:

Definition 0.21.

1. A problem is weakly NP-hard if it is NP-hard when the inputs are in binary.
2. A problem is weakly NP-complete if it is in NP and weakly NP-hard.
3. A problem is strongly NP-hard if is NP-hard when the inputs are in unary.
4. A problem is strongly NP-complete if it is in NP and strongly NP-hard.

In Chapter 6 we will show that many problems are strongly NP-hard.

0.9 Intermediate Problems

In Example 0.13, we noted (without proof) that

- Euler Cycle \in P.
- Clique, SAT, Set Cover, Subset Sum, Tetris, and 0-1 Programming are all NP-complete.

The above dichotomy is typical; most problems in NP turn out to be either in P or NPcomplete. But there are exceptions (assuming $P \neq N P$).

Definition 0.22. A problem is NP-intermediate if it is in NP but neither in P nor NP-complete.

Ladner [Lad75] showed the following:
Theorem 0.23 (Ladner's Theorem). If $P \neq N P$, then there exists an $N P$-intermediate problem.
The problem from Ladner's theorem is a contrived set constructed for the sole purpose of being in NP, not NP-complete, and not in P. But there are also a few natural and well-studied problems that are conjectured to be NP-intermediate:

1. Factoring. We approach integer factoring via the set

FActoring $=\{(N, a):$ there is a nontrivial factor of N that is $\leq a\}$.
It is easy to see that, if Factoring $\in P$, then the problem of, given a number, find a nontrivial factor of it (or output that there isn't one) would be in FP. This problem is very important because many modern crypto system can be cracked if factoring is easy. Hence it has gotten much attention.
Currently there is no polynomial-time algorithm for Factoring, nor is there a proof that it is NP-complete. Algorithms for factoring are hard to analyze and depend on (widely believed) conjectures in number theory. The fastest known algorithm, the General Number Field Sieve, is believed to have running time roughly $2^{1.93 L^{1 / 3}(\lg L)^{2 / 3}}$, where $L=\lg N$ is the length of the input number N. This bound is small enough that the algorithm is practical for moderately large inputs. The naive algorithm for factoring takes time $2^{L / 2}$. Hence reducing the time to roughly $2^{L^{1 / 3}}$ is a real improvement. In general, a subexponential bound of $2^{L^{\alpha}}$ where $0<\alpha<1$ is strictly in between any polynomial bound of n^{c} and any exponential bound of $2^{L^{c}}$ where c is a positive integer.
There is no clear consensus on whether Factoring is in P; however, if it is, then proving this will require new techniques. Here is why:
(a) The last improvement in factoring algorithms was the Number Field Sieve in 1988.
(b) There are reasons to think that the current methods yield algorithms with running times of the form $2^{L^{t}(\ln L)^{1-t}}$, where $0<t<1$. The General Number Field Sieve achieves $t=1 / 3$. It is plausible that current techniques will solve Factoring in time (say) $2^{L^{1 / 10}}(\ln L)^{9 / 10}$ but not in P.

There is another possible route to fast factoring: Peter Shor [Sho94, Sho99] showed that factoring can be done in polynomial time on a quantum computer. This result has led to an explosion of interest in quantum computing.
So is Factoring NP-complete? Unlikely: if Factoring is NP-complete, then NP = coNP. We will guide you through a proof in Exercise 0.24. For more about factoring, see Wagstaff's book [Wag13].
2. Discrete Log. We describe discrete logarithm as a function and leave it to the reader to give the decision version.
Discrete Log: Given prime p, generator g, and $a \in \mathbb{Z}_{p}$, find x such that $g^{x} \equiv a(\bmod p)$.
Much like factoring, (1) Discrete Log is important because, if it was easy to solve, the Diffie-Hellman key exchange protocol in cryptography would be cracked; (2) Discrete Log is not known to be in P; (3) Discrete Log is not known to be NP-complete; (4) there are algorithms for Discrete Log that are better than the naive one, though still exponential (see [Wikd]); (5) there has not been a better algorithm for Discrete Log since 1998; (6) Shor [Sho94, Sho99] has shown there is a quantum polynomial-time algorithm for Discrete Log; and (7) If Discrete Log is NP-complete, then NP = coNP; hence Discrete Log is unlikely to be NP-complete.
3. Graph Isomorphism. So far there has been no polynomial-time algorithm for Graph Isomorphism; however, there has also been no proof that it is NP-complete. The fastest algorithm for Graph Isomorphism, due to Babai [Bab16], has running time $2^{(\lg n)^{c}}$ for some constant $c(c=3$ seems likely). It is believed that a quasipolynomial running time of $2^{(\lg n)^{c}}$ with $c>1$ is the best one can do with current methods. So is Graph Isomorphism NP-complete? The consensus is "no" for the following reasons:
(a) If Graph Isomorphism is NP-complete, then all problems in NP are solvable in quasipolynomial time $2^{(\lg n)^{O(1)}}$ which seems unlikely. In particular, this would violate the Exponential Time Hypothesis described in Section 0.10 below.
(b) Boppana et al. [BHZ87] proved that, if Graph Isomorphism is NP-complete, then $\Sigma_{2}=\Pi_{2}$ (as defined in Section 0.15 below). The proof is slightly beyond the scope of this book.
4. minimum circuit size problem (MCSP) is the following problem: given the truth table of a boolean function f and an integer s, does f have a circuit with at most s logic gates?
Kabanets \& Cai [KC00] showed that if MCSP $\in P$ then there is no secure crypto system. We take that as evidence that MCSP $\notin \mathrm{P}$. Can we show that with a reduction? Probably not: Murry \& R. Williams [MW17] showed that if MCSP is NP-complete under Karp reductions then some longstanding open problems would be solved. In addition, Saks \& Santhanam [SS20] showed that if MCSP is NP-hard under other reductions (in between Karp and Turing reductions) then some other longstanding open problems would be solved. These results do not indicate that there is no such reduction; however, they indicates that finding one will be hard.

For a survey of a large body of work on this topic, see the papers of Allender [All21] and Hirahara-2022 [Hir22].

Exercise 0.24. Let Primes be the problem of, given a number, to determine whether it is prime. Let UFT be the theorem that every number can be factored uniquely into primes.

1. Look up or prove for yourself that Primes \in NP. (It turns out that Primes $\in P$ [AKS04]; however, all we need for this exercise is that Primes \in NP.)
2. Use UFT and Primes $\in N P$ to prove that $\overline{\overline{F A c t o r i n g ~}} \in N P$.
3. Use Factoring $\in N P \cap$ coNP to show that, if Factoring is NP-complete, then $N P=$ coNP.

0.10 ETH [Ch. 7]

So how long does SAT actually take to solve? The hypothesis SAT $\notin \mathrm{P}$ still allows for the possibility that, say, SAT $\in n^{O(\log n)}$. It is widely believed that SAT requires exponential time. More precisely, it is believed that there exists a sequence s_{3}, s_{4}, \ldots such that k SAT requires $2^{s_{k} n}$ time. This belief is encapsulated by the Exponential Time Hypothesis (ETH). We will present this hypothesis and its implications in Chapter 7. In order to use ETH we need the reductions to be linear, not just polynomial.

We give one contrast between assuming $P \neq N P$ and assuming ETH.

1. Assuming $P \neq N P$, Vertex Cover is not in polynomial time.
2. Assuming ETH, Vertex Cover requires time $2^{\Omega(n)}$.

The ETH still allows for the possibility that, say, $k S A T \in 2^{n / k}$. It is widely believed that as k gets larger, k SAT gets harder. In fact, it is believed that $\lim _{k \rightarrow \infty} s_{k}=1$. This belief is encapsulated by the Strong Exponential Time Hypothesis (SETH). We will present this hypothesis and its implications in Chapter 7.

ETH and SETH were proposed to get better lower bounds on NP-complete problems. However, perhaps surprisingly, they have also been used on the lower level of showing that some problems (essentially) require quadratic or cubic time. We examine this in Chapters 18 and 19.

0.11 FPT: Fixed-Parameter Tractability [Ch. 8]

Consider the following two problems:

$$
\begin{aligned}
\text { Clique } & =\{(G, k): G \text { has a clique of size } k\}, \\
\text { Vertex Cover } & =\{(G, k): G \text { has a vertex cover of size } k\} .
\end{aligned}
$$

As noted after Theorem 0.15, both of these problems are NP-complete. Now let's fix k. Define

$$
\begin{aligned}
\mathrm{Clique}_{k} & =\{G: G \text { has a clique of size } k\}, \\
\text { Vertex }^{\operatorname{Cov}_{k}} & =\{G: G \text { has a vertex cover of size } k\} .
\end{aligned}
$$

Both Cligue k and Vertex Cov_{k} are in time $O\left(n^{k}\right)$ and hence in P. This does not imply that Vertex Cover is in P because the exponent k is a function of the input size. In order to be in P, Vertex Cover would need to be in time $17 n^{2}$ or $84 n^{3}$ or some time bound that has a constant factor and a constant exponent, both of which are independent of the size of the input.

So both Clique_{k} and Vertex Cov_{k} seem to have complexity $O\left(n^{k}\right)$. Can this be improved? Does the exponent of the time bound have to depend on k ? More to the point, are these problems similar or different? It turns out that they are different:

1. Vertex Cov_{k} can be solved in time $O\left(2^{k} n\right.$). (This does not imply that Vertex Cover $\in \mathrm{P}$ because, the bound has the 2^{k} term which is a function of the input size.)
2. There are reasons to think that CLIQUE_{k} requires $n^{\Omega(k)}$ time.

Problems like Vertex Cov_{k} are called Fixed-Parameter Tractable or FPT. We will study techniques to show that problems are likely not FPT in Chapter 8.

0.12 Complexity of Functions and Approximation [Ch. 9 \& $10 \& 11]$

So far we have discussed decision problems. For example, Clique is the problem of deciding whether a graph has a clique of a given size k. But the real problem people want answered is,
given a graph G, to return the size of the largest clique. Or better, return a clique of the maximum size (and because there may be more than one, this would be that rare case where we study the complexity of a relation). If our only question is "can we solve Cligue in polynomial time", then this turns out to be a minor issue: all of these problems are essentially equivalent.

Exercise 0.25. Recall that FP is the set of all functions that are computable in polynomial time.

1. Let $\operatorname{CliqueSize}(G)$ return the size of the largest clique in G. Show that

Clique $\in P$ if and only if CliqueSize $\in F P$.
2. Let FindClique(G) return a clique of size CliqueSize (G). Show that

Clique $\in P$ if and only if FindClique $\in F P$.
3. For all the decision problems A in Example 0.13, define a function version f_{A}. Show that $A \in \mathrm{P}$ if and only if $f_{A} \in \mathrm{FP}$.

With regard to polynomial time, computing CliqueSize (G) is as hard as computing Clique (G). But what about approximating CliqueSize(G) ? We will study the complexity of approximation in Chapters 9, 10, and 11.

0.13 Complexity Classes that Use Randomization

In this section we informally describe two randomized classes for, pardon the pun, completeness. Actually, there is an irony here in that these classes do not have complete problems.

Definition 0.26. A decision problem A is in Randomized Polynomial Time ($\boldsymbol{R P}$) if there is a polynomial-time algorithm M that can flip coins satisfying the following properties:

- If $x \in A$, then the probability that $M(x)$ says $x \in A$ is $\geq \frac{1}{2}$.
- If $x \notin A$, then the probability that $M(x)$ says $x \notin A$ is 1 .

Some facts about RP:

1. G. Miller [Mil76] obtained a polynomial-time algorithm for Primes that depends on the extended Riemann hypothesis being true. Rabin [Rab80] modified the algorithm to be in RP without any hypothesis. The final algorithm is called The Miller-Rabin test. It is actually used by cryptographers. For many years it remained open whether Primes $\in P$ until Agrawal et al. [AKS04] showed that it is. The algorithm they obtained is to slow to be useful; however, it is still interesting that Primes $\in P$.
2. There are very few problems that are in RP that are not known to be in P. We state one: given a polynomial $f\left(x_{1}, \ldots, x_{n}\right)$ and a prime p, is the polynomial identically zero over \mathbb{Z}_{p} ?
3. There are reasons to think that $P=R P$. See the items about BPP after Definition 0.28 .

Exercise 0.27.

1. Let $0<\alpha<\frac{1}{2}$. In the definition of RP, replace $\frac{1}{2}$ with α and call the resulting class RP_{α}. Show that $\mathrm{RP}_{1 / 2}=\mathrm{RP}_{\alpha}$.
2. Let $\alpha(n)$ be a decreasing function from \mathbb{N} to $\left(0, \frac{1}{2}\right)$. In the definition of RP , replace $\frac{1}{2}$ with $\alpha(|x|)$ and call the resulting class $\mathrm{RP}_{\alpha(n)}$. Is $\mathrm{RP}_{1 / n^{2}}=\mathrm{RP}$? Is $\mathrm{RP}_{1 / 2^{n}}=\mathrm{RP}$?

Note that RP was defined to have 1 -sided error. We now define a randomized class that has 2 -sided error.

Definition 0.28. A set A is in Bounded Probabilistic Polynomial Time (BPP) if there is a polynomial-time algorithm M that can flip coins satisfying the following properties:

- If $x \in A$, then the probability that $M(x)$ says $x \in A$ is $\geq \frac{3}{4}$.
- If $x \notin A$, then the probability that $M(x)$ says $x \notin A$ is $\geq \frac{3}{4}$.

Some facts about BPP:

1. There are no natural problems that are known to be in BPP but not known to be in RP. There aren't even any known unnatural problems.
2. There are reasons to think that $P=B P P$. A sequence of papers by Nisan \& Wigderson [NW94], Babai et al. [BFNW93], and Impagliazzo \& Wigderson [IW97] showed that, assuming a reasonable hardness assumptions for circuits, one can prove that a pseudorandom generator exists and hence that $\mathrm{P}=\mathrm{BPP}$. There have been many papers following up on this theme. See the surveys of Kabanets [Kab02], Impagliazzo's [Imp03], and Trevisan [Tre12] for more information.
3. It is not known whether $\mathrm{BPP} \subseteq \mathrm{NP}$.
4. Lautemann [Lau83] and Sipser [Sip83] proved that BPP $\subseteq \Sigma_{2} \cap \Pi_{2}$ (as defined in Section 0.15 below). Lautemann's proof is simpler; however, Sipser's paper started the field of timebounded Kolmogorov complexity.

Exercise 0.29.

1. Let $\frac{1}{2}<\alpha<1$. In the definition of BPP, replace $\frac{3}{4}$ with α and call the resulting class BPP_{α}. Show that $\mathrm{BPP}_{3 / 4}=\mathrm{BPP}_{\alpha}$.
2. Let $\alpha(n)$ be a decreasing function from \mathbb{N} to $\left(0, \frac{1}{2}\right)$ In the definition of BPP, replace $\frac{3}{4}$ with $\alpha(|x|)$ and call the resulting class $\mathrm{BPP}_{\alpha(n)}$. Is $\mathrm{BPP}_{1-1 / n^{2}}=\mathrm{BPP}$? Is $\mathrm{BPP}_{1-1 / 2^{n}}=\mathrm{BPP}$?

0.14 Counting Problems [Ch. 12]

Recall that SAT is the problem of, given a boolean formula, does there exist a satisfying assignment? Consider the counting version:
\#SAT
Instance: A boolean formula $\varphi\left(x_{1}, \ldots, x_{n}\right)$.
Output: The number of $\vec{b} \in\{\text { True, false }\}^{n}$ such that $\varphi(\vec{b})=$ True. That is, how many satisfying assignments does φ have?

Clearly SAT is easier than (or just as easy) as \#SAT. Note that the counting version is a function, not a set. It turns out that \#SAT seems to be much harder than SAT. What about counting versions of other problems? For example, the problem \#CliQue is the following: given a graph G and a number k, how many cliques of size k are in G ?

We study the hardness of counting problems, and related notions, in Chapter 12.

0.15 Polynomial Hierarchy

We look at a natural problem that does not seem to be in NP.

Min Formula

Instance: A formula $\varphi\left(x_{1}, \ldots, x_{n}\right)$ and a number L.
Question: Is there a formula $\psi\left(x_{1}, \ldots, x_{n}\right)$ of length $\leq L$ that is equivalent to φ (i.e., always produces the same output)?

Example 0.30.

1. $\varphi(w, x, y, z)=(w \vee x) \wedge(w \vee y) \wedge(w \vee z)$. There is a shorter equivalent formula, namely $w \vee(x \wedge y \wedge z)$.
2. $\varphi(w, x, y, z)=w \vee x \vee y \vee z$. There is no shorter equivalent formula.

Exercise 0.31.

1. Show that, if $P=N P$, then Min Formula $\in P$.
2. Vary the notion of size in various ways (e.g., number of \wedge, number of \neg) and determine whether $\mathrm{P}=$ NP implies that this variant of Min Formula is in P .

Consider an alternate formulation of Min Formula that asks whether a formula φ is the smallest formula with the same truth table:

$$
\text { Min Formula }=\{\text { Boolean formula } \varphi: \forall \psi,|\psi|<|\varphi|: \exists \vec{b}: \varphi(\vec{b}) \neq \psi(\vec{b})\} .
$$

This formulation of Min Formula does not put it into NP. We seem to need a \forall and then a \exists. We now define classes that use more quantifiers, so we will have a place to put Min Formula. Stockmeyer [Sto76] defined the levels of the PH.

Definition 0.32. Let $k \in \mathbb{N}$.

Figure 0.2: The Polynomial Hierarchy.

1. $A \in \Sigma_{k}$ if there exists $B \in \mathrm{P}$ such that

$$
A=\left\{x: \exists^{p} y_{1}: \forall^{p} y_{2}: \exists^{p} y_{3}: \forall^{p} y_{4}: \cdots: Q^{p} y_{k}:\left(x, y_{1}, \ldots, y_{k}\right) \in B\right\}
$$

(Where Q is the appropriate quantifier.)
Note that $\Sigma_{1}=N$.
2. $A \in \Pi_{k}$ if there exists $B \in \mathrm{P}$ such that

$$
A=\left\{x: \forall^{p} y_{1}: \exists^{p} y_{2}: \forall^{p} y_{3}: \exists^{p} y_{4}: \cdots: Q^{p} y_{k}:\left(x, y_{1}, \ldots, y_{k}\right) \in B\right\}
$$

(Where Q is the appropriate quantifier.)
Note that $\Pi_{1}=$ coNP.
Definition 0.33. The interwoven hierarchies in Figure 0.2 are known collectively as the Polynomial Hierarchy (PH):

Note: The notation Σ_{i}^{p} and Π_{i}^{p} is sometimes used because the notation Σ_{i} and Π_{i} are also used in computability theory, where the quantifiers are unbounded. We will never use Σ_{i} and Π_{i} in the computability theory sense, hence there will be no confusion.

Exercise 0.34. Let $i \geq 1$.

1. Show that, if $\Sigma_{i}=\Pi_{i}$, then $\Sigma_{i}=\Pi_{j}=\Sigma_{j}$ for all $j \geq i$ ("PH collapse").
2. Define Σ_{i}-hard, Σ_{i}-complete, Π_{i}-hard, and Π_{i}-complete.

It is believed that the PH is proper, i.e., all containment relations in Definition 0.33 are strict, though not with the same confidence as the belief that $P \neq N P$.

Any NP problem can be modified to form a (possibly contrived) Σ_{2} problem. If the original NP problem is NP-complete, then the modified problem is Σ_{2}-complete. We give one example.

Σ_{2}-SAT

Instance: A boolean formula with two sorts of variables: $\varphi(\vec{x}, \vec{y})$.
Question: Does there exist \vec{b} such that, for all $\vec{c}, \varphi(\vec{b}, \vec{c})=$ TRUE?

Exercise 0.35.

1. For all NP problems presented in this chapter, come up with a modified version that is in Σ_{2} and does not seem to be in Σ_{1}.
2. Define Σ_{i}-SAT.
3. For all NP problems presented in this chapter, come up with a modified version that is in Σ_{i} and does not seem to be in Σ_{i-1}.

The following are known:

1. Σ_{2}-SAT is Σ_{2}-complete.
2. Min Formula is in Π_{2} but is not known to be Π_{2}-complete.

We can view Σ_{2}-SAT as a game. The board is the given formula $\varphi(\vec{x}, \vec{y})$. First Alice picks an assignment for \vec{x}. Then Bob picks an assignment for \vec{y}. If the resulting assignment makes φ TRUE, Alice wins; otherwise, Bob wins. Note that $\varphi(\vec{x}, \vec{y}) \in \Sigma_{2}$ if and only if Alice can win.

One can extend this intuition to Σ_{k} and Π_{k}. Intuitively, Σ_{k} corresponds to a k-move game where you move first, and Π_{k} corresponds to a k-move game where your opponent moves first. An example of a real-world video game where puzzles become Σ_{2}-complete is "The Witness" with clues $\left[\mathrm{ABC}^{+} 20\right]$. We will also encounter Σ_{2} in Section 12.13.

Exercise 0.36. Skim the paper by M. Schaefer \& Umans [SU08] which presents over 80 problems complete on some level of the PH.

0.16 EXPTIME, PSPACE, and EXPSPACE [Ch. 14 \& 15 \& 17]

Definition 0.37.

1. EXPTIME is the set of problems that can be solved in time that is exponential in the size n of the problem instance, i.e., in $2^{n^{O(1)}}$ time.
2. PSPACE is the set of problems solvable in polynomial space (memory), without any bound on running time.
3. EXPSPACE is the set of problems that can be solved in space that is exponential in the size n of the problem instance, i.e., in $2^{n^{O(1)}}$ space.

Note: By a simple diagonalization argument, EXPTIME - P $\neq \emptyset$ and EXPSPACE - PSPACE $\neq \emptyset$. Hence, if a problem A is EXPTIME-complete, then $A \notin \mathrm{P}$, and similarly A being EXPSPACEcomplete implies $A \notin$ PSPACE. This is in contrast to A being NP-complete, which we think implies $A \notin \mathrm{P}$ but we do not know. These separations are corollaries to the more general time hierarchy theorem and the space hierarchy theorem.

Example 0.38.

1. Chess is the following problem: given a position in Chess (on an $n \times n$ board), and assuming both players play perfectly, will white win? For most natural versions of Chess, this problem is EXPTIME-complete.
2. In Chapters 14, 15, and 17, we will discuss more games that are complete or hard in these classes.
3. Let QBF (Quantified Boolean Formula) consist of all expressions of the form

$$
\exists \vec{x}_{1}: \forall \vec{x}_{2}: \exists \vec{x}_{3}: \forall \vec{x}_{4}: \cdots: \exists \vec{x}_{k-1}: \forall \vec{x}_{k}: \varphi\left(\vec{x}_{1}, \ldots, \vec{x}_{k}\right)
$$

that are true. QBF is PSPACE-complete.
PSPACE thus contains every level of PH as QBF allows for an arbitrary number of alternations in quantifiers.

0.17 NSPACE: Nondeterministic Space

Our definition of NP involves quantifiers and a witness y. Our definition of NSPACE will need to use nondeterministic Turing machines.

Definition 0.39. $A \in$ NPSPACE if there exists a nondeterministic Turing machine or wordRAM algorithm M, and a polynomials p such that, on input x, any choice of instructions forms a computation that takes $\leq p(|x|)$ space.

More generally, for any function $S: \mathbb{N} \rightarrow \mathbb{N}$, we can define $\operatorname{SPACE}(S(n))$ and $\operatorname{NSPACE}(S(n))$ to allow $S(n)$ space on an input of size n. Savitch [Sav70] showed the following beautiful relation between SPACE and NSPACE:

Theorem 0.40 (Savitch's Theorem). Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be a function, with $f(n) \geq n$. Then NSPACE $(f(n)) \subseteq$ $\operatorname{SPACE}\left(f(n)^{2}\right)$. In particular, $\operatorname{NPSPACE}=$ PSPACE.

Exercise 0.41. Either prove Savitch's theorem or look up its proof, read it, and understand it.
If $S(n)$ is sublinear in n, we can still define $\operatorname{SPACE}(S(n))$ and $\operatorname{NSPACE}(S(n))$ in a meaningful way. Specifically, we restrict the input (x, y) to be read only, and allow the algorithm only $S(n)$ read/write memory.

Notation 0.42. We define two sublinear space classes. For both of them the input is on a separate read-only tape.

1. L is $\operatorname{SPACE}(\log n)$.
2. NL is $\operatorname{NSPACE}(\log n)$.

NL has a notion of NL-completeness. For example, the following problem is NL-complete: given a directed graph G and two vertices s, t, is there a directed path from s to t ? The proof is easy because one can view a nondeterministic logarithmic-space computation as a directed graph. There is a belief that $L \neq N L$ but it is not as strong as the belief that $P \neq N P$.

0.18 R: Decidable Sets [Ch. 16 \& 17]

Definition 0.43. R is the set of decision problems that can be solved by a Turing machine or word-RAM algorithm, with no limit on how long it runs other than "finite". Problems in R are also called decidable.

The R stands for recursive because at one time "decidable" sets were called "recursive". Soare's article [Soa96] has an excellent historical perspective on the reason to change the terminology from "recursive" to "decidable". (Sometimes in the literature R stands for Randomized Polynomial Time. When this comes up, we will use RP.)

Essentially all problems in this book are decidable, i.e., in R. In Chapters 16 and 17, we will discuss problems that are undecidable.

0.19 Arithmetic Hierarchy

Given two problems that are undecidable, is there a way of saying that one is more undecidable? What measure of complexity can you use? The Arithmetic Hierarchy (AH) is a way to classify problems using the number of quantifiers. Given the order we presented the material in, you might think that the AH is modeled after the PH from Section 0.15; however, it is the other way around. The AH was defined by Kleene [Kle43] in 1943.

More generally, much of the early work in complexity theory was modeled after earlier work in computability theory.

Definition 0.44. We give four equivalent definitions of when a decision problem A is computably enumerable:

1. If there exists a Turing machine or word-RAM algorithm M such that

$$
A=\{x: \exists y: M(y) \text { halts and outputs } x\} .
$$

(So A is the range of a computable function. Note that M might not halt on some inputs.)
2. If either $A=\emptyset$, or there exists a Turing machine or word-RAM algorithm M that halts on all inputs and satisfies

$$
A=\{x: \exists y: M(y) \text { (halts and) outputs } x\} .
$$

(So A is empty or the range of a total computable function.)
3. If there exists a Turing machine or word-RAM algorithm M such that

$$
A=\{x: M(x) \text { halts }\} .
$$

(So A is the domain of a computable function.)
4. If there exists a $B \in \mathrm{R}$ such that

$$
A=\{x: \exists y:(x, y) \in B\}
$$

Note: What we call computably enumerable (c.e.) is also called recursively enumerable (r.e.). Soare [Soa96] has tried to get the community to change from "r.e." to "c.e." and gives good arguments for the change.

Exercise 0.45. Show that all four definitions of c.e. in Definition 0.44 are equivalent.
The fourth definition of c.e. in Definition 0.44 looks like NP which is identical to Σ_{1}. The next exercise asks you to define $\Pi_{1}, \Sigma_{2}, \Pi_{2}$, etc. in the context of decidability.

Exercise 0.46.

1. In Section 0.15 on the Polynomial Hierarchy, we defined Σ_{i} and Π_{i} by adding alternating polynomial-bounded quantifiers to P. Define similar classes by adding alternating unbounded quantifiers to R. Call these classes Σ_{i} and Π_{i} also (they will only be used within this problem so there should be no confusion). This is the Arithmetic Hierarchy (AH).
2. Let M_{0}, M_{1}, \ldots be a list of all Turing machines or word-RAM algorithms in some order. For each of the following decision problems, determine which Σ_{k} or Π_{k} it is in. Try to make k as low as possible.

$$
\begin{aligned}
\mathrm{FIN} & =\left\{i: M_{i} \text { halts on an infinite number of inputs }\right\} \\
\text { TOT } & =\left\{i: M_{i} \text { halts on all inputs }\right\}
\end{aligned}
$$

In Section 16.4 we will briefly discuss one problem that does not involve Turing machines yet is not in AH .

0.20 A Few Separations of Complexity Classes

Separating P from NP seems quite hard. Now that we have introduced more complexity classes, though, there are a few pairs of classes that we know are different. In all cases the proof is by a simple diagonalization argument which we omit.

Theorem 0.47.

1. $P \varsubsetneqq E X P T I M E \varsubsetneqq R$.
2. $P \subseteq N P \subseteq E X P T I M E \subsetneq R$.
3. $P \subseteq N P \subseteq P S P A C E \varsubsetneqq E X P S P A C E \varsubsetneqq R$.
4. $P \subseteq N P$ and $N P \subseteq E X P T I M E$ so, by Part 1, one of these two is proper.
5. $P \subseteq$ PSPACE and PSPACE $\subseteq E X P T I M E$ so, by Part 1, one of these two is proper.

Refer back to Figure 0.1 for a visual overview.

0.21 Polynomial Lower Bounds [Ch. 18 \& 19]

Once we know that a problem is in P the question arises, what is its running time? Can we have a notion similar to NP-hardness to show that problems within P are unlikely to have subquadratic algorithms? Subcubic algorithms?

To show that problems are unlikely to be in subquadratic time (that is, $O\left(n^{2-\delta}\right)$ for some δ), we need a base problem (similar in spirit to SAT) that is unlikely to be in subquadratic time. There is such a problem.

3SUM

Instance: n integers.
Question: Do three of the integers sum to 0 ?
Note: We will consider any arithmetic operation to have unit cost.
Despite enormous effort, nobody has obtained a subquadratic algorithm for 3SUM in a reasonable model of computation. In Chapter 18 we show that many problems are unlikely to be in subquadratic time by (1) assuming that 3SUM is not in subquadratic time, and (2) using an appropriate notion of reduction.

To show that problems are unlikely to be in subcubic time (that is, $O\left(n^{3-\delta}\right)$ for some δ), we need a base problem (similar in spirit to SAT) that is unlikely to be in subcubic time. There is such a problem.

All Pairs Shortest Paths (APSP)
Instance: A weighted directed graph $G=(V, E, w)$ with weights in \mathbb{N}.
Output: For all pairs of vertices $x, y, \operatorname{dist}_{G}(x, y)$.
Note: We will consider any arithmetic operation to have unit cost.
Despite enormous effort, nobody has obtained a subcubic algorithm for APSP. In Chapter 19 we show that many problems are unlikely to be in subcubic time by (1) assuming that APSP is not in subcubic time, and (2) using an appropriate notion of reduction.

0.22 Online Algorithms [Ch. 20]

An online problem is one where (1) the input is given in pieces (e.g., requests for memory access), and (2) the answer is a sequence of answers (e.g., assignments of whether to put a page in cache or memory), where each answer must be given each time you get a piece of the input before the rest of the input is given.

For such problems the issue is not how fast the algorithm runs. The algorithm needs to, as soon as it gets a new piece of information, give a response quickly. There is another goal in mind. For example, in the case of memory access, the goal is to minimize the number of times that a page that is not in the cache is requested. The issue is then how well the algorithm does on its goal compared to what the optimal would be if we knew all future information.

We study lower bounds for online algorithms in Chapter 20. The main tool used is adversary arguments, where an adversary will, given the algorithm, find a way to input the data that causes the algorithm to do badly. These lower bounds are unconditional. There is no need to assume some problem is hard.

0.23 Streaming Algorithms [Ch. 21]

Streaming algorithms are similar to online algorithms in that the data comes in pieces. A streaming problem is one where (1) the input is given in pieces (e.g., edges of a graph), (2) we may allow several passes through the data, and (3) the answer is a string (e.g., an answer to "does the graph have a connected component of size 100 ").

For such problems, the issue is not how fast the algorithm runs. We note that the algorithms involved are usually quite fast. The issue is twofold: how much memory does the algorithm use (it cannot store all of the data as we think of the the data stream as being enormous), and how many passes over the data does the algorithm use. There is often a tradeoff between these two parameters.

We study lower bounds for streaming algorithms in Chapter 20. The main tool used is communication complexity. These lower bounds are unconditional: there is no need to assume some problem is hard.

0.24 Parallel Algorithms [Ch. 22]

A parallel algorithm is one where many machines work on a problem at the same time. In Chapter 22, we study a recent model of parallelism called massively parallel computation MPC. The key parameters in this model are (1) the number of rounds a computation takes, (2) the memory each machine has, and (3) the number of processors. The lower bounds are often tradeoffs between these three parameters.

There are two kinds of lower bounds: unconditional that need to assumptions, and conditional which need to assume some problem is hard. The problem often used is 1vs2-Cycle (defined below) which seems to be hard to solve in parallel.

1vs2-Cycle

Instance: An undirected graph $G=(V, E)$. We are promised that it is either one cycle or the union of two cycles.
Question: Is the graph one cycle or the union of two cycles?

0.25 Game Theory [Ch. 23]

Imagine that Alice and Bob are playing a game. It is a simple game: each player simultaneously chooses 1 out of n options, and that pair (Alice's Choice, Bob's Choice) determines how many points each person gets. They will play this game many times.

Nash showed that, if they are both allowed to have a probabilistic strategy (often called a mixed strategy), then there exists a pair (Alice's strategy, Bob's strategy) such that both players know that, if they deviate from the strategy but their opponent does not, then they will do worse than if they stuck with their strategy. Such an ordered pair is called a Nash equilibrium..

Nash's proof that a Nash equilibrium exists does not give a method for finding it. This puts us in a curious position:

1. The problem "is there a Nash Equilibrium" is trivial: the answer is YES.

2. The problem "find the Nash Equilibrium" seems hard.

There are reasons to think that finding the Nash Equilibrium is not NP-hard. Hence we need another way to prove that it is hard.

There are other problems where a solution always exists but finding it seems to be hard. To show that problems of this type are unlikely to be in polynomial time, we need a base problem (similar in spirit to SAT) that is unlikely to be in polynomial time. There is such a problem.

```
UnbalANCED
Instance: A directed graph G and an unbalanced node v.
Question: Is there another unbalanced vertex?
```

This problem is in P for the odd reason that, by Theorem 23.2, there is always another unbalanced vertex. What if we actually want to find that other unbalanced vertex? We certainly can find it in polynomial time by looking at every vertex. But note that the algorithm does not use the proof of Theorem 23.2.

What if we were given a short representation (size poly in n) of a large directed graph (size 2^{n})? Then you cannot just look at every vertex. We will also restrict the graph to have both in-degree and out-degree ≤ 1. We now define this formally.

End of Line EOL
Instance: Two circuits P (for Previous) and N (for Next) on $\{0,1\}^{n}$ such that for all $x \in\{0,1\}^{n}$ the following holds.

- $P(x)$ returns either NO or an element of $\{0,1\}^{n}$.
- $N(x)$ returns either NO or an element of $\{0,1\}^{n}$.

We interpret the circuits as describing a directed graph by the following:

- If $P(x)=y$ then there is an edge from x to y.
- If $N(x)=y$ then there is an edge from y to x.

Output: If exactly one of $P\left(0^{n}\right), N\left(0^{n}\right)$ is not NO then find another unbalanced node. (Such an unbalanced node exists. We will state this in Theorem 23.2.)
Note: This is quite different from finding the unbalanced node that has a path to 0^{n}. Papadimitriou [Pap94, Theorem 2] showed that problem is PSPACE-hard. Subtle changes in a problem definition may alter things tremendously.

Despite some effort, nobody has obtained a polynomial time for EOL. In Chapter 23 we show that some problems, including finding a Nash Equilibrium, are unlikely to be in polynomial time by (1) assuming the EOL $\notin \mathrm{P}$, and (2) using an appropriate notion of reduction.

Part I

NP and Its Variants

Chapter 1

SAT and Its Variants

1.1 Introduction

In this chapter we look at many variants of SAT and use them to show various problems NPcomplete.

Chapter Summary

1. Some variants of SAT are in P and some are NP-complete. A small change in the definition can cause a large change in the complexity.
2. Different versions of SAT are useful for proving different problems $N P$-complete. We give examples of this.
3. Curiously, all of the versions we look at are either in P or NP-complete. None are intermediate or status-unknown. We will state a theorem that explains this phenomenon. Theorems of this type are called dichotomy Theorems.

1.2 Variants of SAT

We list many variants of SAT and say which are in P and which are NP-complete. We mostly do not provide proofs; however, you should consider each statement to be an exercise.

1.2.1 CNF SAT, DNF SAT, and Circuit SAT

Definition 1.1. Let φ be a boolean formula.

1. The terms x_{i} and $\neg x_{i}$ are called literals.
2. φ is in Conjunctive Normal Form (CNF) if

$$
\varphi=C_{1} \wedge \cdots \wedge C_{k}
$$

where the C_{j} 's are ORs of literals.
3. if φ is a CNF formula, then the C_{i} 's are called clauses.
4. φ is in Disjunctive Normal Form (DNF) if

$$
\varphi=D_{1} \vee \cdots \vee D_{k}
$$

where the D_{j} 's are ANDs of literals.
5. A boolean circuit is a circuit with (1) inputs x_{1}, \ldots, x_{n}, (2) one output, and (3) the gates are AND, OR, and NOT. The graph formed by the circuit must be acyclic. See Figure 1.1 for an example. The gates with a straight line base are AND, the gates with a curved line base are OR, and the circle is a negation. We leave it as an exercise to write down the boolean formula computed by this circuit.

Figure 1.1: A boolean circuit.

Notation 1.2. If we define a type of formula X (e.g., CNF), then the problem XSAT (e.g., CNF SAT) will be, given a formula of the form X, is it satisfiable? (Soon we will have a convention that formulas are in CNF form unless otherwise specified by such a prefix.) For boolean circuits we will use Circuit SAT.

Theorem 1.3.

1. CNF SAT is NP-complete. Cook [Coo71] and Levin [Lev73] (see [Tra84] for a translation of Levin's article into English and some historical context) proved this, though they did not state it in this form.
2. DNF SAT is in P. This is an easy exercise.
3. CIRCUIT SAT is NP-complete. This is an easy consequence of CNF SAT being NP-complete.

Exercise 1.4. Since CNF SAT is NP-complete and DNF SAT is in P, one approach to proving $\mathrm{P}=\mathrm{NP}$ is to find a function $f \in \mathrm{FP}$ that will take a CNF formula φ and return an equivalent DNF formula ψ. Alas this cannot work:

Prove that any DNF formula that is equivalent to

$$
\left(x_{1} \vee y_{1}\right) \wedge\left(x_{2} \vee y_{2}\right) \wedge \cdots \wedge\left(x_{n} \vee y_{n}\right)
$$

is of the form $D_{1} \vee \cdots \vee D_{L}$ where (1) each D_{i} is the \wedge of literals and (2) $L \geq 2^{n}$.
Convention 1.5. Unless otherwise noted, we will assume that all the formulas we encounter are in CNF form. Hence, we use SAT to mean CNF SAT.

1.2.2 Variants of SAT that are Mostly NP-Complete

Definition 1.6. 2SAT is CNF SAT restricted to formulas that have ≤ 2 literals per clause. 3SAT is CNF SAT restricted to formulas that have ≤ 3 literals per clause. We will soon generalize this concept.

Example 1.7. Consider the formula

$$
(x \vee y) \wedge(\neg x \vee z) \wedge(\neg y)
$$

Is it in 2SAT? In any satisfying assignment the following happens:
$\neg y$ has to be true, so y is set to false. Since $x \vee y$ has to be true and y is false, x must be set to true. Since $(\neg x \vee z)$ has to be true, and $\neg x$ is false, z has to be true. Hence $(x, y, z)=$ (TRUE, FALSE, TRUE) satisfies the formula. Of more interest is that many variable settings were forced. This is the intuition as to why 2SAT is in P.

We will sketch the proof that 2 SAT $\in P$. This was first proven by Krom [Kro67]. A general result which implies it was proven by Aspvall et al. [APT79]. We present the proof by Apsvall [APT79]. See also the expositions on Wikipedia [Wikb] and notes by Chaurasia et al. [CLA]

Theorem 1.8. $2 S A T$ is in P.

Proof:

Here is the algorithm for 2SAT. We assume that the input has exactly two literals in each clause. We leave it as an exercise to extend the algorithm to handle the case where some clauses have one literal.

1. Input a formula φ of the form $C_{1} \wedge \cdots \wedge C_{m}$ where each C_{i} has 2 literals.
2. Form a directed graph G as follows. The vertices are all of the variables that occur in the formula and their negations. For each clause $(A \vee B)$ where A, B are literals, put in the directed edges $(\neg A, B)$ and $(\neg B, A)$ (if A is $\neg x$ then replace $\neg \neg x$ with x). Note that if (L_{1}, L_{2}) is an edge then, in any satisfying assignment, if L_{1} is true then L_{2} is true.
3. Using breath first search or depth first search determine if there is some variable x so that (1) there is directed path in G from x to $\neg x$, and (2) there is a directed path in G from $\neg x$ to x. If so then 2SAT is not satisfiable and the algorithm returns NO. If not then 2SAT is satisfiable and the algorithm returns YES.

The algorithm clearly works in polynomial time since breath first search and depth first search are fast. We show that the algorithm is correct.

Assume that the algorithm returns YES. Let v_{1} be any node in the graph. Let v_{2} be a (directed) neighbor of v_{1}. Let v_{3} be a (directed) neighbor of v_{2}. Continue until there is either a directed path or a cycle. Set all of the literals represented by these vertices to true. This will set some of the variables. Since there are no directed paths from a literal to its negation, the assignment to variables can be carried out. We are not done yet. This may force other literals to be set to true. If when all of the forcing is done there are still some variables that are not assigned, then repeat
the process until all variables are assigned. The key is that since there are no directed paths from a literal to its negation, this process can be carried out.

Assume that the algorithm returns NO. Let x be such that there is a directed path from x to $\neg x$ and from $\neg x$ to x. Assume, by way of contradiction, that there is a satisfying assignment. Assume that x is assigned true (the case where it is assigned false is similar). Look at the path from x to $\neg x$.

$L_{1}=x$	L_{2}	\cdots	L_{k-1}	$L_{k}=\neg x$
TRUE				FALSE

Let i be the least number such that L_{i} is assigned false. There is an edge from $\left(L_{i-1}, L_{i}\right)$. This is a contradiction since L_{i-1} is true and L_{i} is true.

Cook [Coo71] proved the following theorem.
Theorem 1.9. $3 S A T$ is $N P$-complete. Cook [Coo71] proved this.

Proof:

By Theorem 1.3 CNF SAT is NP-complete. We show that CNF SAT $\leq_{p} 3$ SAT.
Before giving the proof we give an instructive example.
Consider the 1-clause formula $\varphi=\left(L_{1} \vee L_{2} \vee L_{3} \vee L_{4} \vee L_{5}\right)$ where each L_{i} is a literal. Let z_{1}, z_{2} be variables that are not in any of the L_{i} 's. Look at

$$
\psi=\left(L_{1} \vee L_{2} \vee z_{1}\right) \wedge\left(\neg z_{1} \vee L_{3} \vee z_{2}\right) \wedge\left(\neg z_{2} \vee L_{4} \vee L_{5}\right)
$$

Let $\left(b_{1}, \cdots, b_{5}\right)$ be a truth assignment for $\left(L_{1}, \cdots, L_{5}\right)$. One can easily show that the following are equivalent:

- $\left(b_{1}, \ldots, b_{5}\right)$ is a satisfying assignment for φ (so at least one of the b_{i} 's is TRUE).
- There is an assignment $\left(c_{1}, c_{2}\right)$ to $\left(z_{1}, z_{2}\right)$ such that setting $\left(L_{1}, \cdots, L_{5}\right)$ to $\left(b_{1}, \ldots, b_{5}\right)$ and $\left(c_{1}, c_{2}\right)$ to $\left(z_{1}, z_{2}\right)$ is a satisfying assignment for ψ.

In the reduction we will replace clauses with more than three literals with sets of clauses similar to what we did in the example.

1. Input formula $\varphi=C_{1} \wedge \cdots \wedge C_{m}$. Each C_{i} is an \vee of literals. We will replace each C_{i} with either itself or a set of clauses.
2. For $1 \leq i \leq m$ do the following:
(a) If C_{i} has ≤ 3 literals then we replace C_{i} with itself.
(b) If C_{i} has $k \geq 4$ literals then let $C_{i}=\left(L_{1} \vee \cdots \vee L_{k}\right)$.

Let z_{1}, \ldots, z_{k-3} be new variables. Replace C_{i} with the following set of clauses.

$$
\left(L_{1} \vee L_{2} \vee z_{1}\right) \wedge
$$

$$
\begin{gathered}
\left(\neg z_{1} \vee L_{3} \vee z_{2}\right) \wedge\left(\neg z_{2} \vee L_{4} \vee z_{3}\right) \wedge \cdots \wedge\left(\neg z_{k-4} \vee L_{k-2} \vee z_{k-3}\right) \wedge \\
\left(\neg z_{k-3} \vee L_{k-1} \vee L_{k}\right)
\end{gathered}
$$

3. Let ψ be the resulting formula.

Clearly this reduction is in polynomial time. We leave it to the reader to show that $\varphi \in \mathrm{CNF}$ SAT iff $\psi \in 3$ SAT.

There are many variations of SAT. One can restrict the number of literals in a clause, or other aspects of the input. One can also put conditions on what kind of satisfying assignment you want. There are many papers with different (and inconsistent) notations. Fortunately, Filho [Fil19], in his Master's Thesis, devised a great system of notation that we use. He also unified many old results and proved some new ones. His system encompassed far more variants of SAT than we will discuss.

We first look at restricting the number of literals in a clause and the number of times a variable can appear in the formula. Even with these simple variants there are subtleties.

Definition 1.10. Let $a, b \in \mathbb{N}$. In all of the problems below the goal is to find a satisfying assignment. What varies is the form of the input formula.

1. aSAT: every clause has $\leq a$ literals per clause. Note that if $a \geq 3$ then $(x \vee x \vee y)$ and $(x \vee \neg x \vee y)$ are allowed.
2. EaSAT: every clause has exactly a literals per clause. Again note that if $a \geq 3$ then ($x \vee x \vee y$) and $(x \vee \neg x \vee y)$ are allowed.
3. EUaSAT: every clause has exactly a literals per clause, and every variable within a clause occurs uniquely. Note that if $a \geq 3$ then $(x \vee x \vee y)$ and $(x \vee \neg x \vee y)$ are not allowed.
4. aSAT- b : every clause has $\leq a$ literals per clause, and every variable occurs $\leq b$ times. (If x occurs and $\neg x$ occurs, then that is 2 occurrences.)
5. a SAT-Eb: every clause has $\leq a$ literals per clause, and every variable occurs exactly b times. (If x occurs and $\neg x$ occurs, then that is 2 occurrences.)
6. We leave it to the reader to define EaSAT- b, EUaSAT- b, EaSAT-Eb, EUaSAT-Eb.

We state and prove a theorem, due to Tovey [Tov84], that shows that these seemingly small differences in the form of the formula create big differences in complexity.

Theorem 1.11.

1. 3SAT-3 is NP-complete.
2. Let φ be a formula such that (a) there are exactly 3 literals per clause, (b) every variable occurs ≤ 3 times, and (c) every variable within a clause occurs uniquely. Then φ is satisfiable.
3. EU3SAT-3 $\in P$ since every formula of this form is satisfiable by Part 2.

Proof:

1) We show 3 SAT $\leq_{p} 3$ SAT-3.

Given a formula φ in 3CNF, we produce a formula φ^{\prime} such that (1) every variable occurs ≤ 3 times and (2) $\varphi \in$ SAT if and only if $\varphi^{\prime} \in$ SAT.

For each variable x such that either x or $\neg x$ occurs in φ do the following:

1. If x occurs ≤ 3 times, then do nothing.
2. If x occurs $m \geq 4$ times, then introduce new variables x_{1}, \ldots, x_{m}, and do the following:

- Replace the i th occurrence of x with x_{i}.
- For $1 \leq i \leq m-1$, add the clause $x_{i} \rightarrow x_{i+1}$ (formally, this is $\neg x_{i} \vee x_{i+1}$).
- Add the clause $x_{m} \rightarrow x_{1}$.

3. Output φ^{\prime}.

Clearly (1) φ^{\prime} is of the right form and (2) $\varphi \in 3$ SAT if and only if $\varphi^{\prime} \in$ 3SAT.
2) Let φ be a formula that satisfies the premise. Consider the bipartite graph with (1) clauses on the left, (2) variables on the right, (3) an edge between C and x if either x or $\neg x$ occurs in C.

Every clause has degree 3 . Every variable has degree ≤ 3. Hence, by a corollary to Hall's Theorem (we discuss this in the exercises following this theorem), there is a matching of clauses to variable. That is, there is a set of disjoint edges where every clause is the endpoint of one of them. If C is matched to x, then (1) set x True if $x \in C$, (2) set x FALSE if $\neg x \in C$. This is clearly a satisfying assignment.

Exercise 1.12. Let $G=(A, B, E)$ be a bipartite graph. A matching from \boldsymbol{A} to B is a disjoint set of edges where every element of A is an endpoint. If $X \subseteq A$ then,

$$
E(X)=\{y \in B: \exists x \in X:(x, y) \in E\} .
$$

1. Prove the following are equivalent.
(a) for all $X \subseteq A,|E(X)| \geq|X|$
(b) there is a matching from A to B.

This equivalence is Hall's theorem.
2. Let $k \in \mathbb{N}$. Prove that if (1) every vertex in A has degree $\geq k$, and (2) every vertex in B has degree $\leq k$, then there is a matching from A to B. This is a corollary to Hall's Theorem.

Project 1.13. For each $a, b \in \mathbb{N}$, for each formula type from Definition 1.10, determine the status (P or NP-complete) of all of the SAT problems restricted to that formula-type with parameters a, b. Some we have already done for you.

Exercise 1.14. Show that in the proof of Theorem 1.11φ and φ^{\prime} have the same number of satisfying assignments.

In all of the above examples, we had SAT as our goal: is there a way to satisfy the formula? We can place conditions on how we want the formula to be satisfied. We give some examples and then say how the notation handles these conditions.

Definition 1.15.

1. The condition NAE- means that, within a clause, not all of its literals get the same truth value. In an NAE- assignment true and false are symmetric in that every clause must have at least one of each.
2. The condition $1-\mathrm{IN}$ - means that exactly 1 literal from each clause is true. One could replace 1 with 2 or any number.
3. To indicate you are demanding that condition be satisfied, place the condition right before everything else. Example:
```
1-IN-EUaSAT-b
Instance: A formula }\varphi\mathrm{ such that (1) every clause has exactly a literals (2) every
    variable occurs \leqb times, and (3) every variable in a clause occurs uniquely.
Question: Is there a satisfying assignment of }\varphi\mathrm{ where every clause has exactly 1 literal set to true?
```

In the above examples, we limited the number of literals per clause. We now limit one more aspect and show how our notation handles it.

Definition 1.16.

1. A formula is Monotone if, for every clause, either all of its literals are positive or all of its literals are negative.
2. We put the word Monotone before the condition. We give two examples:

Monotone aSAT

Instance: A formula φ such that (1) every clause has $\leq a$ literals (and a clause can have the same variable twice), and (2) every clause has either all the literals positive or all of the literals negative.
Question: Is φ satisfiable?

Monotone NAE-aSAT-Eb
Instance: A formula φ such that (1) every clause has $\leq a$ literals (and a clause can have the same variable twice), (2) every variable occurs exactly b times, (3) every clause has either all the literals positive or all of the literals negative.
Question: Is there a satisfying assignment of φ where every clause has both a literal set to TRUE and a literal set to FALSE?

Theorem 1.17.

1. (Gold [Gol78]) Monotone 3SAT is NP-complete.
2. (Darmann et al. [DDD18]) Monotone 3SAT-E4 is NP-complete. This solved an open problem in an earlier version of this book.

What if the goal is not to satisfy all of the clauses, but instead to satisfy as many as possible? We prepend the word Max to indicate that goal. So MAx 2SAT is the function that will, given a 2CNF formula φ, returns the maximum number of clauses that can be simultaneously satisfied. Since it is a function, we cannot say it is NP-complete, though we can say it is NP-hard.

Exercise 1.18. Computing MAx 2SAT is NP-hard.
Exercise 1.19. Show that the following problem is NP-complete: Given a 3CNF formula, is there a satisfying assignment such that a majority of the clauses have all three literals set to TRUE ?

1.2.3 Variants of SAT that are in \mathbf{P}

Theorem 1.20. The following versions of SAT are in P.

1. (Horn [Hor51]) Horn SAT. Each clause has ≤ 1 positive literal.
2. (T. Schaefer [Sch78]) Dual Horn SAT. Each clause has ≤ 1 negative literal. Dual Horn $S A T \in P$ follows easily from Horn $S A T \in P$.
3. (Lewis [Lew78]) Renameable Horn SAT. There is a set of clauses C_{1}, \ldots, C_{k} such that the following holds: If you take every literal L that appears in $C_{1} \cup \cdots \cup C_{k}$ and, in the entire formula, replace L by $\neg L$ (and simplify double negations) then the formula is Horn.

1.2.4 More Variants of 3SAT that are Mostly NP-Complete

Theorem 1.21. In all of the following problems the formula given is $3 C N F$.

1. (T. Schaefer [Sch78]) 1-IN-3SAT. We seek a satisfying assignment where exactly one literal per clause is true. This problem is NP-complete.
2. Monotone 1-in-3SAT. There are no negation signs, and we seek a satisfying assignment where exactly one literal per clause is TRUE. This problem is NP-complete. This is not well known, hence we prove it right after we finish stating this theorem. (The terminology is a little confusing, as "monotone" here means all positive, whereas earlier monotone meant all positive or all negative.)
3. (T. Schaefer [Sch78]) Monotone Not-Exactly-1-In-3SAT. There are no negation signs, and we seek an assignment where either 0, 2, or 3 of the variables in each clause are TruE. This problem is trivially in P.
4. (T. Schaefer [Sch78]) NAE-3SAT. We seek a satisfying assignment where no clause has all 3 variables true. Note that we are not allowing any clause to have its literals go FALSE-FALSEfalse (since then φ would not be satisfied) or true-true-true (since then all 3 are true). There is a nice symmetry between TRUE and FALSE. This problem is NP-complete.
5. Monotone NAE-3SAT. The formula has no negations, and we seek a satisfying assignment where no clause has all 3 variables true. This problem is NP-complete.

Since the next theorem seems to have never been written down, we provide a proof for it. We will use it to prove that a puzzle Cryptarithms, to be defined later, is NP-complete. This will be Theorem 1.30.

Theorem 1.22. 1-In-3SAT \leq_{p} Monotone 1-In-3SAT. Hence Monotone 1-In-3SAT is NP-complete. Proof:

Given $\varphi=C_{1} \wedge \cdots \wedge C_{k}$ (on variables $\left.x_{1}, \ldots, x_{n}\right)$ where each C_{i} has 3 literals, we construct

$$
\varphi^{\prime}=C_{1}^{\prime} \wedge \cdots \wedge C_{k}^{\prime} \wedge D_{1} \wedge \cdots \wedge D_{n} \wedge E
$$

such that the following holds:

1. Each C_{i}^{\prime}, D_{j}, E has three positive literals.
2. The following are equivalent:

- There is a truth assignment that makes φ true by making exactly 1 literal per clause true.
- There is a truth assignment that makes φ^{\prime} true by making exactly 1 literal per clause true.

We construct φ^{\prime} as follows:

1. Let T, F be suggestively named new variables. We add the clause $E=T \vee$ false \vee false . In any 1-in-3 satisfying assignment of φ^{\prime}, T will be true and F will be false.
2. For $1 \leq j \leq n$, we create a new variable x_{j}^{\prime} and add the clause $D_{j}=$ false $\vee x_{j} \vee x_{j}^{\prime}$. Note that in any $1-\mathrm{in}-3$ satisfying assignment of φ^{\prime}, x_{j} and x_{j}^{\prime} will take on opposite values. Hence, effectively, x_{j}^{\prime} is $\neg x_{j}$, but without using a not-sign.
3. For $1 \leq i \leq k$, we take C_{i}, and form C_{i}^{\prime}. Replace every negative literal $\neg x$ in C_{i} with x^{\prime}.

We leave it to the reader to show that φ^{\prime} satisfied the conditions above.

The problems 3SAT, 1-IN-3SAT, and NAE-3SAT are important for proving problems NPcomplete. When proving a graph problem is NP-hard, we often take a formula and make a graph out of it. When doing this, we need to create graphs that model variables and clauses. These graphs are often called gadgets. If we start with a formula of a certain type (e.g., 3SAT), or with a formula where the goal is to satisfy it in a certain way (e.g., 1-IN-3SAT), then creating gadgets is often easier.

We will also use the term "gadget" more generally to mean some object we construct to do a reduction. It has no formal definition.

1.3 NP-Complete Problems Proven Using Variants of SAT

We will show several problems are NP-complete by using variants of SAT.

1.3.1 Clique, Ind. Set, and Vertex Cover

We will prove Clique, is NP-complete by a reduction from 3SAT. We will then prove (1) Ind. Set is NP-complete by a reduction from Clique, and (2) Vertex Cover is NP-complete by a reduction from Ind. Set. The last two reductions are very easy.

Clique and Ind. Set
Instance: Graph $G=(V, E)$ and a $k \in \mathbb{N}$.
Question: For Clique (Ind. Set): are there k points such that every pair (no pair) has an edge between them?

Vertex Cover
Instance: Graph $G=(V, E)$ and a $k \in \mathbb{N}$.
Question: Is there a $V^{\prime} \subseteq V$ of size k such that every $e \in E$ has some $v \in V^{\prime}$ as an endpoint?

Karp [Kar72] proved that Clique, Vertex Cover, and Ind. Set are NP-complete. For Clique we give a different proof (folklore) that has properties we will use in Theorem 12.16. For Ind. Set and Vertex Cover we give Karp's proofs.

Notation 1.23. If $G=(V, E)$ is a graph then \bar{G} is (V, \bar{E}). So $\left(v_{1}, v_{2}\right)$ is an edge in \bar{G} iff $\left(v_{1}, v_{2}\right)$ is not an edge in $G . \bar{G}$ is called the complement of G.

Theorem 1.24.

1. 3 SAT \leq_{p} CLIQue, so Clique is NP-complete.
2. Clique \leq_{p} Ind. Set, so Ind. Set is NP-complete.
3. Ind. Set \leq_{p} Vertex Cover, so Vertex Cover is NP-complete.

Proof:

1) We give an example of our reduction using a formula that has two 3-clauses and one 2-clause in Figure 1.2. While this is not strictly a 3CNF formula, it is a good example for readability.

Here is the reduction.

1. Input $\varphi=C_{1} \wedge \cdots \wedge C_{k}$ where each C_{i} is a 3 -clause.
2. We create a graph G with $7 k$ vertices as follows: For each clause we have 7 vertices. Label them with the 7 ways to set the 3 variables to make the clause satisfied. For example, for the clause $x \vee y \vee \neg z$, we have 7 vertices

- $(x=$ TRUE,$y=$ TRUE,$z=$ TRUE $)$
- $(x=$ TRUE,$y=$ TRUE,$z=$ FALSE $)$
- $(x=$ TRUE,$y=$ FALSE,$z=$ TRUE $)$
- $(x=$ TRUE,$y=$ FALSE,$z=$ FALSE $)$
- $(x=$ FALSE,$y=$ TRUE,$z=$ TRUE $)$
- $(x=$ FALSE,$y=$ TRUE,$z=$ FALSE $)$
- ($x=$ FALSE,$y=$ FALSE,$z=$ FALSE $)$

3. There are no edges between vertices associated with the same clause. We put an edge between vertices associated with different clauses if the assignments do not conflict. For example, vertex ($x=$ TRUE, $y=$ TRUE, $z=$ TRUE) will have an edge to the vertex ($w=$ false, $x=$ true, $z=$ true $)$ but not to the vertex ($w=$ false, $x=$ false, $z=$ TRUE).

We leave it to the reader to show that the $\varphi \in 3$ SAT if and only if $(G, k) \in$ Clique.
2) G has a clique of size k if and only if \bar{G} has an independent set of size k.
3) G has an independent set of size k if and only if G has a vertex cover of size $n-k$.
$x \vee y \vee z$

$w \vee \bar{x} \vee z$

Figure 1.2: Reduction of 3SAT to Clique.

Note: In Section 2.6 we will show that Vertex Cover restricted to planar graphs is NP-complete.

1.3.2 2-Colorable Perfect Matching is NP-Complete

We show that 2-COL Perfect Matching is NP-complete by using a reduction from Monotone NAE-3SAT.

2-COL Perfect Matching

Instance: A graph G.
Question: Is there a 2 -coloring of the vertices such that every vertex has exactly
1 neighbor of the same color? Figure 1.3 gives an example of a graph with a 2 -colorable perfect matching.

Figure 1.3: A graph that has a 2-colorable perfect matching.

Theorem 1.25. (T. Schaefer [Sch78]) 2-COL Perfect Matching is NP-complete. It remains NPcomplete when restricted to planar 3-regular graphs.

Proof:

We show Monotone NAE-3SAT $\leq_{p} 2$-COL Perfect Matching. Given φ, we find a graph G such that $\varphi \in$ Monotone NAE-3SAT if and only if $G \in 2$-COL Perfect Matching. As we describe the reduction look at Figure 1.4 for the gadgets we use. We will color the vertices of the graph true and false. Since the goal is to have no clause have all true's or all false's, true and FALSE are symmetric here.

1. For every clause $X \vee Y \vee Z$, we have the gadget in Figure 1.3. This gadget makes sure that in any 2-coloring satisfying the condition, X, Y, Z cannot all be the same color. Hence, any 2 -coloring satisfying the condition will be a Not-All-Equal truth assignment.
2. We will need a variable X to appear several places. Gadget 1 b shows how to have two copies of x that both receive the same color.
3. Gadget 1c shows the graph that results if the formula is $(x \vee x \vee y) \wedge(y \wedge z \wedge u)$.

We leave it to the reader to prove that the reduction works.
We now want to make the graph planar and 3-regular. How to make it planar? We introduce the notion of a crossover gadget, which we will use both in this chapter and in Chapter 2.

2-Colorable Perfect Matching is NP-complete [Schaefer 1978]

Figure 1(a)

Figure 1(c)

Figure 1 (b)

Figure 1.4: Gadgets to prove 2-COL Perfect Matching is NP-complete.

Definition 1.26. Let A be an NP-complete set of graphs. We want to show that the problem is still NP-complete when restricted to planar graphs. We want to map G to G^{\prime} such that G is in A if and only if G^{\prime} (which is planar) is in A. We obtain G^{\prime} from G by looking at each crossing and replacing it with a gadget that does not affect the graph's membership in A. We call this a crossover gadget.

-

We leave it as an exercise to create the following:

1. A crossover gadget to make the proof work for planar graphs.
2. A gadget to split high degree nodes into lower degree ones, possibly with the copy gadget (this idea is due to Adam Hesterberg).

1.3.3 CRYPTARITHM is NP-Complete

We will prove the puzzle Cryptarithms is NP-complete by a reduction from Monotone 1-in3 SAT \leq_{p} Cryptarithms. This reduction is harder than the ones for Clique, Ind. Set, Vertex Cover.

Cryptarithms are classic puzzles involving arithmetic on words. We give one in Example 1.27.
Example 1.27. An instance cryptarithm problem.

$$
\begin{array}{rllll}
& S & E & N \\
+ & M & O & R & E \\
\hline M & O & N & E & Y
\end{array}
$$

The goal is to replace each letter with a digit, no digit is assigned to two different letter, such that the resulting sum works out.

Here is how one might begin solving the cryptarithm in Example 1.27:

1. A carry can be at most 1 . Hence $M=1$.
2. Since the left-most column is a carry and $M=1$, the digit O must be either 0 or 1 . Since $O \neq M$, we have $O=0$, which is convenient.
3. The E, O, N column can't contribute a carry: assume that it did. Then since $O=0$ we would have that $N+R$ contributes a carry, and $E+1$ results in a carry. Then $E=9$ and $N=0$. But this is impossible since $O=0$.
4. Since $M=1, O=0$, and the E, O, N column does not contribute a carry, $S=9$.
5. To recap, we have $M=1, O=0, S=9$.
6. Look at the E, O, N column. Since $O=0$, this column does not contribute a carry, and $E \neq N$ (by the rules of the puzzle), the (N, R, E) column has to contribute a carry. So we have $E+1 \equiv N(\bmod 10)$. Since $O=0, M=1, S=9$, and all letters map to different digits we have $E, N \notin\{0,1,9\}$. We use this and $E+1 \equiv N(\bmod 10)$ to further cut down on what (E, N) can be. Since $N \neq 9$, we get $E \neq 8$. Since $E \neq 1$, we get $N \neq 2$. In summary, $E \notin\{0,1,8,9\}$ and $N \notin\{0,1,2,9\}$. Using this restriction on E, N and also $E+1 \equiv N$ $(\bmod 10)$, we get:

$$
(E, N) \in\{(2,3),(3,4),(4,5),(5,6),(6,7),(7,8)\} .
$$

We stop here; however, notice that we may end up encountering many possibilities. If you work them through, then you will find that the answer is unique and is:

$$
S=9, E=5, N=6, D=7, M=1, O=0, R=8, Y=2 .
$$

We give the full solution in Example 1.28.
Example 1.28. The solution to the cryptarithm from Example 1.27.

$$
\begin{array}{r}
9567 \\
+\quad 10085 \\
\hline 10652
\end{array}
$$

Is there a trick to these puzzles so that they can always be solved fast and avoid having too many cases? Likely no: David Eppstein [Epp87] showed

$$
3 \text { SAT } \leq_{p} \text { CRyptarithms, }
$$

hence Cryptarithms is NP-complete. We will show

Monotone 1-in-3SAT \leq_{p} Cryptarithms.
By Theorem 1.22 we have that Cryptarithms is NP-complete. Our reduction is easier than that of Eppstein; however, we need that Monotone 1-IN-3SAT is NP-complete.

We first need to define the problem rigorously.

Cryptarithms

Instance:

1. $B, m \in \mathbb{N}$. Let Σ be an alphabet of B letters.
2. x_{0}, \ldots, x_{m-1}. Each $x_{i} \in \Sigma$.
3. y_{0}, \ldots, y_{m-1}. Each $y_{i} \in \Sigma$.
4. z_{0}, \ldots, z_{m}. Each $z_{i} \in \Sigma$. The symbol z_{m} is optional.

Note: $\left\{x_{0}, \ldots, x_{m-1}, y_{0}, \ldots, y_{m}, z_{0}, \ldots, z_{m}\right\}$ is a multiset. Let Σ^{\prime} be the set obtained by removing duplicates.
Question: Is there an injection of Σ^{\prime} into $\{0, \ldots, B-1\}$ so that the arithmetic statement in Example 1.29 is true (in base B)?

Example 1.29. An instance of Cryptarithms. Note that to really be an instance (1) a value B would need to be given, and (2) some of the x_{i}, y_{j}, z_{k} are likely the same.

	x_{m-1}	\cdots	x_{0}
+	y_{m-1}	\cdots	y_{0}
z_{m}	z_{m-1}	\cdots	z_{0}

Theorem 1.30. CRYPTARITHMS is strongly $N P$-complete. (We discussed Strongly NP-complete briefly in Section 0.8 and will discuss it at length in Chapter 6.)

Proof:

We show Monotone 1-in-3SAT \leq_{p} Cryptarithms.
Given $\varphi=C_{1} \wedge \cdots \wedge C_{k}$, a formula where every literal is positive, we want to create an instance J of Cryptarithms such that the following are equivalent:

- There exists an assignment that satisfies exactly one literal per clause.
- There exists a solution to J.

Let n be the number of variables in φ. As shown, k is the number of clauses.
We will determine the base B, and the length of the numbers m, later.

1) Constants: We need two letters that we suggestively call 0 and 1 that we force to map to 0 and 1. We use the columns in Example 1.31.

Example 1.31. The constants gadget.

$$
\begin{array}{ccc}
0 & p & 0 \\
0 & q & 0 \\
\hline 1 & q & 0
\end{array}
$$

It is easy to see that the columns in Example 1.31 force (1) the letter " 0 " to have the value 0 , and (2) the letter " 1 " to have the value 1. (You will need to use that carries are either 0 or 1.)

To establish the constants 0 and 1 we need (1) the 4 letters $0,1, p, q$, and (2) 3 columns.
2) Variables: Let v be a variable in φ.
v is considered true if $v \equiv 1(\bmod 4)$ and false if $v \equiv 0(\bmod 4)$
Hence we need to ensure that $v \equiv 0(\bmod 4)$ or $v \equiv 1(\bmod 4)$.
This is accomplished through a string of intermediate sums:

$$
\begin{aligned}
b & =2 a & & \\
2 c & =d+C & & C=\operatorname{carry}(c+c) \in\{0,1\} \\
v & =2 b+C & & \\
& =4 a+C \equiv C & & (\bmod 4)
\end{aligned}
$$

(Note that a, b, c, d, v are used in the puzzle, whereas C is not.)
Example 1.32. The variable gadget.

$$
\begin{array}{llllll}
0 & b & c & 0 & a & 0 \\
0 & b & c & 0 & a & 0 \\
\hline 0 & v & d & 0 & b & 0
\end{array}
$$

We do not have to consider \bar{v} since our formula has all positive literals.
Each variable v needs (1) the 5 letters a, b, c, d, v and (2) 6 columns. Since there are are n variables, we need $5 n$ letters and $6 n$ columns for this part.
3) Clauses: Let C be the clause $x \vee y \vee z(x, y, z$ need not be distinct). Let x, y, z be the letters corresponding to the variables in the cryptarithm. Since our reduction is from Monotone 1-IN3 SAT \leq_{p} CRyptarithms, we need that $x+y+z \equiv 1(\bmod 4)$.

We first need to have a number d that can be anything $\equiv 1(\bmod 4)$. This is accomplished by the following equations:

$$
\begin{aligned}
b & =2 a \\
c & =2 b \\
& =4 a \\
d & =c+1 \\
& =4 a+1
\end{aligned}
$$

We then need to have that $x+y+z=d$. We need an intermediary variable for $x+y$ that we call I (for Intermediate).

$$
\begin{aligned}
x+y & =I \\
I+z & =d
\end{aligned}
$$

The result is Example 1.33.
Example 1.33. The clause gadget.

$$
\begin{array}{lllllllllll}
0 & I & 0 & x & 0 & 1 & 0 & b & 0 & a & 0 \\
0 & z & 0 & y & 0 & c & 0 & b & 0 & a & 0 \\
\hline 0 & d & 0 & I & 0 & d & 0 & c & 0 & b & 0
\end{array}
$$

Each clause C needs (1) the 5 letters a, b, c, d, I, and (2) 11 columns. Since there are k clauses, we need $5 k$ letters and $11 k$ columns.

The construction is completed.
The final instance of Cryptarithms uses $5 n+5 k+4$ letters and $6 n+11 k+3$ columns. However, we cannot just take $B=5 n+5 k+4$. We need enough numbers so that, for example, (looking at the clause gadget), we do not have $b+b$ is the same as $x+y$. We revisit the issue of B soon.

Clearly, a solution to the cryptarithm J gives a solution to the Monotone 1-In-3SAT problem φ. The other direction is less clear. Assume we have a solution to the Monotone 1-In-3SAT problem φ. This assigns true or false to each of the variables v_{1}, \ldots, v_{n}. We translate this to an assignment of the letters v_{1}, \ldots, v_{n} to numbers. We do this inductively. Assume letters v_{1}, \ldots, v_{i-1} and some of the other letters have been assigned.

1. If variable v_{i} is TRUE, then we will assign letter v_{i} to a number $\equiv 1(\bmod 4)$.
2. If variable v_{i} is FALSE, then we will assign letter v_{i} to a number $\equiv 0(\bmod 4)$.
3. Assign to the letter v_{i} the least number that has the right congruence mod 4 , has not been assigned to any other letter, and does not cause any letter to be assigned to an already-used number. This arises (1) with the variable gadgets, since once you assign v, you need to assign a, b, c, d, and (2) with any clause gadget that contains v, where the other variables in it have been assigned.

We leave it to the reader to determine how large B must be to accommodate all these numbers.

- B will be large enough so that many numbers will not be used. Hence, there will be letters that do not map to any number. Note that in the SEND+MORE=MONEY puzzle, many letters (e.g. Z) do not map to any number.
- B will be bounded by a polynomial in k, n. Hence Cryptarithms is strongly NP-complete

Exercise 1.34. Do a direct reduction to show that 3 SAT \leq_{p} Cryptarithms.

Exercise 1.35

1. Write an algorithm for Cryptarithms, and analyze its run time.
2. How fast is your algorithm when B is a constant?

1.3.4 Exercises

Exercise 1.36. Read Franck Dernoncourt's paper [Der14] on the NP-completeness of the TruckMania problem. The proof uses a reduction of 3SAT. Rewrite the reduction in your own words.

Exercise 1.37. We define a notion of approximate 2-coloring. Let $0<\varepsilon<1$. The $\boldsymbol{\varepsilon}$-imperfect 2 -coloring problem is the following: The input is a graph $G=(V, E)$. Determine whether there exists a 2 -coloring of V such that at most an ε fraction of the edges have endpoints that are the same color.

1. Show that there exists an $0<\varepsilon<1$ such that the ε-imperfect 2 -coloring problem is NPcomplete.
Hint: Reduce Monotone NAE-3SAT to this problem (you can assume every clause has exactly 3 variables).
2. (This may be open) Determine for which ε the problem is in P and for which ε the problem is NP-complete.

1.4 The Complexity of Games

In this section we will look at the complexity of several games. We will use 3SAT for the reductions.

1.5 Pushing 1×1 Blocks

In this section we look at a large set of push-games.
Sokoban is a game (literally warehouseman in Japanese) where you, a 1×1 player, push around 1×1 boxes. Your job is to push boxes into target locations. Some boxes you can't push. You can only push 1 block at a time by one space (e.g. you'll be stuck if you push a box into a corner).

Lots of games have a pushing blocks component. Legend of Zelda has a variation where the blocks are on ice so blocks will fly off to infinity unless encountering an obstacle. The goal is to cover a target space with any block.

There are many variants of the pushing-block style of game. We describe the variants shown in Figure 1.5.

1. Normal Push model (top left). When you push a block, the block moves one space.
2. Push- k (top right). k is the strength of the pusher (can only push k blocks at a time).
3. PushPush (bottom left). When you push a block, it slides until you hit another block.
4. PushPushPush (bottom right). When you push a block, all slide until you hit an immovable block.
5. For Push-1X and Push-1G, see Section 5.3.

Figure 1.5: Variants of the Push Game.

Table 1.38 describes known complexity of many variants using the following parameters:

1. Push designates how many blocks can be pushed (designated by $k \in \mathbb{N} \cup\{\infty\}$).
2. Fixed refers to if fixed blocks are available (typically in bounded rectangle).
3. Slide tries to capture how far things slide when pushed (PushPushPush redefines what "max" means). Recall that for the original game the goal was to push boxes into target locations.
4. Goal describes other possible goals. Some just have a path goal, to get the pusher to a place. One other variant includes a simple path variant, where you can't cross your own path (useful in games where blocks you walked on previously disappear).

All of these variants are NP-hard. Some are in NP (and hence NP-complete) but some are PSPACEcomplete. None are harder than that.

Giving blocks variable weight seems like it would only make things harder.

[^2]Table 1.38. Complexity of Push Games.

Name	Push	Fixed	Slide	Goal	Complexity	Reference
PUSH- k	$k \geq 1$	no	min	path	NP-Hard	[DDO00]
PUSH-*	∞	no	min	path	NP-Hard	[Hof00]
PUSHPUSH- k	$k \geq 1$	no	min	path	PSPACE-Complete	[DHH04]
PUSHPUSH-*	∞	no	max	path	NP-Hard	[Hof00]
PUSH-1F	1	yes	min	path	PSPACE-Complete	$\left[\right.$ ACD $\left.^{+} 22\right]$
PUSH- $k \mathrm{~F}$	$k \geq 2$	yes	min	path	PSPACE-Complete	[DHH02]
PUSH-*F	∞	yes	min	path	PSPACE-Complete	[BOS94]
PUSH- $k \mathrm{X}$	$k \geq 1$	no	min	simple path	NP-Complete	[DH01]
PUSH-*X	∞	no	min	simple path	NP-Complete	[Hof00]
SOKOBAN	1	yes	min	storage	PSPACE-Complete	[Cul98]

1.5.1 Push-* is NP-Complete

Theorem 1.39. (Hoffmann [Hof00]) PUSH-* in a fixed box is NP-hard.

Proof sketch:

Recall that in the PUSH-* game a person can push an arbitrary number of blocks.
The model is Push-* in a fixed box. We reduce from 3SAT. Refer to Figures 1.6 and 1.7. Encode SAT gadgets into the blocks. Specifically, we have a Bridge Gadget, Variable Gadget, Clause Gadget, and Connection Gadget.

Push-* is NP-hard [Hoffmann 2000]

Figure 1.6: PuSh-* board that we use.

Push-* is NP-hard [Hoffmann 2000]

Figure 1.7: Push-* gadgets and how they fit together.

We construct a very constrained path where most of the space is occupied by movable blocks. First, we walk through the Variable Block where the pusher has an option to push rows to the right (either a positive or negative instance) into free space in the Connection Block. In general these gadgets are super tight, so there's nothing you can do except push a row to fill everything to your right; pushing both positive and negative instances of a variable only makes things worse further down the line (in the Clause Block).

The Connection Block (bottom right) is a bipartite graph encoded into a matrix with open spaces when variables (rows) connect to clauses (columns). Pushing a satisfying sequence of variables to the right will leave enough space in the Connection Block to maneuver the Clause Block later.

The Up-Bridge and Right-Bridge force the transition from variables to clauses to be one-way and to fill in the space to the left and top of the Clause Block.

The Clause Gadget allows you to make progress only when there is space below you on any of the variables in your clauses (this is why pushing both instance of a variable only hurt you, because it may block off needed empty squares).

Exercise 1.40. Fill in the details of the proof of Theorem 1.39.

Open Problem 1.41. Is PUSH-* in NP or PSPACE-complete?

1.5.2 PushPush-1 in 3D is NP-Complete

In PushPush-1, when you push a block, it slides until it hits another block or wall.
Theorem 1.42. PushPush- 1 in $3 D$ is $N P$-hard.
Proof sketch:

Figure 1.8: PushPush-1 in 3D is NP-complete.

This problem involves pushing blocks with sliding in 3D (see Figure 1.8). The paths are little width 1 tunnels. At each variable block, you can push a block in the True or False direction which opens one way, and closes the other way, never to be traversed again. The two blocks at the bottom of each variable gadget keep you from backtracking. At the end of the last variable, you run through all the clauses. If any of the literals that satisfy a clause were visible, then you could have pushed it to the right, blocking off the left vertical tunnel in the clause gadget, allowing the top clause gadget block to be pushed down while keeping the bottom tunnel of the clause gadget open for traversal. This reduction is the basis for many of the proofs of this type; it is a very straight forward reduction from 3SAT.

Because we're in 3D, we do not need a crossover gadget as paths can be routed without crossing.

Demaine et al. [DDHO01] have shown more Push games are NP-hard. Many of these games have also been shown PSPACE-complete [DHH04, $\mathrm{AAD}^{+} 20, \mathrm{ACD}^{+} 22$].

1.6 Video Games that are NP-Hard

In this section we will look at Super Mario Brothers both as it is intended to be played, and also how it can be played given some of the glitches in the actual program. Aloupis et al. [ADGV15] showed that both are NP-hard. In that same paper they showed that Donkey Kong, Legend of Zelda, Metroid, and Pokemon are NP-hard. Later Demaine et al. [DVW16] showed that Super Mario Brosis PSPACE-complete. We will briefly discuss that result in Section 14.6.3.

1.6.1 Super Mario Bros

Super Mario Brother is a platform game. The human player who controls a character must make the character jump and climb between suspended platforms while avoiding various obstacles. The game as intended has limits on what Mario can do. The game as implemented has some glitches which allow Mario to make moves that were not intended. As usual Super Mario Bros means the problem of, given a position in the game, can the player win.

We first prove that Super Mario Bros as intended is NP-hard and then that Super Mario Bros with Glitches is NP-hard.

Super Mario Bros as Intended

Theorem 1.43. Super Mario Bros is NP-hard.

Proof sketch:

We show 3 SAT \leq_{p} Super Mario Bros.
Given an instance of 3SAT, which has some variables, literals, and clauses, we'll make gadgets to represent them in Super Mario Bros.

A variables gadget is a place where you have to fall in one direction or the other, which we think of as corresponding to setting the variable true or false. A clause gadget is a set of fire bars to run through, just after three boxes in the floor containing invincibility stars that last long enough to let you run through the fire bars. Each box containing an invincibility star is breakable from the gadget for exactly one literal in the clause; that is, you can release an invincibility star for a clause gadget if and only if in at least one of that clause's variables' gadgets you made the satisfying choice.

The gadgets are arranged so that you first set each variable (and can pop out all the corresponding stars), then run through the clause gadgets in order, which is possible if and only if one literal from each of them was satisfied, that is, if and only if there's a satisfying assignment to the original 3SAT problem.

The graph of paths between the variable gadgets and clause gadgets isn't planar, so there's also a crossover gadget for the paths, guaranteeing that when entered from the left it can only be exited from the right, and when entered from the bottom it can only be exited from the top. Note that the crossover gadget breaks if you go through it both ways, but that's ok because we only care about reachability.

Figure 1.9: Making wall jumps impossible.

Super Mario Bros with Glitches

As noted above, the way Super Mario Brothers is implemented has some glitches in it that allow the player to do moves that were not intended. We show that this version is still NP-hard.

We do not define the game Super Mario Brothers with Glitches rigorously. All you need to know is

1. Mario can jump up walls.
2. Mario can jump through walls.
3. There may be other things Mario can do.

Definition 1.44. Super Mario Bros-G is the problem of, given a starting position for Super Mario Brothers with glitches, is there a way to complete the game.

Theorem 1.45. Super Mario Bros-G is NP-hard.
Proof sketch:
We describe how to modify the proof that 3 SAT \leq_{p} Super Mario Bros. You could view this formally as a reduction Super Mario Bros \leq_{p} Super Mario Bros- G.

In Super Mario Bros- G Mario can jump up walls. To prevent this, we put bars on the walls as shown in Figure 1.9.

In Super Mario Bros-G Mario can jump through walls. To prevent this we replace walls by walls filled with monsters as shown in Figure 1.10.

For anything else Mario can do, there is a way to modify the game, similar to what we did in Figures 1.9 and 1.10, to prevent him from doing it.

1.7 How to Reduce from 3SAT

Now that we've seen some reductions from 3SAT we discuss types of such reductions.
There are two general patterns for NP-hardness proofs based on reductions from 3SAT and its variations. (See Chapter 3 for reductions from Circuit SAT.) In both patterns, the idea is to represent the binary choice of each variable by a gadgets for reductions from CNFSAT,

Figure 1.10: Making jumping through walls impossible.
represent the constraint of each clause by a gadget and connect these gadgets together via (though sometimes the wire gadget is trivial).

In a binary logic proof, a wire gadget can be solved in exactly two possible ways. One solution represents TRUE and the other represents FALSE. In this case, we can implement a variable gadget in terms of a wire gadget, as it involves the same kind of binary choice. To complete this implementation, we need a split gadget which guarantees that the three (or more) incident wires all carry the same value (all TRUE or all FALSE). Then a variable gadget attached to k clauses can be represented by a network of $O(k)$ split gadgets that produce k identical wires. If the SAT variation includes negative literals, we also need a NOT gadget that transforms a wire from false to true and vice versa, which we can add along the way to a clause. Sometimes we also need a terminator gadget that ends a wire without enforcing its value to be true or false; this is useful, for example, when the split gadget produces more copies of a wire than needed. The reduction used to show 2-COL Perfect Matching is NP-hard (Theorem 1.25) is of this type.

In a dual-rail logic proof, a wire is replaced by two semiwires. Each semiwire either holds the value true or does not; in the latter case, the semiwire often isn't part of the solution at all. The choice of which semiwire holds the value true corresponds to the boolean value of the original wire or variable. Assuming a split gadget, a variable gadget's role is to force exactly one (or at most one) of two semiwires to be true. Often the variable gadget and split gadgets are integrated into a single variable gadget that produces j semiwires representing when the variable is TRUE and k semiwires representing when the variable is FALSE, where j and k are the number of clauses using this variable in positive and negative literals, respectively. The reductions used to show PushPush-1 in 2D and Super Mario Bros (as intended) NP-hard (Theorems ?? and 1.43) are of this type.

The two styles of proof have a lot in common, and the distinction can be subtle. You are encouraged to categorize the various reductions described in this book as one or the other.

1.8 Schaefer's Dichotomy Theorem

Every variant of SAT we looked at so far has either been in P or NP-complete. This is not a coincidence. Schaefer's dichotomy theorem says that, with the right setup, all versions of SAT are either NP-complete or in P.

We motivate the approach by looking at 1-in-3SAT. We want to express the question:

Given $\varphi=C_{1} \cdots \wedge \cdots C_{k}$ is there an assignment that satisfies exactly one literal in each clause. Let

1. $R_{1}\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1} \wedge \neg x_{2} \wedge \neg x_{3}\right) \vee\left(\neg x_{1} \wedge x_{2} \wedge \neg x_{3}\right) \vee\left(\neg x_{1} \wedge \neg x_{2} \wedge x_{3}\right)$.
2. $R_{2}\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1} \wedge \neg x_{2} \wedge x_{3}\right) \vee\left(\neg x_{1} \wedge x_{2} \wedge x_{3}\right) \vee\left(\neg x_{1} \wedge \neg x_{2} \wedge \neg x_{3}\right)$.

Note that

$$
\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee x_{3} \vee \neg x_{4}\right) \in \text { 1-IN-3SAT }
$$

iff

$$
R_{1}\left(x_{1}, x_{2}, x_{3}\right) \wedge R_{2}\left(x_{1}, x_{3}, x_{4}\right) \in 3 \text { SAT. }
$$

One could write down R_{3}, \ldots, R_{8} for the remaining cases. We view an instance of 1-IN-3SAT as being given a conjunction of R_{i} 's (repeats allowed) on 3-sets of variables. Note that this is just a way to express the problem. This is not a reduction.

We call the R_{i} 's relations. More generally, a relation on m variables is just a truth table or formula on those literals. We will view variants of the SAT problem as a conjunction of relations. We give an absurd example.

Let $R_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ be true if exactly 2 of the x_{i} 's are true.
Let $R_{2}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ be true if either 1 or 4 of the x_{i} 's are true.
Let $R_{3}\left(x_{1}, \ldots, x_{12}\right)$ be true if either 0 or 7 of the x_{i} 's are true.
Crazy SAT is a conjunction of R_{1} 's, R_{2} 's, and R_{3} 's. We seek a way to satisfy all of the relations, though notice that this might not be a satisfying assignment. Is Crazy SAT in P? NP-complete? After we state and understand Schaefer's dichotomy theorem, this will be possible to determine. (We invented Crazy SAT as an example. We suspect it has never appeared in the literature before and will never appear in the literature again.)

Definition 1.46. A SAT-type problem is a set of relations R_{1}, \ldots, R_{m}. Each R_{i} has arity $a(i)$. A formula in this context is a conjunction of these relations. The problem to solve is as follows: Given a formula, does there exist an assignment that satisfies all of the relations in it?

We now have a way of talking about many variants of SAT. Schaefer's dichotomy theorem [Sch78] will tell exactly which of these variants are in P and which are NP-complete. (For a modern proof see Chen's papers [Che06],[Che09].) It is remarkable that every variant defined in this way is one or the other.

We need the following definition to state Schaefer's Dichotomy Theorem.

Definition 1.47.

1. The connective \oplus is defined by the following truth table.

x	y	$x \oplus y$
T	TRUE	TRUE
TRUE	FALSE	FALSE
FALSE	FALSE	FALSE
FALSE	FALSE	TRUE

It is easy to see that \oplus is associative so one can write $x \oplus y \oplus z$. Note that if we think of true as 1 and false as 0 then \oplus is addition mod 2 .
2. A affine formula is a formula of the form $x_{1} \oplus \cdots \oplus x_{n}=c$ where $c \in\{$ TRUE , FALSE $\}$.

Theorem 1.48 (Schaefer's Dichotomy Theorem). Let R_{1}, \ldots, R_{k} be relations. If any of the following occur, then the SAT-type problem $\left\{R_{1}, \ldots, R_{k}\right\}$ is in P. If not, then it is $N P$-complete.

1. For all $1 \leq i \leq k, R_{i}($ true,\ldots, true $)=$ true.
2. For all $1 \leq i \leq k, R_{i}($ true,\ldots, true $)=$ FALSE.
3. For all $1 \leq i \leq k, R_{i}\left(x_{1}, \ldots, x_{m}\right)$ is equivalent to a conjunction of clauses with 1 or 2 variables.
4. For all $1 \leq i \leq k, R_{i}\left(x_{1}, \ldots, x_{m}\right)$ is equivalent to a Horn clause.
5. For all $1 \leq i \leq k, R_{i}\left(x_{1}, \ldots, x_{m}\right)$ is equivalent to a dual-Horn clause.
6. For all $1 \leq i \leq k, R_{i}\left(x_{1}, \ldots, x_{m}\right)$ is equivalent to a conjunction of affine formulas.

Given a set of relations R_{1}, \ldots, R_{k}, determining whether any of the 6 cases in Theorem 1.48 holds seems hard and probably is. We usually use this theorem by using some SAT-type problem that is NP-complete by the theorem, and then prove something else NP-complete by a reduction.

Exercise 1.49.

1. Determine whether Crazy SAT is in P or NP-complete.
2. Write a program that will, given a set of relations, determine whether the SAT-type problem they define is in P or NP-complete.

Note: Theorem 1.48 says that, up to polynomial-time reductions, there are (assuming $P \neq N P$) two complexity classes that a SAT-type problem could be in, P or NP-complete. Allender et al. $\left[\mathrm{ABI}^{+} 09\right]$ showed that if a more refined reduction is used then the ones in P can be further differentiated. There end up being 6 classes total: 5 within P, and of course NP-complete.

1.9 Phutball (Philosopher's Football)

Berlekamp et al. [BCG82] devised the game Phutball which is short for Philosopher's Football. Phutball is a 2-player game played with black and white stones on a square lattice (or Go board). Players move by either adding another black stone to the board or moving the white stone by jumping over contiguous groups of black stones and removing them. The goal is to move the white stone to one of the goals at the end of the board.

We discuss both the mate-in-one question, and the who-wins question.

Phutball

Instance: A position in the game Phutball.
Question: There are two Questions.

1. Is there a mate-in-1?
2. Can the player whose move it is win? We denote this problem Phutball.

Demaine et al. [DDE00] showed the following:
Theorem 1.50. Given a position in Phutball is there a mate-in-1? Mate-In-1 is NP-hard.

Proof sketch:

The reduction lays out variables and clauses on a large 2-dimensional board, with variable choices along the left and right edge and clauses along the top and bottom. The player makes a series of long horizontal jumps to choose which variables to set to true, and is able to traverse top to bottom if and only if none of the crucial squares have been cleared.

Figure 1.11: Here clauses are traversed by going top to bottom or bottom to top. Variable values are set by going left to right and vice versa.

What about determining who wins? Dereniowski [Der10] showed the following
Theorem 1.51. Phutball is PSPACE-hard.
Open Problem 1.52. Pin down the complexity of both mate-in-1 and who-wins in Phutball.

1.10 Further Results

1. Lewis [Lew79] proved a dichotomy theorem for connectives. For any set of logical connectives allowed for a SAT problem, either the problem is in P or NP-complete.
2. Bodirsky \& Pinsker [BP15] proved a dichotomy theorem for formulas where the literals are of the form $E(x, y)$ or $x=y$, so they describe graphs.
3. There has been a lot of work on SAT questions for sentences with quantifiers. Such a formula is satisfiable if there is a domain and an interpretation of the predicates that makes it true. These types of questions have a rich history going back to Turing [Tur37]. The book by Börger et al. [BGG97] is a good source for information.

Chapter 2

NP-Hardness via SAT and Planar SAT

2.1 Introduction

Many graph problems are NP-complete. In this chapter we show that many NP-complete graph problems, when restricted to planar graphs, are still NP-complete.

Chapter Summary

1. We show 3COL is NP-complete. By using crossover gadgets, 3COL is reducible to PlANAR 3COL, hence Planar 3COL is also NP-complete.
2. We could prove many problems NP-complete with crossover gadgets. We take a different approach. We will define PLANAR 3SAT which is an NP-complete variant of SAT, and then use PLANAR 3SAT to show many planar problems are NP-complete.
3. We use the planar graph problems we proved NP-complete to prove other problems, even nongraph problems, are NP-complete.

Why do we use Planar 3SAT rather than devise different crossover gadgets?

1. Rather than devise many crossover gadgets for many problems, we essentially devise only one, the one used to show Planar 3SAT is NP-complete.
2. Gurhar et al. $\left[\mathrm{GKM}^{+} 12\right.$], and independently Burke [Bur], showed that, for the Planar Hamiltonian Cycle problem, it is literally impossible to create crossover gadgets. This may be true for other problems as well.

We may also restrict the degree of a graph.
Definition 2.1. The degree of a graph is the max degree of all of its vertices. A graph is regular if all vertices have the same degree, which of course will be the degree of the graph.

For some of our reductions an input of length n is mapped to an output of length $O(n)$ or of length $O\left(n^{2}\right)$. This will be useful for Chapter 7.

2.2 Graph Coloring and Planar Graph Coloring

Graph 2-Coloring is easily seen to be in polynomial time. Karp [Kar72] showed that if the number of colors is allowed to vary then the problem is NP-complete (it was one of his original 21 problems). What if the number of colors is fixed at 3 ?

3COL, Degree-4 3COL, Planar 3COL and Planar Degree-4 3COL
Instance: A graph $G=(V, E)$. For 3COL the input is the graph without any conditions. For Degree-4 3COL the graph has degree 4. For Planar 3COL the graph is planar. For Planar Degree-4 3COL the graph is planar and has degree 4.
Question: Does there exist a 3-coloring of G, which is an assignment of V to $\{1,2,3\}$ (the colors) such that all adjacent vertices have different colors?

Garey et al. [GJS76] showed that 3COL,Degree-4 3COL, Planar 3COL, and Planar Degree4 3COL are all NP-complete. Their proof did not use Planar 3SAT. We present their proof.

Theorem 2.2.

1. 3COL is NP-complete.
2. Degree-4 3COL is NP-complete.
3. Planar 3COL is NP-complete.
4. Planar Degree-4 3COL so is NP-complete.

Proof:

1) We show 3 SAT $\leq_{p} 3$ COL.
1. Input $\varphi=C_{1} \wedge \cdots \wedge C_{m}$.
2. Create a graph G as follows.
(a) There is a triangle which we think of as being colored true, false, and Green. In Figure 2.1 Blue is true and Red is false.
(b) For every variable x there is a vertex x, a vertex \bar{x}, an edge between them, and an edge from Green to both of them. This forces one of them to be true and the other to be FALSE.
(c) For every clause there is a gadget like the one for $x_{i} \vee x_{j} \vee x_{k}$ in Figure 2.1. One can show that of the three vertices corresponding to the literals, in a 3-coloring, the following occurs: (1) each one is colored true or false, (2) at least one is colored true.
2) We put this off until we proof Part 4.
3) We show that 3COL \leq_{p} Planar 3COL. We show that every crossing can be replaced by a crossover gadget. If (x, x^{\prime}) crosses $\left(y, y^{\prime}\right)$ then replace the crossing with the gadget in Figure 2.2.

Figure 2.3 shows the two distinct ways (up to permutation) in which the crossover gadget can be colored. Both cases result in $x=x^{\prime}$ and $y=y^{\prime}$.

Vertex 3-Coloring

[Garey, Johnson, Stockmeyer 1976]

Vertex 3-Coloring

[Garey, Johnson, Stockmeyer 1976]

Figure 2.1: Gadgets for 3COL.

Planar 3-Coloring

[Garey, Johnson, Stockmeyer 1976]

Figure 2.2: Crossover gadget.

There is one subtlety in the use of the crossover gadget. Say the edge from x to z included a crossing, and we wished to use the above crossover gadget. We would NOT identify x^{\prime} with z, as we wish those vertices to be different colors. Instead, draw a segment connecting x^{\prime} to z.

We call the new graph G^{\prime}. We leave it to the reader to show that $G \in$ 3COL if and only if $G^{\prime} \in$ Planar 3COL.

2 and 4) We show that Degree-4 3COL (Planar Degree-4 3COL) is NP-complete by reducing 3COL (Planar 3COL) to it. We replace all vertices of degree ≥ 5 with the gadget in Figure 2.4.

Planar 3-Coloring

[Garey, Johnson, Stockmeyer 1976]

Planar 3-Coloring
[Garey, Johnson, Stockmeyer 1976]

Figure 2.3: Two ways to 3 -color the crossover gadget.

Planar 3-Coloring, Max Degree 4 [Garey, Johnson, Stockmeyer 1976]

high-degree gadget

Figure 2.4: Gadget for reducing degree to 4.

We need the following definitions to state some open problems.
Definition 2.3. Let $g, k \geq 0$.

1. A graph G has genus g if it can be drawn on a sphere with g handles attached without any edges crossing. Note that genus 0 is the same as planar.
2. A graph has crossing number k if it can be drawn in the plane with $\leq k$ crossings.

Open Problem 2.4. For the following problems either show they are in P or that they are NPcomplete or (very unlikely) that they are neither.

1. Given a graph of genus 1 , is it 4-colorable.
2. Given a graph of crossing number 1, is it 4-colorable.
3. Gasarch et al. [GHOP22] summarize what is known and not known about the complexity of graph coloring when the graph is restricted to graphs of bounded genus or bounded crossing number. Read this paper and solve some of its open problems.

Theorem 2.2 raises the question of which variants of graph coloring are in P. The following are known.

1. 3COL restricted to graphs of degree 3 is in P since, by Brook's theorem [Bro41], such graphs are always 3-colorable.
2. 4-colorability of planar graph is in P since, by the celebrated 4-color theorem of Appel et al. [AH77a, AHK77, AH77b] (and later a simpler proof by Robertson et al. [RSST97]) all planar graphs are 4-colorable.

Theorem 2.5.

1. The Clique problem restricted to planar graphs is in P. This is an easy exercise.
2. (Garey et al. [G7S76]) The Vertex Cover problem restricted to planar graphs of degree 3 is NP-complete. We will prove this later (Theorem 2.15).
3. The IND. SET problem restricted to planar graphs of degree 3 is NP-complete. This follows easily from Part 2.

Exercise 2.6. Prove Theorem 2.5.1.

Setpack

Instance: $n, k \in \mathbb{N}$ and $X_{1}, \ldots, X_{m} \subseteq\{1, \ldots, n\}$.
Question: Are there $k X_{i}$'s that are all disjoint?

Exercise 2.7. Show that Ind. $\operatorname{Set} \leq_{p}$ Setpack, hence Setpack is NP-complete.
Exercise 2.8. Let Mastermind be the following problem: Given a position in the game Mastermind, is there a solution? Read Stuckman \& Zhang's paper [SZ06] on the complexity of Mastermind. Rewrite their proof that Vertex Cover \leq_{p} Mastermind in your own words. (For more on the complexity of Mastermind, see the papers of Goodrich [Goo09], Viglietta [Vig12], Ben-Ari [BA18], and Doerr et al. [DDST16]. This is not a complete list of papers.)

2.3 Planar 3SAT

A CNF formula can be viewed as a bipartite graph with (1) variables on one side and clauses on the other and (2) a dotted edge between x and C if x is in C, a solid edge between x and C if $\neg x$ is in C, and no edge between x and C if x is not in C. See Figure 2.5 for an example.

$$
\begin{aligned}
c_{0} & =\left(\neg x_{2} \wedge \neg x_{4}\right) \\
c_{1} & =\left(\neg x_{0} \wedge x_{1} \wedge x_{2} \wedge x_{3}\right) \\
c_{2} & =\left(x_{1} \wedge x_{2} \wedge \neg x_{4}\right) \\
c_{3} & =\left(x_{0} \wedge \neg x_{2} \wedge x_{3}\right)
\end{aligned}
$$

Figure 2.5: Bipartite graph associated with a CNF formula.

Definition 2.9. A formula is planar if the associated bipartite graph is planar.

Planar 3SAT

Instance: A planar formula φ given as a bipartite graph.
Question: Is φ satisfiable?
Note: Hopcroft \& Tarjan [HT74] showed that determining whether a graph is planar is in polynomial time (actually linear time). Hence this can be checked. If the graph is not planar they output no.

Note: When we define variants of Planar 3SAT we will omit mentioning that planarity can be checked quickly.

David Lichtenstein [Lic82] showed that Planar 3SAT is NP-complete.

Theorem 2.10.

1. $3 S A T \leq_{p}$ Planar $3 S A T$ so Planar 3SAT is NP-complete.
2. Planar 3SAT restricted to graphs where all of the variables vertices are connected in a cycle is still NP-complete. (This will be left as an exercise.)
3. PLANAR 3SAT restricted to graphs where for every variable vertex v, the edges to clauses where it appears positively havev as a left endpoint, and the edges to clauses where it appears negatively have v as a right endpoint, is still NP-complete. (This will be left as an exercise.)

Proof:

We show 3 SAT \leq_{p} Planar 3SAT.

1. Input $\varphi=C_{1} \wedge \cdots \wedge C_{k}$ where each C_{i} is a 3-clause.
2. Create the bipartite graph that represents φ. If the graph is planar then you are done, output that graph. More likely it is not.
3. Replace every crossing in the graph with a crossover gadget that we will describe now.

Create a graph containing nodes representing variables and clauses as described above and connect it in the way shown in Figure 2.6 thus removing all crossings. In this gadget, the small vertices represent clauses and big vertices represent variables. The blue connections are positive while red are negative. Because the graph is bipartite, we can't disrupt planarity by the connections between variables and clauses.

We leave it as an exercise that the truth value of a is the same as that of a_{1} and the truth value of b is the same as that of b_{1}. We are almost done.
(There is a slight glitch in our gadget. Some clauses contain 4 literals and some contain 2 literals; however, we need every clause to have 3 literals. We can easily fix both situations. For a clause that only contains 2 variables, we can either create parallel edges from one variable to the clause or create a separate false variable to include in the constraint. For the 4 variable clause, we borrow the reduction from 4SAT to 3SAT to create a gadget that involves introducing an extra variable set to false which represents whether the left or right side of the original clause contained the satisfying literal.)

Exercise 2.11. This problem is in reference to the proof of Theorem 2.10.

1. Show that the gadget in Figure 2.6 works.
2. Show that one can put a cycle through all of the variable vertices of the planar bipartite graph that is the result of the reduction. Figure 2.7 is a hint.
3. Show that one can modify the planar bipartite graph as specified in Theorem 2.10.3. Figure 2.8 is a hint.

Planar 3SAT is NP-hard [Lichtensteìn 1982]

Figure 2.6: Planar 3SAT crossover gadget.

Exercise 2.12. This exercise serves as a warning about specific variants of Planar 3SAT.

1. Consider the variation where we insist that all the variable vertices are connected in a cycle (as in Theorem 2.10.2), and that every clause vertex is inside that cycle. Show that this variation of Planar 3SAT is in fact solvable in polynomial time.
Hint: Use dynamic programming over the "tree" of clauses.
2. Consider the variation where we insist that all the variable vertices are connected in a cycle, and that the clause vertices are connected in a path. Show that this variation of Planar 3SAT is in fact solvable in polynomial time.
Hint: Reduce to the previous part.

2.4 Linked Planar 3SAT

Although we will not use it in this book, there is a stronger form of Planar 3SAT that is NPcomplete, despite being quite similar to Exercise 2.12 .2 which is polynomial:

Planar 3SAT is NP-hard [Lichtenstein 1982]

Figure 2.7: Planar 3SAT with a cycle through variable nodes. Top right: the path through the crossover gadget. Left: the initial arrangement of the bipartite graph, with the variables in a cycle. Bottom right: the arranged graph, with crossover gadgets inserted to preserve planarity.

Figure 2.8: Planar 3SAT with variables divided.

```
Linked Planar 3SAT
Instance: A planar formula }\varphi\mathrm{ given as a bipartite graph, which remains planar
    when we add a Hamiltonian cycle that visits all the clause vertices and then
    visits all the variable vertices.
Question: Is }\varphi\mathrm{ satisfiable?
```

The added cycle includes a path connecting all the clause vertices (in some order) and a path connecting all the variable vertices. As we saw in Exercise 2.12.2, requiring one more edge that connects the clause vertices into a cycle makes the problem easy. Nonetheless, Pilz [Pil18] proved the following:

Theorem 2.13.

1. Planar $3 S A T \leq_{p}$ Linked Planar 3SAT so Linked Planar $3 S A T$ is NP-complete.
2. Linked Planar 3SAT remains NP-complete if we require that positive connections between variables and clauses are inside the cycle while negative connections are outside the cycle.

2.5 How to Reduce from Planar 3SAT

Section 1.7 listed common gadgets for reductions from 3SAT and variations. In PlanAr 3SAT and its variations, some additional gadgets become common because we are usually reducing to a problem in two dimensions.

To produce a reduction in 2D, we usually need to define explicit coordinates. A useful starting point is the following theorem, due to Schnyder [Sch90].

Theorem 2.14. Every n-vertex planar graph can be drawn with its vertices placed at grid points of an $n \times n$ grid, where edges are drawn as straight lines that do not cross. Such a drawing can be computed in $O(n)$ time.

In many situations, however, it is difficult to design the wires implementing the edges of the graph that connect two arbitrary grid points. Often it is simpler to produce wire gadgets that only work in certain directions (e.g., horizontal and vertical). In this case, we need edges to be drawn as polygonal lines instead of single line segments.

A useful starting point for this type of reduction is that every maximum-degree- $4 n$-vertex planar graph can be drawn on an $n \times n$ grid, with its vertices placed at grid points and its edges routed along grid edges [BK98a]. Furthermore, each edge has at most two bends, and such a drawing can be computed in $O(n)$ time. Back to hardness reductions, in this case we need a turn gadget that shows how to bend a (semi)wire in 2D.

When embedding on a grid, wires often have a parity constraint where they must repeat a module of size k, so their size is always of a fixed length modulo k. This can be a problem when not all gadgets are aligned modulo k. In this case, we often need a shift gadget to adjust a wire's position modulo k, e.g., by ± 1. Applying a shift gadget enough times, we can adjust a wire's end positions modulo k to match whatever gadgets they need to attach to.

2.6 Vertex Cover and Variants

> Vertex Cover, Vertex Cover-DEG3, Planar Vertex Cover, Planar Vertex Cover-DEG3
> Instance: A Graph $G=(V, E)$ and a number k. If Vertex Cover-DEG3 then the graph has degree 3. If Planar Vertex Cover then the graph is planar. If Planar Vertex Cover-DEG3 then the graph is planar and of degree 3 .
> Question: Is there a $V^{\prime} \subseteq V$ of size k such that for every $e \in E$ has some $v \in V^{\prime}$ as an endpoint?

Lichtenstein [Lic82] proved Planar Vertex Cover-DEG3 is NP-complete by giving a reduction from 3SAT to Vertex Cover-DEG3 that, when restricted to planar formulas outputs planar graphs.

Theorem 2.15.

1. Vertex Cover-DEG3 is NP-complete.
2. Planar Vertex Cover-DEG3 is NP-complete.

Proof:

1) We give a reduction of 3SAT to Vertex Cover-DEG3. Figure 2.9 is an example of the reduction. It will be clear that the resulting graph has degree 3.
1. Input $\varphi=C_{1} \wedge \cdots \wedge C_{m}$.
2. Form a graph $G=(V, E)$ as follows:
(a) For every clause C_{i} there is a triangle with the three vertices labeled with the three literals in C_{i}. We call this a Clause-Triangle. Note that any vertex cover of the graph will need at least 2 vertices from each triangle, so every vertex cover has at least $2 m$ vertices from the clause-triangles.
(b) Let x be a variable. Let m_{x} be the number of times x or \bar{x} appears in φ. Form a cycle of length $2 m_{x}$ where the vertices are alternatively labeled x, \bar{x}, \ldots. We call this a varcycle. (If $m_{x}=1$ then just have a line graph with x and $\neg x$, but not a cycle.) Note the following: (1) there are enough vertices in the var-cycle for x for all of the clauses that x appears in, (2) any vertex cover of the graph will use at least m_{x} vertices from this var-cycle, and hence (3) every vertex cover has at least $\sum_{x} m_{x}=3 m$ vertices from the var-cycles.
(c) For all (x, C) such that x is in C, draw an edge between one of the vertices labeled x in the var-cycle and one of the vertices labeled x in the Clause-triangle. Each var-cyclevertex is used only once. Do the same for $(\neg x, C)$.
3. Output $(G, 5 m)$.

We leave the proof that $(G, 5 m) \in \operatorname{Vertex} \operatorname{Cover}$ if and only if $\varphi \in$ 3SAT to the reader.

Figure 2.9: Graph from $(w \vee x \vee y) \wedge(w \vee \neg x \vee z)$.
2) We show that Planar $3 S A T \leq_{p}$ Planar Vertex Cover-DEG3. We show that for the reduction in Part 1, if φ is planar then G is planar. The only edges that might cross are the edges from the var-cycles to the clause-triangles. Let G^{\prime} be the graph obtained by shrinking each var-cycles to one point and shrinking each clause-triangles to one point. We need G^{\prime} to be planar. It is! G^{\prime} is the bipartite graph associated with φ. Since φ is planar, G^{\prime} is planar, so G is planar.

2.7 Dom. Set and Planar Dom. Set

Dominating Set and Planar Dominating Set (Dom. Set and Planar Dom. Set)
Instance: A (planar) graph $G=(V, E)$ and a number $k . k$ is the parameter.
Question: Is there a dominating set D of size k ? (Every $v \in V$ is either in D or has an edge to some $u \in D$.)

Theorem 2.16.

1. Vertex Cover \leq_{p} Dom. Set, so Dom. Set is NP-complete.
2. Planar Vertex Cover \leq_{p} Planar Dom. Set, so Planar Dom. Set is NP-complete.

Proof sketch:

We give the reduction for Vertex Cover \leq_{p} Dom. Set. Figure 2.10 will be an example of the reduction. It will be easy to see that if the original graph is planar then the resulting graph is planar.

1. Input graph $G=(V, E)$ and number k.
2. Create a graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ by starting with G, for every edge (u, v) in G create a new vertex $u v$, and then putting a new edge from $u v$ to both u and v.
See Figure 2.10 for an example.

Figure 2.10: Proof that Dom. Set is NP-complete.

2.8 Planar Directed Hamiltonian Graphs and Variants

The definition of Hamiltonian Cycle and its variants is in Section 4.2.
David Lichtenstein [Lic82] showed that Planar Directed Ham Cycle is NP-complete.

Theorem 2.17.

1. 3 SAT \leq_{p} Directed Ham Cycle hence Directed Ham Cycle is NP-complete.
2. Planar $3 S A T \leq_{p}$ Planar Directed Ham Cycle, hence Planar Directed Ham Cycle is NPcomplete.

Proof sketch:

We give a reduction 3 SAT \leq_{p} Directed Ham Cycle. The other parts we leave to the reader.

1. Input a $3 C N F$ formula φ.
2. For each variable a in φ form a graph as in Figure 2.11 (top). If m is the number of times a occurs in φ then the gadget has $4 m$ rungs. Note that in any directed Hamiltonian cycle either the gadget is entered from the left by going up or going down. This will correspond to setting a to True or false.
3. Let C be a clause. The gadget for C will use the gadgets for the variables in C. If $C=a \vee \neg b \vee c$ then the gadget is portrayed in Figure 2.11 (left). From this we leave it to the reader to formally define the reduction.

Exercise 2.18.

1. Complete the reduction in the proof of Theorem 2.17 and show that it works.
2. Show that if the reduction given in the proof of Theorem 2.17 started with a planar formula then the output would be a planar graph.

Figure 2.11: Ham Cycle gadgets

2.9 Using Planar Problems in Reductions

In this section we will use the planar problems we have shown NP-complete to prove other problems, even non-graph problems, are NP-complete.

2.9.1 Shakashaka

The following is a Nikoli game [Nik08, Nik] solitaire game. (Nikoli is a publisher of puzzles that are culture-independent.)

Definition 2.19. The game of Shakashaka begins with a board like the left part of Figure 2.12. The goal is to half-fill-in some of the white squares (with constraints we will discuss soon) so that the white squares form a disjoint set of rectangles, as in the right part of Figure 2.12. Some of the black squares have numbers. A black square with number x will have exactly x half-filled white squares adjacent to it. If a black square has no number, there is no constraint on the number of half-filled white squares adjacent to it.

Shakashaka [Guten 2008; Nikoli 2012-]

- White squares
- Black squares
- Labeled 0, 1, 2, 3, 4, or nothing

- Half-fill some white squares
- Labels specify number of half-filled neighbors
- Rectangular white regions

Figure 2.12: Example of Shakashaka puzzle.

Shakashaka

Instance: A Shakashaka board.
Question: Can the player win?
Erik Demaine et al. [DOUU14] showed that ShaкаSнака is NP-complete.
Theorem 2.20. Shakashaka is NP-complete.

Proof sketch:

We show Planar 3 SAT \leq_{p} Shakashaka.

Shakashaka is NP-complete [Demaine, Okamoto, Uehara, Uno 2013]

Figure 2.13: Shakashaka puzzle encoding a Planar 3SAT instance using variable, clause and wire gadgets.

There are several gadgets needed in the reduction from Planar 3SAT. These gadgets include a wire, clause, and parity shift gadget. The role of the parity shift gadget is to provide 2 possible different configurations which shift the parity in different ways.

2.9.2 MetaFont

While reading these definitions, refer to Figures 2.14 and 2.15.
Definition 2.21.

1. A rectilinear formula is a CNF formula with the following representation. Each variable is a horizontal segment on the x-axis, while each clause is a horizontal segment above or below the x-axis with vertical connections to the variables it includes on the x-axis. Each connection can be marked either positive or negative.
2. A planar rectilinear formula indexplanar! rectilinear formula is a rectilinear formula where none of the segments "cross", or more precisely, segments intersect only at intended connections between a vertical segment and the corresponding variable and clause horizontal segments.

Planar Rectilinear 3SAT
Instance: A planar rectilinear 3CNF formula φ given as a graph.
Question: Is φ satisfiable?
We also look at a variant of Planar Rectilinear 3SAT:
Planar Rectlinear Monotone 3SAT
Instance: A planar rectilinear 3CNF formula φ given as a graph such that (1) all the clauses have either all positive or all negative literals, and (2) the positive clauses are above the x-axis and the negative clauses are below the x-axis.
Question: Is φ satisfiable?
Knuth \& Raghunathan [KR92] invented Planar Rectilinear 3SAT and showed it was NPcomplete. They used its complexity as a lemma to show that MetaFont (which we will define soon) is NP-complete.

De Berg \& Khosravi [dBK12] invented Planar Rectlinear Monotone 3SAT and showed it was NP-complete in order to show that a problem involving binary space partitions of the plane is NP-complete. We omit the formal definition of their problem.

Theorem 2.22.

1. Planar Rectilinear 3SAT is NP-complete.

2. Planar Rectlinear Monotone 3SAT is NP-complete.

Proof sketch:

Reducing 3SAT to Planar Rectilinear 3SAT is a relatively easy problem in graph drawing. The gadgets in Figure 2.15 give a reduction from Planar Rectilinear 3SAT to Planar Rectlinear Monotone 3SAT.

MetaFont Labeling

Instance: A set of lattice points in the plane $\left(p_{1}, \ldots, p_{n}\right)$.
Question: Is there a set of lattice points in the plane $\left(x_{1}, \ldots, x_{n}\right)$ such that the following hold?

1. For all $1 \leq i \leq n,\left|x_{i}-p_{i}\right|=1$.
2. For all $1 \leq i<j \leq n,\left|x_{i}-p_{j}\right|>1$.
3. For all $1 \leq i<j \leq n,\left|x_{i}-x_{j}\right| \geq 2$.

Planar Rectilinear 3SAT

[Knuth \& Raghunathan 1992]

Figure 2.14: Planar Rectilinear 3SAT.

Planar Monotone Rectilinear 3SAT

 [de Berg \& Khosravi 2010]

Figure 2.15: Planar Rectlinear Monotone 3SAT.

2.10 Planar NAE 3SAT

From the results in this section one might think that all planar SAT problems are NP-complete. Not so. We need some definitions before we get to our point.

Max Cut and Planar Max Cut
Instance: For Max Cut a graph $G=(V, E)$ and a $k \in \mathbb{N}$. For Planar Max Cut the graph is planar.
Question: Is there a partition $V=V_{1} \cup V_{2}$ such that the number of edges from V_{1} to V_{2} is at least k ?
Note: Max Cut is NP-complete. In Chapter 10 we will show that even approximating Max Cut is NP-hard.

Theorem 2.23.

1. (Hadlock [Had75]) Planar Max Cut $\in P$.
2. (Moret [Mor88]) Planar NAE-3SAT \leq_{p} Planar Max Cut, hence, combined with Part 1, Planar NAE-3SAT \in P.

Exercise 2.24.

1. Prove Planar NAE-3SAT $\in P$ by yourself or look it up.
2. (Warning-this question might be ill defined) Prove Planar NAE-3SAT $\in P$ directly, not through a reduction.

2.11 Flattening Fixed-Angle Chains

Molecular geometry (also called stereochemistry) studies 3D geometry of the atoms and the bonds between them that form a molecule. An atom is a vertex and a bond between atoms is an edge. A molecule is a graph but drawn in 3D instead of 2D.

Some molecules can be drawn in 2D. Which ones? We formalize this problem and (as usual) state that it is NP-complete.

Definition 2.25. 1. A linkage is a weighted graph $G=(V, E, w)$ with weights ≥ 0. A configuration of a linkage in d dimensions indexconfiguration! of a linkage in d dimensions is a mapping $C: V \rightarrow \mathbb{R}^{d}$ that satisfies the following constraint: For all $(u, v) \in E$, $w(u, v)=C(u)=C(v)$.

$$
(\forall(u, v) \in E)[w(u, v)=C(u)-C(v)] .
$$

2. A configuration is non-crossing if any two edges intersect only at a vertex. Note that if $d=1$ then non-crossing is the same a planar
3. A fixed-angle linkage is a linkage with an additional constraint: a function Θ that takes every $\left(u, v_{i}, v_{j}\right)$ where $\left(u, v_{i}\right)$ and $\left(u, v_{j}\right)$ are edges, and returns the angle between them.
4. A chain of length \boldsymbol{n} is a linkage whose a graph with vertices $V=\left\{v_{1}, \ldots, v_{n}\right\}$ and edges $\left(v_{1}, v_{2}\right),\left(v_{2}, v_{3}\right), \ldots,\left(v_{n-1}, v_{n}\right)$.
5. A flat state of a fixed-angle linkage is a non-crossing 2D configuration of the linkage.

Flattening Fixed-Angle Chains, (FFAC)
Instance: A fixed-angle linkage which is a chain.
Question: Does it have a flat state?
Demaine \& Eisenstat [DE11] prove the following:
Theorem 2.26. FFAC is strongly NP-hard. (We discuss Strongly NP-complete briefly in Section 0.8 and at length in Chapter 6.)

Proof sketch:

Flat Folding of Fixed-Angle Chains [Demaine \& Eisenstat 2011]

Figure 2.16: Reduction of Planar Monotone Rectilinear 3SAT to FixAngCh.

This problem is NP-hard from a reduction from Planar Monotone Rectilinear 3SAT. The problem is to decide whether a polygonal chain with fixed edge lengths and angles has a planar configuration without crossings.

We can create a gadget such that all variables are in a chain. A clause has three possible positions, one each with a protrusion at a point corresponding to a variable, thus forcing the variable chain to take one position or the other. The positions determine the value of the variables within the clause.

2.12 Further Results

2.12.1 Using NP-Complete Planar Graph Problems

We present a list of NP-hard (usually NP-complete) problems that were proven so using a known NP-complete planar problem.

- Planark-Means: Given a finite set $S=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ of points with rational coordinates in the plane, an integer $k \geq 1$, and a bound $R \in \mathbb{Q}$ determine whether there exists k centers $\left\{c_{1}, \ldots, c_{k}\right\}$ in the plane such that

$$
\sum_{i=1}^{n}\left(\min _{1 \leq j \leq k}\left[d\left(p_{i}, c_{j}\right)\right]^{2}\right) \leq R
$$

($d(p, c)$ is the Euclidean distance from p to c.) Mahajan et al. [MNV12] showed

$$
\text { Planar } 3 \text { SAT } \leq_{p} \text { Planar } k \text {-Means, }
$$

so the problem is NP-hard, though it is not known to be in NP.

- multi-robot path planning problems on planar graphs: Given a planar graph, robots (start vertices), and destinations (end vertices), and a number k, is there a set of paths along the graph such that no two paths lead to a collision with arrival time $\leq k$? Yu [Yu16] showed this problem is NP-hard using a reduction from Monotone Planar 3SAT. For another problem from robotics that is proven hard by a reduction from Planar 3SAT see P. Agarwal et al. [AAGH21].
- There is a myriad of other variants of Planar 3SAT. Tippenhauer's thesis [Tip16] looks at versions where the number of variables are bounded and the formulas are monotone. Filho's thesis [Fil19] gives an extensive survey and introduces more clause variants.

2.12.2 A Generalization of 3COL

Theorem 2.2.1 showed that 3COL is NP-complete. We discuss a generalization of this result.
Definition 2.27. Let $G=\left(V_{G}, E_{G}\right) H=\left(V_{H}, E_{H}\right)$ be graphs. A homomorphism of H into G is a function $f: V_{H} \rightarrow V_{G}$ such that, for all $x, y \in V_{H}$, if $(x, y) \in E_{H}$ then $(f(x), f(y)) \in E_{G}$. Note that this definition works for undirected graphs as well.
$\mathrm{HOM}_{U}(H), \mathrm{HOM}_{D}(H)$
Instance: $\left(\mathrm{HOM}_{U}(H)\right)$ An undirected graph G.
Instance: $\left(\mathrm{HOM}_{D}(H)\right)$ A directed graph G.
Question: Is there a homomorphism from H into G ?
Note: If $H=K_{c}$ then $G \in \operatorname{HOM}_{D}(H)$ iff G is c-colorable.
What happens if H is not a complete graph? Hell \& Nesetril [HN90] showed the following dichotomy theorem for $\operatorname{HOM}_{U}(H)$.

Theorem 2.28. 1. If H is bipartite then $\mathrm{HOM}_{U}(H)$ is in P.
2. If H is not bipartite then $\mathrm{HOM}_{U}(H)$ is $N P$-complete.

The case of $\mathrm{HOM}_{D}(H)$ is much harder. Zhuk [Zhu17] and Bulatov [Bul17] independently showed the following.

Theorem 2.29. If H is a directed graph then $\mathrm{HOM}_{D}(H)$ is either in P or NP-complete. (They did give a criteria on H, but it is very complicated.)

2.12.3 Problems with a Point

We present two results that make a point.
Many problems have a planar version. Dyer \& Frieze [DF86] defined Planar 1-In-3SAT and Planar 3DM, and showed the following:

Theorem 2.30.

1. Planar $3 S A T \leq_{p}$ Planar 1-in-3SAT, so Planar 1-in-3SAT is NP-complete.
2. Planar 1-IN-3SAT $\leq_{p} P_{\text {Lanar }}$ X3C, so Planar X3C is NP-complete.
3. Planar 1-In-3SAT $\leq_{p} P_{\text {lanar }}$ 3DM, so Planar 3DM is NP-complete.

Some problems that have noting to do with planarity are proven NP-complete using Planar 3SAT or variants of it. We state one.

Definition 2.31. Let S be a set of points in the plane. A triangulation of S is a graph which has S as the set of vertices such that (1) all of the edges are straight lines, (2) the graph is planar, and (3) if any more edges are added then the graph will no longer be planar. (This concept has also been defined in d-dimensions.)

Minimum-Weight Triangluation

Instance: A set S of n points in the plane.
Output: Return a triangulation of S that minimizes the sum of the lengths of the edges.

Mulzer \& Roe [MR08] showed the following using a planar problem.
Theorem 2.32. Minimum-Weight Triangluation is NP-hard.

Chapter 3

NP-Hardness via Circuit SAT

3.1 Introduction

In this chapter, we describe some NP-hardness reductions from Circuit SAT. Recall the problem as defined in Section 1.2.1:

Circuit SAT
Instance: A Boolean circuit $C\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ with n inputs.
Question: Does C ever output True? That is, does there exist $\left(b_{1}, b_{2}, \ldots, b_{n}\right) \in$ ${\text { \{TRUE, FALSE }{ }^{n}}^{n}$ such that $C\left(b_{1}, b_{2}, \ldots, b_{n}\right)=$ true?

Chapter Summary

1. Prove the Planar Circuit SAT is NP-complete.
2. Use that Planar Circuit SAT is $N P$-complete to show many puzzles are N-complete.

3.2 How to Reduce from Circuit SAT

In contrast to reductions from SAT as described in Section 1.7, Circuit SAT reductions typically fall into one pattern. Most obviously, we need a gate gadget to represent each type of gate. It suffices to have one gadget for each gate in any functionally complete set of gates, for example:

- \{NAND\},
- \{NOR\},
- \{AND, NOT\},
- $\{\mathrm{OR}, \mathrm{NOT}\}$,
- $\{\rightarrow, F\}$ (where $x \rightarrow y$ evaluates to $\neg x \vee y$ and the F gate always outputs FALSE).
- Any set given by Post's functional completeness theorem (see Post [Pos41] or Pelletier \& Martin [PM90] for a modern approach).

Next we need a wire gadget to connect the output of one gate to the input of another gate. Typically, each gate gadget only has one copy of its output so, like binary-logic reductions from 3SAT, we need a split gadget for duplicating a gate output (given by one wire) so that we can route it to every gate input where it is needed (via additional wires).

To represent the inputs, we need a terminator gadget that ends a wire without constraining the wire. Thus the wire is free to choose whether it carries a value of true or false, just like an x_{i} input in the Circuit SAT problem. To represent the desire of the final output to be true, we need a true terminator gadget that ends a wire and forces its value to be True. All the gadgets can be satisfied if and only if the circuit is satisfiable.

Exercise 3.1. Read Erich Friedman's paper [Fri02b] on the NP-completeness of the Spiral Galaxies problem. The proof uses a reduction of Circuit SAT. Rewrite the reduction in your own words.

3.2.1 Planar Circuit SAT

Planar Circuit SAT is the following problem. Note that this terminology is (surprisingly) not used often.

Planar Circuit SAT
Instance: Boolean circuit $C\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ represented by a planar directed acyclic graph. Each node in the graph is either a source (of in-degree 0 , out-degree 1 , representing an input), a NAND gate (of in-degree 2 and any out-degree), or a sink (out-degree 0 , representing the output). There must be exactly one sink.
Question: Does C ever output True? That is, does there exist $\left(b_{1}, b_{2}, \ldots, b_{n}\right) \in$ \{TRUE, FALSE $^{n}{ }^{n}$ such that $C\left(b_{1}, b_{2}, \ldots, b_{n}\right)=$ true?

Equivalently, the question is whether each edge (wire) of the graph can be labeled with a value of either true or false such that the following hold:

- The value of the edge into the sink is true.
- The value of any edge out of a NAND gate is the NAND of the truth values of the two edges going into the gate.
- (The value of an edge out of a source can be anything.)

Theorem 3.2. PLANAR CIrCUIt SAT is NP-complete. The problem is also NP-complete if we replace the word NAND with the word NOR everywhere.

Proof:
We prove NP-hardness by a reduction from Circuit SAT, using the crossover gadgets in Figure 3.1. The base gadget (a) is built out of XOR gates. Each XOR gate can be replaced by a subcircuit of NAND gates (b) to prove Planar Circuit SAT hard, and each NAND gate can be replaced by a subcircuit of NOR gates (c) to prove the NOR analog hard. Crucially, all of these subcircuits have no crossings. Hence we can remove all crossings by replacing each crossing with a crossover gadget of the appropriate type.

Figure 3.1: Crossover gadgets for Circuit SAT.

3.3 Puzzles

Next we will discuss the hardness of several puzzles.

3.3.1 Light Up

An instance of the puzzle Light Up consists of a grid of white and black squares where some black squares have a number between 0 and 4 written on them. The goal of the puzzle is to place lights on the white squares of the board so that the following rules are satisfied:

- Each black square which has a number written on it must have that number of lights in a horizontally or vertically adjacent square.
- Each white square should be lit up by exactly one light. A light lights up a square if both the light and the square are in the same row or column and if there are no black squares between them.

There have been entire puzzle books on this game, for example, that of Nikoli [Nik08, Nik].

Light Up

Instance: A board position for the game Light Up.
Question: Can the lights be placed to attain the goal?
Note: This game is also called Akari.
Brandon McPhail [McP05] has shown that Light Up is NP-complete.
Theorem 3.3. LIGHT UP is NP-complete.

Proof sketch:

The hardness proof is a reduction from Planar Circuit SAT (NOR variation). Like most such proofs, the reduction starts with the wire gadget. A basic wire gadget consists of a repeating sequence of a black square with a 1 followed by two white squares. This forces exactly one of the two white squares to have a light in a way such that the choice of using the white square on the right or on the left propagates down the wire. Alternatively, by lining a corridor with 0 's, one can have a different wire because the light must be at one of the ends of the corridor. Making turns is also easy. All of these gadgets are depicted in Figures 3.2 and 3.3.

Figure 3.2: Wire gadget.
The negation/split gadget in Figure 3.3 (top) outputs a single negated copy and two regular copies of the incoming wire. By using a terminator gadget, you can use this gadget as either the split gadget or the not gadget.

Together, the OR and NOT gates create a NOR gate.
The above gadgets, together with a terminator gadget (which requires simply placing a 0 or 1 at the end of a wire to set its value), are sufficient to prove that Light Up is NP-complete.

Exercise 3.4. Formalize the proof of Theorem 3.3 and construct some (very small) examples of the reduction.

3.3.2 Minesweeper

Minesweeper is the following puzzle computer game, particularly famous for being included in most versions of Microsoft Windows:

1. The parameters are n, m (the board will be $n \times m$) and b (the number of bombs).
2. The player initially sees an $n \times m$ board of unlabeled spaces.

Figure 3.3: Above Split/Negation gadget; below OR/XNOR gadget.
3. b of the spaces have hidden bombs. Some of the other spaces have numbers which indicate how many bombs are adjacent to that space. Here adjacent means up, down, left, right, or diagonal. Hence most spaces have 8 spaces adjacent to them.
4. The player will either left-click or right-click on a space.
(a) If a player left clicks and the space has a bomb, the game is over and the player loses.
(b) If a player left clicks and the space has a number, that number is revealed and the player may use that to try to figure out where bombs are.
(c) If a player left clicks and the space has nothing then that space does not have a bomb, nor do any the adjacent spaces. Those adjacent spaces are also uncovered.
(d) If a player right clicks then a flag is put on that space. The player does not know whether there was a bomb or not. A player is only allowed to do this b times.
5. If the player reveals all non-bomb space, then she wins. If a player gets blown up, then she loses.
6. Caveat: in some versions, the first space clicked on cannot have a bomb. There are various ways to implement this rule.

Given a grid where some spaces have numbers, is it ways possible to put bombs on the grid so that the numbers are consistent? No. Consider the grid in Example 3.5.

Example 3.5. An impossible configuration.

Exercise 3.6. Prove that there is no way to plant bombs such that Example 3.5 is correct.

```
Minesweeper Consistency
Instance: A Minesweeper board.
Question: Is that board possible?
```

The motivation for the Minesweeper Consistency problem is that if we could solve the problem efficiently then placing a bomb in a location and then checking whether the board is consistent allows a player to check whether that location is safe to click. One of the problems with this approach to playing Minesweeper is that there might not be any safe moves. As a result, this isn't the best problem to pose, but it is the first one to be proved hard.

Richard Kaye [Kay00] proved that the Minesweeper Consistency is NP-complete.
Theorem 3.7. Minesweeper Consistency is NP-complete.

Proof:

Reduction from Planar Circuit SAT (NAND variation). The wire gadget for Minesweeper in Figure 3.4 (top) looks a lot like the Light-Up wire. The bombs must all be placed in the right square or the left of the pairs of unspecified squares.

The terminator gadget for Minesweeper in Figure 3.4 (top) is more complicated than the LightUp terminator because simply stopping a wire would require specifying that the last square has a bomb, which would not leave the wire unspecified.

The gadget in Figure 3.5 is a split, NOT, and turn gadget all in one. Each individual gadget can be extracted from this design by adding terminators to the unnecessary wires.

The simpler NOT gate in Figure 3.6 can be used twice in order to fix the "mod-3-parity" issue (that wires are always a multiple of 3 length).

The AND gadget in Figure 3.7 looks very complicated, but all one has to do to check it is check all 4 cases.

Together, the AND and NOT gates create a NAND.
Building a true terminator is easy (by just ending the wire with a 1), so the above gadgets are enough to prove the problem is NP-hard.

wire terminator

Figure 3.4: Top: Wire Gadget; Bottom: Terminator Gadget

Figure 3.5: Spilt-Not-Turn Gadget

Figure 3.6: Not gate for Minesweeper.

Figure 3.7: AND gate for Minesweeper.

Together, the AND and NOT gates create a NAND.
Building a true terminator is easy (by just ending the wire with a 1), so the above gadgets are enough to prove the problem is NP-hard.
-

While Theorem 3.7 is interesting, it's not quite the right question. A player wants to know what their next move should be. Also note that the number of bombs used in each gadget varies according to the truth values of the variables. In actual Minesweeper, the number of bombs is specified, so that is another problem.

Definition 3.8. A Minesweeper position is a grid, a number b of bombs, some of the grid squares are uncovered and have a number (the number of bombs around it) and some have a flag (indicating that there is a bomb there). Note that the player is promised that there is a consistent way to place bombs.

For most of the problems in this book there are no preconditions on the input. You can be given any formula or graph. For Minesweeper we will need to promise the player that the game is consistent. We take this opportunity to define promise problems.

Definition 3.9. A promise problem is two sets (A, B). A is the set we care about and B is the promise. A promise problem is in P if there is a polynomial-time algorithm M that does the following:

1. If $x \in B$ and $x \in A$ then $M(x)=1$.
2. If $x \in B$ and $x \notin A$ then $M(x)=0$.
3. If $x \notin B$ then $M(x) \in\{0,1\}$

> MINESWEEPER InFERENCE
> Instance: A position in Minesweeper that you are promised is consistent.
> Question: Is there a square such that one can deduce with certainty either (a) there is a bomb there, or (b) there is no bomb there? Note that you may deduce that there is no such square.

Exercise 3.10. Show that, if Minesweeper Inference $\in P$, then there is a strategy for Minesweeper that makes the best move possible (note that a player can still lose).

To prove that Minesweeper is hard to play we want to prove that Minesweeper Inference is NP-complete. But there is one problem with that approach: Minesweeper Inference does not seem to be in NP. For other games we showed that playing them was NP-hard and the problem of membership in NP is open. Here we can obtain a finer classification. Allan Scott, Ulrike Stege, and Iris van Rooij [SSvR11] showed that Minesweeper Inference is coNP-complete.

Theorem 3.11. Minesweeper Inference is coNP-complete.

Proof sketch:

To show Minesweeper Inference \in coNP we show that its complement is in NP.
Let M be a game position (promised to be consistent) that is not in Minesweeper Inference. A witness to $M \notin$ Minesweeper Inference is the following: for every grid space where it is unknown if there is a bomb or not, give two consistent completions of the grid: one where there is a bomb, one where there is not.

We now show that Minesweeper Inference is coNP-hard. To prove that Minesweeper is coNP-hard we reduce from $\overline{S A T}$.

In this reduction, we make sure that all of our gadgets have the same number of bombs regardless of variable assignment.

The wire gadget stays the same, but many of the other gadgets get much more cluttered. This time we use an OR gate which, together with NOT, gives us the desired NOR gate.

The final output of the circuit is connected to a terminal gadget that leaves it undetermined rather than setting the output to true as we would in a SAT reduction. The reason is as follows: if the unsatisfiable instance is always false then there will always be a bomb in the end of the circuit; if some assignment exists that makes the output true then there exists some solution to the Minesweeper instance that has no bomb there. Thus, since it is hard to determine whether a formula is in $\overline{\mathrm{SAT}}$ it is also hard to determine whether a bomb must exist in a particular location on the Minesweeper board.

Chapter 4

NP-Hardness via Hamiltonian Cycle

4.1 Overview

Recall that in the preface we contrasted the following two problems.

1. Given a graph G is there an Eulerian Cycle, which is a cycle that visits every edge exactly once? We call this problem Euler Cycle.
2. Given a graph G, is there a Hamiltonian Cycle, which is a cycle that visits every vertex exactly once? We call this problem Ham Cycle.

We noted there, informally, that Euler Cycle is easy and Ham Cycle is though to be hard. We can now state this formally: Euler Cycle $\in \mathrm{P}$ and Ham Cycle is NP-complete.

Chapter Summary

1. We define many variants of HAM CYCLE and show or state they are NP-complete.
2. Use these variants of НАм Cycle to show other problems are NP-complete. These other problems will be mostly be about games.
3. Present metatheorems that allow for more games to be shown NP-complete using Ham Cycle and variants.

4.2 Variants of Hamiltonian Cycle

In this section we discuss many variants of Ham Cycle. We discuss the original problem and some basic variants now.

In this chapter we do not give acronyms for problems since most problems are mentioned only once and the acronyms would be too long. For example Hamiltonian Cycle Restricted to Degree-3 Planar Graphs would be ... well, you figure it out. But note that it's long!

Ham Cycle, Ham Path, Directed Ham Cycle, Directed Ham Path
Instance: (Ham Cycle) A graph.
Question: Is there a Hamiltonian cycle? A Hamiltonian cycle is a cycle that visits every vertex exactly once.
Instance: (НАм РАТн) A graph and two vertices a, b.
Question: Is there a Hamiltonian path from a to b ? A Hamiltonian Path from a to b is a path that begins at a, ends at b, and visits every vertex exactly once.
Instance: (Directed Ham Cycle) A directed graph. QUESTION: Is there a Hamiltonian cycle? Note that if (u, v) is an edge but (v, u) is not then the cycle cannot use (v, u). (The same holds for Directed Ham Path).
Instance: (Directed Ham Path) A directed graph and two vertices a, b.
Question: Is there a Hamiltonian path from a to b ?
Note: One can define planar versions of these problems by restricting to planar graphs or directed graphs.

The following NP-complete results are briefly stated here without proof.

- Ham Cycle is NP-complete. This was one of Karp's original 21 problems shown to be NPcomplete [Kar72].
- Directed Ham Cycle, Ham Path, Directed Ham Path are all NP-complete.
- We proved that Planar Directed Ham Cycle is NP-complete in Theorem 2.17.
- Ham Cycle restricted to planar 3-regular 3-connected graphs with minimum face degree 5 is NP-complete. This was proven by Garey et al. [GJT76].
- Ham Cycle restricted to bipartite graphs is NP-complete. This was proven by Krishnamoorthy [Kri75].
- If G is a graph then the square of G is the graph with edges added between all vertices connected by a path of length 2. Ham Cycle on squares of graphs is NP-complete. This was proven by Underground [Und78].

Here are some trivial instances of Hamiltonian Cycle; however, proving they are trivial is difficult.

- Tutte [Tut56] proved that all planar 4-connected graphs are Hamiltonian. Hence the problem restricted to planar 4-connected graphs is trivial: just say yes.
- Karaganis [Kar68] showed that the cube of a graph (the graph with edges added between all vertices connected by a path of length 3 or less) is always Hamiltonian. Hence the problem restricted to graphs that are cubes of other graphs is trivial: just say yes.

Note that Tutte proved his result in 1956, and Karaganis proved his result in 1968, before the notion of NP-complete was known.

Planar Directed Max-Degree-3
[Plesńik 1979]

Figure 4.1: Gadgets for proving HAM Cycle on degree 3 planar graphs is NP-complete.

4.2.1 Degree-3 Planar Graphs: Directed and Undirected

Plesník [Ple79] showed the following:
Theorem 4.1. The Hamiltonian cycle problem restricted to degree-3 planar directed graphs is NPcomplete.

Proof:
For all gadgets see Figure 4.1. This is a reduction from 3SAT. The reduction relies on an XOR gadget used to enforce that exactly one of two edges is in the cycle. Variables are then represented as pairs of doubled edges linked by a XOR gadget, forcing the pairs to have opposite membership, representing true and false assignments. The clause gadget contains a large cycle which can be in the Hamiltonian cycle only if one of the incoming literals (connected to the clause by XOR gadgets) is true. This reduction also requires a crossover gadget to allow the XOR gadgets connecting variables to clauses to cross; the crossover gadget itself uses the XOR gadgets, essentially exploding them.

Planar Bipartite Max-Degree-3 [Itai, Papadimitriou, Szwarcfiter 1982]

$$
\Delta
$$

Figure 4.2: Reduction from Degree 3 Planar Directed Ham to Degree 3 Planar Undirected Bipartite Ham.

Itai et al. [IPS82] showed the following:
Theorem 4.2. The Hamiltonian cycle problem restricted to planar undirected bipartite degree-3 graphs is NP-complete.

Proof:

The proof is by reduction from the corresponding directed graph problem. (See Figure 4.1 for guidance.) Given a degree 3 directed graph G first check if any vertex has in-degree 3 or out-degree 3. If so then G cannot have a Hamiltonian cycle and we are done (formally output a undirected degree-3 bipartite graph that does not have a Hamiltonian cycle). Henceforth we can assume that every vertex has either in-degree 1 or out-degree 1 . Look at a vertex v. If it has indegree 1 (out-degree 1) then the edge coming in to v (going out of v) must be in any Hamiltonian cycle of G. Hence we can map each vertex in the directed graph to a pair of vertices in the undirected graph. Any Hamiltonian cycle in the resulting graph will alternate between vertices from the original graph and vertices introduced to model forced edges, so the resulting graph is bipartite.

4.2.2 Hamiltonicity in Grid Graphs and Applications

Definition 4.3. 1. Grid graphs are graphs with vertices on a (subset of a) lattice and edges between all pairs of vertices with unit distance. Unqualified, grid graphs are usually on the square lattice, but the triangular and hexagonal lattices can also be considered.
2. Faces of grid graphs of unit area are called pixels, while faces with greater area (i.e., containing at least one lattice point that is not a vertex) are called holes. Solid grid graphs have no holes.
3. A solid grid graph is one where every bounded region is 1×1. See Figure 4.3 for an example and a counterexample.

Figure 4.3: Left: A solid grid graph/ Right: a non-solid grid graph.
Umans \& Lenhart [UL97] showed that Hamiltonian cycle on solid grid graphs is polynomial time.

By contrast, Itai et al. [IPS82] proved the following:
Theorem 4.4. The Hamiltonian cycle problem restricted to grid graphs containing holes is NPcomplete

Planar Bipartite Graph Drawing

 [Itai, Papadimitriou, Szwarcfiter 1982]

Hamiltonicity in Grid Graphs
[Itai, Papadimitriou, Szwarcfiter 1982]

Figure 4.4: Planar bipartite graph drawing.

Proof sketch:

The proof is by reduction from Hamiltonian cycle on planar undirected degree-3 bipartite graphs. The reduction first embeds the input bipartite graph on a grid graph using the grid graph's inherent 2 -coloring. Any parity violations can be sidestepped by scaling the grid graph by a factor of 3, allowing "wiggles" to be added as required. (See Figure 4.4, both parts.)

The Hamiltonian cycle on the input graph need not use every edge, but the Hamiltonian cycle on the output grid graph needs to visit each vertex, so our edge gadget can be traversed in two ways, a "zigzag" corresponding to using the edge (a Hamiltonian path from one end of the gadget to the other) and a border traversal corresponding to not using the edge (a Hamiltonian path that returns to the same end of the gadget).

The vertex gadget is a 3-by-3 square of vertices, the corners of the gadget having the parity of the corresponding vertex in the input graph. This gadget has Hamiltonian paths from every corner to every other corner that traverse four marked edges. Edge gadgets connect to white vertices flush with one of the corners, but connect to black vertices offset by one (a pin joint); this arrangement allows the edge to be used or not while preserving the parity of the cycle. (See Figure 4.5)

Definition 4.5. Given a set of points in the plane, the Euclidean Traveling Salesman Problem (ETSP) asks for a tour through the points with Euclidean length less than k (or in the optimization problem, with minimum length).

Theorem 4.6. The ETSP problem is NP-hard. (Note that we did not say NP-complete.)

Proof:

We show that Hamiltonian Cycle on Grid Graphs is reducible to ETSP.

1. Input G, a grid graph. We can assume it is in the plane and the vertices are lattice points. Let n be the number of vertices in G.
2. The instance I of ETSP is just the points in the grid graph with the goal of having a Hamiltonian cycle of length n.

Any tour that visits all the points in I must be a cycle in G since if the tour visits two nonadjacent points it will not have cost $\leq n$.

Note: We did not state that ETSP is NP-complete. It is not known if ETSP is in NP. Why is this? Let the input be a set of points in the plane forming a weighted graph, and a number k. If you are given a Hamiltonian cycle that is a proposed witness, to see if the Hamiltonian cycle has weight $\leq k$ involves asking if a sum of square roots is $\leq k$. This is not known to be in NP because of issues of precision. We discuss this more in Section 13.7.2.

Forišek [For 10] proved the following:
Theorem 4.7. Platform games whose objective is to collect all collectibles (e.g., coins) in a level before a timer expires are NP-hard.

Hamiltonicity in Grid Graphs

[Itai, Papadimitriou, Szwarcfiter 1982]

Figure 4.5: Hamiltonian grid graph.

Figure 4.6: Edge gadget for degree 3 grid graphs.

Proof sketch:

The proof is by reduction from Hamiltonian cycle on grid graphs. The reduction simply places coins at all the grid graph vertices and sets the timer such that moving between any nonadjacent pair of points (i.e., not taking the minimum tour) will result in the timer expiring.

4.2.3 Degree-3 Grid Graphs and Applications

Papadimitriou \& U. Vazirani [PV84] proved the following:
Theorem 4.8. Hamiltonian cycle restricted to degree-3 grid graphs is $N P$-complete.

Proof:

This is by a similar reduction for unconstrained grid graphs, with the gadgets modified to avoid degree-4 vertices. The edge gadget (see Figure 4.6) gains holes at corners, but has the same topology with two configurations. Vertex gadgets (see Figure 4.7) are now "dumbbells". Degree-2 vertices have their edge gadgets connected to opposite ends of the dumbbell; degree- 3 vertices have the forced edge connected to both ends of the dumbbell via a fork gadget which is required to preserve parity (see Figure 4.8).

The minimum spanning tree problem (MST) is in polynomial time by either Kruskal or Prim's algorithm. However, there are variants that are NP-complete.

Max-Degree-3 Grid Graphs

[Papadimitriou \& Vazirani 1984]

Figure 4.7: Vertex gadget for degree 3 grid graphs.

Max-Degree-3 Grid Graphs
 [Papadimitriou \& Vazirani 1984]

forced-edge vertex-edge connections

Figure 4.8: Forcing gadget for max-degree 3 grid graphs.

Figure 4.9: Polygonal tiling.

Theorem 4.9. MST where we require the tree have degree 2 is NP-complete.

Proof:

This is just the TSP problem.

What about degree 3? Papadimitriou \& U. Vazirani [PV84] proved the following:
Theorem 4.10. MST restricted to Euclidean grid graphs, where we require the tree have degree 3, is $N P$-complete.

Proof:

Euclidean degree-3 minimum spanning tree is still hard by reduction from Hamiltonian path on degree-3 grid graphs. The reduction adds new vertices very close to each existing vertex in the grid graph, forcing the edge between that vertex and the new vertex to be in the minimum spanning tree. The remainder of the tree is then finding a Hamiltonian path in the grid graph.
I

4.2.4 Grid Graph Hamiltonicity Taxonomy

Superthin grid graphs have no pixels; all faces are holes or the outside face. Thin grid graphs have all vertices on the boundary. Polygonal grid graphs have no shared edges between holes or the outside face; polygonal graphs could be considered anti-superthin. With these definitions
we taxonomize Hamiltonicity over various kinds of graphs in Table 4.11. Most of the results are from Arkin et al. [AFI ${ }^{+} 09$] or Demaine \& Rudoy [DR17].

Table 4.11. Taxonomy of the complexity of Hamiltonicity

	triangular	square	hexagonal
solid	poly	poly	open
superthin	NP-hard	NP-hard	open
degree 4	NP-hard	-	-
degree 3	NP-hard	NP-hard	NP-hard
polygonal	poly	open	NP-hard

4.3 Using Ham Cycle and Variants to show Other Problems NP-complete

4.3.1 Settlers of Catan Longest Road Card

The Hamiltonian graph problem restricted to hexagonal grid graphs is NP-complete [$\mathrm{AFI}^{+} 09$, DR17]. We use that to prove the following. ${ }^{1}$

Definition 4.12. Let G be a game and $i \in \mathbb{N}$. The Mate-in-i problem for G is the problem of, given a game position, can the player who is about to move get a win within i moves. Note that Mate-in-0 means the player about to move has already won; however, checking this might still be hard.

Theorem 4.13. Mate-in-1 and mate-in-0 are NP-complete for Settlers of Catan.

Proof sketch:

In Settlers of Catan the player with The Longest Road card gets two victory points. If the opponent has a road of length $n-1$ then mate-in- $1 / 0$ requires finding/having a Hamiltonian path in the hexagonal grid (with the opponents' roads forming obstacles). Thus we can do a reduction from Hamiltonian cycle in hexagonal grid graphs to either mate-in-1 or mate-in- 0 .

4.3.2 Slitherlink

Definition 4.14. Slitherlink is a Nikoli game [Nik08, Nik] (Nikoli is a publisher of puzzles that are culture-independent.) played on a grid graph in which some pixels are labeled with the numbers 0 through 4. The objective of the game is to find a cycle (not necessarily Hamiltonian) along the grid lines such that the numbered pixels are bordered by that number of edges in the cycle. (See Figure 4.10 for an example.)

```
Slitherlink
Instance: An Instance of the Slitherlink Game.
Question: Can the player win?
```

Yato [Yat00] proved the following:

[^3]
Slitherlink [Nikoli 1989]

Figure 4.10: Example of Slitherlink.

Slitherlink is NP-complete

B.

required vertex
[Yato 2000]

B1. B2. B3.

Figure 4.11: Slitherlink is NP-complete.

Theorem 4.15. Slitherlink is NP-complete.

Proof sketch:

This is proven by reduction from Hamiltonian cycle on grid graphs. There are two vertex gadgets, one for vertices that are in the input graph (which must be in the cycle) and one for vertices in the grid graph that were not in the original graph (which are optional). See Figure 4.11 for the gadgets.

4.3.3 Lawn Mowing and Milling

Lawn mowing and milling problems both involve cutting a specified region with a tool (we are not going to define them rigorously). In lawn mowing problems the tool path can go outside the region, while in milling it must stay inside. The goal is generally to find the shortest path. Milling problems arise in actual physical milling, while lawn mowing problems arise in laser and waterjet cutting and in each layer of 3D printing by deposition. Arkin et al. [AFM00] proved the following:

Theorem 4.16. Milling and lawn mowing are NP-hard for grid polygons and a unit square too.

Proof sketch:

The proof is by reduction from Hamiltonicity in grid graphs. Minimum-turn milling (also infinite-acceleration milling) is NP-complete by reduction from Hamiltonicity in unit orthogonal segment intersection graphs; this problem arises in physical milling where the cost of milling a straight line is insignificant compared to the cost of stopping to turn. See Figure 4.12.

4.4 Metatheorems on Reductions Using Hamiltonian CyCLE

In Viglietta's paper [Vig14] there are some metatheorems that will be used as general techniques for proving hardness. We will cover 2 main metatheorems for NP-hardness. In Chapter 14 we will have metatheorems for PSPACE-hardness. These metatheorems can be applied to a lot of games. We will use the term metatheorem in somewhat vague sense and not a formal theorem, because it's hard to state all the assumptions for all games. It will give a general set up for the proof.

Viglietta defines an "avatar" in his proofs, but for our case, we will use the term "player". The player is the character in the game that we can control and move around to complete objectives. One basic assumption we make about the player is that we can choose, at any time, to change the player's direction of movement.

4.4.1 Metatheorem 1

This metatheorem enunciates that if a game with a player traversing a 2D environment with a start location and:

Milling \& Lawn Mowing
 [Arkin, Fekete, Mitchell 2000]

Minimum-Turn Milling

[Arkin, Bender, Demaine, Fekete, Mitchell, Sethia 2005]

Figure 4.12: Gadget for showing milling and lawn mowing NP-complete.

- Location traversal (with or without a starting location or an exit location)
- Single-use paths (each path can only be traversed once)
then the game is NP-hard. Location traversal means that the player has to visit some locations in the board in order to win the level. The planarity of the problem will allow us not to worry about crossovers.

The claim of this metatheorem is that any game with such characteristic can be reduced from Hamiltonian Path on Planar Degree-3 graphs. The reduction should turn each vertex in the graph into a location that must be traversed and each edge should become a single-use path. Since each vertex has degree 3 and each of the edges are single-use, once we traverse two edges to visit the vertex and leave, those edges will disappear, leaving just one edge. Now, the vertex is unreachable because if we use the third edge, the player will be trapped in that location, as there is no fourth edge out of the vertex.

Thus, we conclude that there will be a way to clear the game if and only if there is a Hamiltonian path.

We've seen reductions like this before, but with a time limit; this is another way to get the same kind a proofs.

Using this metatheorem, we can prove NP-hardness for many games.

Boulderdash

Biasi [Bia11] first proved Boulderdash is NP-hard; however, Viglietta's metatheorems give a simpler proof.

In this game, the player has a starting position and can walk around without being affected by gravity and dig in adjacent cells if they are made of earth. There are boulders are influenced by gravity and if they fall on the avatar, the player dies. The goal is to collect all the diamonds and get to the end location. You only need two gadgets: location traversal (shown in Figure 4.13 left) and single-use path (shown in Figure 4.13 center).

Figure 4.13 right demonstrates the single-use path gadget after it has been traversed from left to right: we push the first boulder into the pit in order to clear the obstacle; we then push the lower of the two stacked boulders over to the other pit, then push the last boulder into the final pit as part of our traversal. During this time, the higher of the two stack boulders falls down and blocks our path, since there is no pit to push it into.
(One small note is that the boulder can "rest" on the player without killing him, so pushing the lower boulder to the right and causing the player to stand under the higher boulder is permissible.)

The conclusion is that Boulderdash is NP-hard.

Figure 4.13: (Left) Location traversal. (Center) Single-use path gadgets for Boulder Dash. (Right) Single-use gadget after traversing from left to right.

Lode Runner

Lode Runner was proven NP-hard by Viglietta's metatheorems [Vig14].
In this game the player have to collect all the coins and avoid enemies. You can dig a hole on the ground and the monsters can fall in this hole. Eventually, the hole will refill (after some specific time) releasing the monster. The avatar cannot jump and this property is exploited in the Single-use path gadget. Figure 4.14 shows the gadgets required for metatheorem 1. The conclusion is that Lode Runner is NP-hard.

Figure 4.14: (Left) Location traversal gadget. (Center) Single-use path gadget. (Right) It being used.

Zelda II

Another application of Viglietta's metatheorems is to Zelda II [ADGV15]. In this game you are a character called Link and this is a platform game. The location traversal is done by placing keys on certain locations. The keys are used to open doors. At the end of the level there will be exactly the same number of doors as the number of keys in the level, so in order to clear the level, we must collect all keys. The single-use paths are bridges that disappear when Link walks over them.

The conclusion is that Zelda II is NP-hard.

4.4.2 Metatheorem 2

This is a slight variation of Metatheorem 1. It starts from the same kind of set up (player with a starting location), but requires tokens in order to traverse a path instead of single-use paths. The player collects tokens that appear in determined locations in the level, and uses the tokens to pay a toll in order to traverse some path. The idea is to simulate a single-use path with this kind of mechanism:

- We place a token at each vertex, and
- We transform every edge into a toll road that requires one token.

Thus, to get from one vertex to the next, the player must pay the token that was just acquired; if a vertex is visited more than once, there will be no token at that vertex, and the player is unable to cross over any edge.

The reduction from Hamiltonicity follows in the same way as in Metatheorem 1.

Pac-Man

Pac-Man was first proven NP-hard by Viglietta's metatheorems.
We can use Metatheorem 2 to prove Pac-Man NP-hard. In order to win in Pac-Man, you have to collect all the dots, which will also function as our tokens. Figure 4.15 shows the degree- 3 vertex with the token (dot) and the toll road (path with ghosts). Eating a token causes the ghosts to change state, so that Pac-Man can eat the ghosts; after some time, though, the ghosts revert to becoming harmful to Pac-Man. Also, whenever a ghost changes its state, it will change the direction of movement.

The ghosts that are "eaten" revive after a while and appear inside a "cage," which they then leave and continue moving around in their original paths.

Thus, the only way to traverse an edge is to consume the token and the ghost along the chosen exit edge. For the sake of argument, we will assume that the ghosts change state long enough for Pac-Man to exist safely, but short enough so that if Pac-Man even comes back to the same area of the map, the ghosts will have reverted states or respawned. Due to this, each edge can be traversed if and only if Pac-Man consumes the token; once the token is consumed, Pac-Man cannot return to this "vertex" again, since he won't be able to pay the toll anymore.

Therefore, Pac-Man is also NP-hard.

Figure 4.15: Token+Toll road gadget for Pac-Man.

Chapter 5

Chains of Reductions

5.1 Introduction

In Chapters 1, 2, and 3 we used mostly variants of SAT to show problems are NP-complete. We proved that a problem X is NP-hard by the chain of reductions was of length at most 3:

$$
3 \text { SAT } \leq_{p} \text { some variant of } \mathrm{SAT} \leq_{p} X .
$$

In Chapter 4 we used 3SAT and variants of HAM Cycle to show problems NP-complete. Again, the chains of reductions were at most 3. In this chapter we prove problems NP-complete by longer chains of reductions.

Chapter Summary For this summary you don't need to know the exact problems we are discussing. The key point is that the chains of reductions are long.

1. Theorem 2.10 was

$$
3 S A T \leq_{p} P_{L A N A R} 3 S A T .
$$

Theorem 2.15.2 was

$$
\text { Planar } 3 S A T \leq_{p} P_{l a n a r ~ V e r t e x ~ C o v e r-D E G 3 . ~}^{\text {Cer }}
$$

In this chapter we show
Planar Vertex Cover-DEG3 \leq_{p} Planar Induced Subgraph Vertex Cover degree 4
and
Planar Induced Subgraph Vertex Cover degree $4 \leq_{p}$ Rectlinear Euclidean Steiner Tree.
Hence we have a rather long chain to show Rectlinear Euclidean Steiner Tree is NP-hard.
2. Using long sequences of reductions we show that certain games, puzzles, and packing problems are NP-hard.

5.2 Vertex Cover and Steiner Tree

We show that a variant of Vertex Cover is NP-complete and then use that to show that Steiner Treeand some variants of it are NP-hard.

5.2.1 Vertex Cover

Recall Vertex Cover and one of is variants from Section 2.6

Vertex Cover, Planar Vertex Cover-DEG3

Instance: A Graph $G=(V, E)$ and a number k. If Planar Vertex Cover-DEG3 then the graph is planar and of degree 3.
Question: Is there a $V^{\prime} \subseteq V$ of size k such that, for every $e \in E$, at least one of its endpoints is in V^{\prime} ? Such a set is called a vertex cover.

We look at variants of Vertex Cover, some in P and some NP-complete.
The following problems are in P:

1. Exact vertex cover, where each edge must be incident to exactly one vertex.
2. Edge cover, where we choose k edges to cover all vertices in a graph.

By Theorem 2.5.2 Vertex Cover is NP-complete even when restricted to planar graphs of degree 3.

```
Induced Subgraph Vertex Cover, Planar Induced Subgraph Vertex Cover,
Planar Induced Subgraph Vertex Cover degree 4
Instance: (Induced Subgraph Vertex Cover) A graph G and a number k.
Instance: (Planar Induced Subgraph Vertex Cover) A planar graph G and a
    number k.
Instance: (Planar Induced Subgraph Vertex Cover degree 4) A planar graph
    of degree 4G and a number }k\mathrm{ .
Question: Is there a vertex cover of size k such that the vertices in the vertex cover
    induce a connected subgraph?
```

Garey \& Johnson [GJ77] proved the following.

Theorem 5.1.

1. Induced Subgraph Vertex Cover is NP-complete.
2. Planar Induced Subgraph Vertex Cover degree 4 is NP-complete.

Proof sketch:

We reduce Planar Vertex Cover-DEG3 to Induced Subgraph Vertex Cover. All of the graphs we reduce to will have degree 4.

In Figure 5.1 we transform our given planar graph G by adding a closed loop for each face in the graph. For each edge in G that separates two loops l_{1} and l_{2}, we add several vertices that "connect" the two closed loops together. The construction adds exactly $5|E|$ edges to the graph, and increases each of the original vertex's degrees up at most 4.

Note that there always exists an optimal vertex cover where we never choose any leaves in the graph. This is because choosing the node adjacent to a leaf in our cover is always at least as good as choosing the leaf itself. Thus, to obtain a connected vertex cover, we must choose exactly one of the two nodes in each subdivided edge to connect each of the closed loops together. (It is never more useful to choose both, since we could simply choose a vertex of our original graph

Planar Connected Vertex Cover [Garey \& Johnson 1977]

Figure 5.1: Reduction of Vertex Cover to Induced Subgraph Vertex Cover.
G and be guaranteed to cover at least as many nodes.) After we have done so, these additions induce a connected graph.

5.2.2 The Steiner Tree Problem and Its Variants

Steiner Tree

Instance: A weighted graph $G=(V, E)$ with non-negative edge weights, and $T \subseteq$ V, and $k \in \mathbb{N}$. The set T is called the terminals.
Question: Is there a tree that contains T (it may also contain other vertices) of cost $\leq k$.

Euclidean Steiner Tree

Instance: n points in the plane with integer coordinates, and a number k.
Question: Can you build roads which have total length $\leq k$ that connect all the points?
Note: We are allowed to add arbitrary vertices to shorten the length of road. For example, if we are given 4 points at $(-1,-1),(-1,1),(1,-1),(1,1)$, then we can add a vertex at $(0,0)$ and connect each of our four given vertices to the new vertex to form the minimum Steiner tree.

Rectilinear Steiner Tree

[Garey \& Johnson 1977]

Figure 5.2: Transformation for Rectilinear Euclidean Steiner Tree.

Rectlinear Euclidean Steiner Tree

Instance: Given n points in the plane and a number k.
Question: Can you build roads that are all parallel to the x or y-axis which have total length $\leq k$ that connect all the points?
Note: This problem is interesting since it applies to printed circuit boards.
Garey \& Johnson [GJ77] proved the following.
Theorem 5.2. Rectlinear Euclidean Steiner Tree is NP-complete.

Proof sketch:

We reduce Planar Induced Subgraph Vertex Cover degree 4 to the rectilinear Euclidean Steiner tree problem.

1. Input $G=(V, E)$ and k where G is planar and of degree ≤ 4.
2. We draw our given graph rectilinearly on the grid, and scale it by $4 n^{2}$. We add auxiliary points at all integer points along the edges, except within radius 1 of the vertices. (The vertex transformation is shown in the Figure 5.2.) It is fairly easy to see that each of the points comprising the "edges" of the graph must be connected to its adjacent points. Also, every edge must connect to a vertex, so we must add at least $2|E|$ edges. We must also connect the other end of the edges in a spanning tree of G, which means we must add at least $2(|V|-1)$ edges.

5.3 Two More Push Games

In Section 1.5 we proved many push games are NP-hard by using reductions from variants of SAT. In this section we state two more results on push games. They are proved NP-hard by using reductions from the same graph problem. We will not prove these statements; however, we will say what graph problem is used.

Push-1X and Push-1G
Instance: The initial configuration of a push problem.
Question: Push-1X: Can the object get to a specified location by pushing blocks in a grid, subject to the stipulation that the object never visit the same location twice?
Question: Push-1G: Can the object get to a specified location by pushing blocks in a grid, subject to the stipulation that the robot can only push one block, and blocks that are directly over one or more open squares fall immediately downward as far as possible (the G stands for "Gravity")?

Theorem 5.3.

1. (Demaine et al. [DDHO01]) РUSH- $1 X$ is $N P$-hard.
2. (Friedman [Fri02a]) Push-1G is NP-hard.

Proof sketch:

Both proofs are reductions from the push problem to Planar Degree-4 3COL.

5.4 Graph Orientation

Horiyama et al. [HIN^{+}12] defined the following problem and showed it was NP-complete. This problem is not interesting in itself, but is a means to an end. We will be using it in the next section to show a packing problem is NP-complete.

```
Graph Orientation
Instance: An undirected graph G=(V,E) and a partition of V into sets }\mp@subsup{V}{\ell}{},\mp@subsup{V}{c}{},\mp@subsup{V}{n}{
    (this will later be Literal, Clause, Negated Clause).
Question: Is there an orientation of the edges such that the following hold?
    - Each v\in V has in-degree 0 or 3.
    - Each v \in V V has in-degree 1.
    - Each v\in V 
```

Theorem 5.4. Graph Orientation is NP-complete even when restricted to graphs of degree 3.

Graph Orientation [Horiyama, Ito, Nakatsuka, Suzuki, Uehara 2012]

Figure 5.3: Reduction of 1-In-3SAT to Graph Orientation.

Proof sketch:

We show Graph Orientation is NP-complete by reducing from 1-in-3SAT.
We just give an example from which the general construction will be clear. Let

$$
\varphi=(x \vee y \vee \bar{z}) \wedge(x \vee z \vee w) .
$$

Then the undirected graph in Figure 5.3 on the left is the instance of Graph Orientation that is created. The directed graph on the right represents a truth assignment that satisfies exactly 1 literal per clause.
I

5.4.1 Packing Trominoes into a Polygon

Definition 5.5.

1. An L-tromino is the shape in Figure 5.4 on the left.
2. An I-tromino is the shape in Figure 5.4 on the right.

Figure 5.4: The 2 trominoes.

> Packing L-Trominoes, Packing I-Trominoes
> Instance: A number n and a polygon (which may have holes in it).
> Question: Can $n L$-trominoes (I-trominoes) tile the polygon, filling every space and with no overlap?

Horiyama et al. $\left[\mathrm{HIN}^{+} 12\right]$ proved the following.

Theorem 5.6.

1. Packing L-Trominoes is NP-complete.
2. Packing I-Trominoes is NP-complete.

Proof sketch:

1) We reduce graph orientation to packing L-trominoes.

Figure 5.5 shows the edge gadgets and how they are used. The upper left is a polygon that we will want to pack trominoes into. There are two ways to do this, as shown in the upper middle and upper right pictures. The bottom pictures show what to do if you need to have an edge bend.

Figure 5.6 shows the gadgets needed to deal with edges that cross. We leave the details to the reader.

Figure 5.7 shows the gadgets needed to force the degrees needed for the graph orientation problem. We omit details.
2) We follow the same techniques as for packing L-trominoes, and construct the necessary gadgets as in Figure 5.8. The bend in the edge gadget is to ensure that only two parities exist (if we just used I shapes in a line, we could have a missing block on one end and a protrusion of 2 blocks on the other end). Other than that, the construction is similar to that of the L-tromino case.

5.5 LINEAR LAYOUT

In this section we define a large set of layout problems and state results. There are many problems that can be described as linear layout problems. We will use these results in Section 5.5.1.

Definition 5.7. Let $G=(V, E)$ be a graph. A linear layout of G is a bijection from V to $\{1, \ldots,|V|\}$. We impose conditions on these functions in the following Problems

Packing L Trominoes into Polygon [Horiyama, Ito, Nakatsuka, Suzuki, Uehara 2012]

edge gadget

Figure 5.5: Gadgets for reduction of Graph Orientation to L-Trominoes Packing.

Packing L Trominoes into Polygon

[Horiyama, Ito, Nakatsuka, Suzuki, Uehara 2012]

crossover

Figure 5.6: Gadgets for reduction of Graph Orientation to L-Trominoes Packing.

Packing L Trominoes into Polygon

 [Horiyama, Ito, Nakatsuka, Suzuki, Uehara 2012]

Figure 5.7: Gadgets for reduction of Graph Orientation to L-Trominoes Packing.

Linear Layout Problems (Four Versions)
Instance: A graph $G=(V, E)$.
Output: Return a linear layout of G that optimizes some metric. We describe several such problems.
Bandwidth. Let the points be laid out on a number line so that the distance between consecutive points is a unit length. Minimize the maximum length of any edge between two points. This problem is motivated by the concept of bandwidth in linear algebra. In linear algebra, matrices whose nonzero values are all in a thin band around the main diagonal are much easier to manipulate and, if they represent a system of linear equations, easier to solve. Permuting the columns and rows of an adjacency matrix is analogous to permuting the points on a linear layout. Bandwidth problems are hard even for very constrained graphs, such as trees of maximum degree 3 and caterpillars.
Minimum Linear Arrangement (MinLA). The goal in this problem is to minimize the sum of the edge lengths (as opposed to the maximum edge length, as in bandwidth). This problem is motivated by VLSI chip design.
Cut Width. Let x, y be two adjacent vertices in the linear layout. Assume x is to the left of y. The cut induced by x, y is the set of edges that have left endpoint to the left of x (could be x itself) and right endpoint to the right of y (could be y itself). The size of a cut is the number of edges in it. Minimize the maximum size of any cut. Note that attempting to minimize the sum of the cuts is identical to Minimum Linear Arrangement.

Packing I Trominoes into Polygon

[Horiyama, Ito, Nakatsuka, Suzuki, Uehara 2012]

Packing I Trominoes into Polygon

[Horiyama, Ito, Nakatsuka, Suzuki, Uehara 2012]

Figure 5.8: Gadget For reduction of Graph Orientation to Packing I-Trominoes.

Linear Layout Problems (Four more Versions)

Instance: A graph $G=(V, E)$.
Output: Return a linear layout of G that optimizes some metric. We describe several such problems. Modified Cut (abbreviated Mod Cut). Given a linear arrangement and $i \in\{1, \ldots, n\}$ let $f(i)$ be the number of edges of the form (x, y) where $x \leq i$ and $y>i$. In this problem we want to minimize $\sum_{i=1}^{n} f(i)$.
Vertex Sep. This problem is similar to Cut Width, except that we consider the vertex separation of a cut, which is the number of vertices that have at least one edge crossing the cut. We aim to minimize the maximum vertex separation of any cut.
Sum Cut. This problem uses the same setup as vertex separation. The only difference is that we aim to minimize the sum of the cuts instead of the max.

Edge Bis. Minimize the number of edges that cross the middle cut.
Betweeness. This problem does not begin with a graph. It begins with a set of vertices (no edges) and a set of rules of the form " y is between x and z ", meaning that either $x<y<z$ or $z<y<x$ and you need to determine if there is a way to linear arrangement of the vertices that satisfies all the requirements.

Table 5.8 is from Diaz et al. [DPS02] and is a survey of layout problems, except the entry on Betweeness.

Table 5.8. NP-complete layout problems.

Problem	Type of Graph	Paper
Bandwidth	General	[Pap76]
Bandwidth	Trees with $\Delta \leq 3$	[GGJK78]
Bandwidth	Caterpillars with hair length ≤ 3	[Mon86]
Bandwidth	Caterpillars with ≤ 1 hair per backbone vertex	[Mon86]
Bandwidth	Cyclic caterpillars with hair length 1	[DPPS01]
MinLA	General	[GJS76]
MinLA	Bipartite Graphs	[ES75]
Cut Width	General	[Gav77]
Cut Width	Max Degree 3	[MPS85]
Cut Width	Planar and $\Delta \leq 3$	[MS88]
Cut Width	Grid Graphs \& Unit Disk Graphs	[DPPS01]
Mod Cut	Planar Graphs with $\Delta \leq 3$	[MS88]
Vertex Sep	General	[Len81]
Vertex Sep	Planar Graphs with $\Delta \leq 3$	[MS88]
Vertex Sep	Chordal Graphs	[Gus93]
Vertex Sep	Bipartite Graphs	[GMKS95]
Vertex Sep	Grid and Unit Disk Graphs	[DPPS01]
Sum Cut	General	[DGPT91]
Sum Cut	co-bipartite	[YJ94],[Gol97],[YLLW98]
Edge Bis	General	[GJS76]
Edge Bis	$\Delta \leq 3$	[McG78]
Edge Bis	Δ bounded	[McG78]
Edge Bis	d-regular graphs	[BCLS87]
Betweeness	Not a Graph Problem	[Opa79]

Exercise 5.9. The problems presented in Definition 5.7 are all functions. For each metric (e.g., Vertex Bisection) do the following.

1. Come up with a set version of the function problem.
2. Show that if the set version is in P then the function version is in FP. For example, if the set version of Vertex Bijection is in P then the problem of finding the linear arrangement that minimizes the number of vertices in the left half that have edges to the right half is in FP.

5.5.1 Bipartite and General Crossing Number

Recall that a graph is planar if it can be drawn in the plane with 0 pairs of edges crossing. That way of stating it leads to the following definition.

Crossing Numb and Bip Crossing Numb
Instance: A graph G.
Question: Crossing Numb. What is the least c such that G can be drawn in the plane with c pairs of edges crossing? The number c is called the crossing number of G.
Question: Bip Crossing Numb is this problem restricted to bipartite graphs, and requiring that the left and right vertices are still on the left and on the right.

Note that both Crossing Numb and Bip Crossing Numb are functions not sets. This section will do reductions between functions; however, it would be a routine matter to translate all of the concepts and proofs into sets.

Garey \& Johnson [GJ83] showed that determining the crossing number of a graph is NP-hard. We will follow their treatment. They showed the following.

Theorem 5.10.

1. MinLA \leq_{p} Bip Crossing Numb.
2. Bip Crossing Numb \leq_{p} Crossing Numb.

Proof sketch:

1) Minimum Linear Arrangement \leq_{p} Bip Crossing Numb.
1. $G=(V, E)$ that we want to find the Minimum Linear Arrangement of.
2. Create a graph as follows.
(a) For each vertex v in G there is a vertex v^{\prime}. Let V^{\prime} be the set of all the v^{\prime}-vertices. There will be no edges between elements of V. There will be no edges between elements of V^{\prime}. The only edges will be between V and V^{\prime} and hence we are creating a bipartite graph.
(b) For all v in G there is an edge between v and v^{\prime}.
(c) For all edges (u, v) in G there is an edge $\left(u, v^{\prime}\right)$.
(d) For every edge between V and V^{\prime} we add a large bundle of more edges. $\left.O(|V|+|E|)^{2}\right)$ edges will do. We do this so that the ordering of the vertices of V and of their analogs in V^{\prime} will be the same.

See Figure 5.9 for what the final bipartite graph looks like. The rest of the proof is left to the reader and sketched out in the exercises.

Exercise 5.11.

1. Show that in an optimal (in terms of crossing number) drawing of the graph with V on one rail and V^{\prime} on a parallel rail, the permutations of V and V^{\prime} are the same.

Bipartite Crossing Number [Garey \& Johnson 1983]

Figure 5.9: Bipartite graph needed for the Reduction of Minimum Linear Arrangement to Bip Crossing Numb.
2. Show that the an optimal (in terms of crossing number) drawing of the graph gives a permutation which minimizes the sum of the edge lengths as a linear arrangement of G (and hence solves Minimum Linear Arrangement).
2) Clearly, a bipartite graph is an example of a general graph, so all we have to do is impose some additional structure on the bipartite graph to mimic the 'two rails' condition from the bipartite crossing number problem. To do so, add two 'bounding' vertices X and Y (the top and bottom vertices in the following diagram). Connect X to the first part of the bipartite graph using large bundles, and connect Y to the other part. Then connect X and Y to each other using large bundles twice. Large bundles should be significantly larger than B (B^{4} is probably safe, but smaller numbers may work as well). Then, the drawing of the bipartite graph is forced as shown in Figure 5.10.

5.6 Rubik's Square and Rubik's Cube

We assume the reader is familiar with Rubik's cube.
Definition 5.12. Let $n \in \mathbb{N}$. n-Rubik's cube means the start position is $n \times n \times n$. n-Rubik's square means the start position is $n \times n \times 1$. For the Rubik's square the moves are flipping a row or a column.

Demaine et al. [$\left.\mathrm{DDE}^{+} 11\right]$ showed the following.

Crossing Number is NP-Complete [Garey \& Johnson 1983]

Figure 5.10: Reduction of Bip Crossing Numb to Crossing Numb

Theorem 5.13.

1. Let $n \in \mathbb{N}$. From any starting position for n-Rubik's square or n-Rubik's cube there is a solution that takes $O\left(n^{2} / \operatorname{logn}\right)$ moves. (There is an $O\left(n^{2}\right)$ algorithm that is folklore, but presented formally in this paper.)
2. The algorithms in Part 1 are optimal. That is, there are instances of both puzzles that require $\Omega\left(n^{2} / \log n\right)$ moves.

Proof sketch:

The explanation applies to both the Rubik's cube and the Rubik's square.

1) On a high level, this is done by identifying $\Theta(\log n)$ cubies $(1 \times 1 \times 1$ cubes on the boundary) that can be solved with the same solution sequence. In the above figure, the four circled cubies can be solved simultaneously by a vertical flip on those two columns, followed by a horizontal flip on those two rows, then another vertical and horizontal flip. They showed that they can always find such a set of cubies to solve as a batch, thus providing a $\Theta(\log n)$ factor of savings. See Figure 5.11 for a sketch.
2) The lower bound is a counting argument.

Given a position of the $n \times n \times n$ Rubik's cube, how many moves does it take to solve? Theorem 5.13.1 gives an upper bound but the reality could be much lower. How hard is it to determine this?

Demaine et al. [DER18] proved the following.

How To Solve Rubik's Cube Faster

[Demaine, Demaine, Eisenstat, Lubiw, Winslow 2011]

- Kill $\Theta(\log n)$ birds with $\Theta(1)$ stones
- Look for cubies arranged in a grid that have the same solution sequence

(b) $V_{1}, H_{1}, V_{1}, H_{1}$.
- $X \times Y$ grid can be solved in $\Theta(X+Y)$ moves instead of the usual $\Theta(X \cdot Y)$ moves
- Can always find $\Theta(\log n)$-factor savings like this

Figure 5.11: Rubik's Cube.

Theorem 5.14. The following problems are NP-complete.

1. Given a starting position for n-Rubik's square and a number c, is there a solution in $\leq c$ moves?
2. Given a starting position for n-Rubik's cube and a number c, is there a solution in $\leq c$ moves?

The proof of Theorem 5.14 is a reduction from Ham Cycle.
Drucker \& Erickson in 2010, on the StackExchange forum at http://cstheory.stackexchange.com/questions/783,
asked whether the problem of finding the optimal solution for a given position is NP-complete. Demaine et al. did not quite prove that, but they did prove the following.

Theorem 5.15. The following problem is NP-complete: Given a position of the $n \times n \times 1$ Rubik's square, with some cubes whose positions you do not care about, and a number k, can you solve the problem (and note that this will not be a full solution) in $\leq k$ moves?

Proof sketch:

The reduction is from betweenness, a problem we encountered in Definition 5.7. That problem is not quite enough, so the reduction also uses 1-In-3SAT.

【

5.7 Further Results

We present a list of results which can be viewed either as further reading (we provide references) or exercises.

Definition 5.16. Let $G=(V, E)$ be a graph. A biclique is a set of two disjoint sets $A, B \subseteq V$ such that, for all $a \in A$ and $b \in B,(a, b) \in E$.

Max Edge Biclique and Variants
Instance: A bipartite graph $G=(X, Y, E)$ and number $k \in \mathbb{N}$.
Question: Is there a biclique with $|A|=|B|=k$?
Question: Is there a biclique with $|A|+|B| \geq k$?
Question: Is there a biclique with $|A| \times|B| \geq k$?

Theorem 5.17.

1. (This is stated by Garey \& Johnson [G779], where it is called Balanced Complete Bipartite Subgraph, and proven by fohnson [7oh87, page 446].) The question of finding a biclique with $|A|=|B|=k$ is $N P$-complete.
2. (Peeters [Pee03]) The question of finding a biclique with $|A| \times|B| \geq k$ is NP-complete.

Edge Dom. Set
Instance: A graph $G=(V, E)$ and number $k \in \mathbb{N}$.
Question: Is there a set $E^{\prime} \subseteq E,\left|E^{\prime}\right|=k$, such that every edge $e \notin E^{\prime}$ is adjacent to an edge in E^{\prime} ?

Theorem 5.18.

1. Edge Dom. Set is NP-complete.
2. (Yannakakis \& Gavril [YG80]) EDGE DOM. SET is NP-complete even when restricted to bipartite graphs of degree 3. (Yannakakis \& Gavril [YG80]) EDGE DOM. SET is NP-complete even when restricted to planar graphs of degree 3.

Chapter 6

NP-Hardness via 3-Partition

6.1 Introduction

Many problems have numbers as their input. For some of these problems, how the numbers are represented matters. If the numbers are in unary then polynomial in the length of the input is much longer than if the numbers are in binary.

Chapter Summary

1. We define of two subclasses of NP-complete: weaklyNP-complete and stronglyNP-complete and give examples of both. The examples will be various partition problems. Our main interest will be in those that are strongly $N P$-complete since that means the are $N P$-complete when the numbers involved are in unary.
2. We will use the problems we prove strongly NP-hard to show the problems in the following fields are NP-hard: scheduling, graph theory, packing, disk packing, puzzles, computer games, and three-dimensional geometry. All of the problems are also NP-complete except for the packing problems whose status in NP is unknown.

6.2 Types of NP-Hardness

Consider a number problem, that is, a problem whose input includes one or more integers. The complexity of the problem may depend on how the integers are represented. We restate Definition 0.21 of weakly NP-hard and strongly NP-hard.

Definition 6.1. Let A be a problem that has numbers in the input.

1. A is weakly NP-hard if the problem is NP-hard when the numbers are given in binary. A might be in P if the numbers are given in unary.
2. A is strongly NP-hard if the problem is NP-hard when the numbers are given in unary. (Such problems are also weakly NP-hard but we do not call them that.)

We also need to differentiate algorithms for the two cases.

Figure 6.1: Hierarchy.

Definition 6.2. Let A be a problem with numbers. Assume $\left(a_{1}, \ldots, a_{n}\right)$ is most or all of the input. Assume a_{1} is the max element.

1. An algorithm for A is pseudopolynomial if it is polynomial in n and a_{1} (so the input can be viewed as being in unary). This often arises in dynamic programming, where the table grows proportionally with the integer values. Example: Partition.
2. An algorithm for A is weakly polynomial if it is polynomial in n and $\log \left(a_{1}\right)$ (so the input can be viewed as being in binary). This is the typical meaning of polynomial time.
3. An algorithm for A is strongly polynomial if it is polynomial in n alone.

Figure 6.1 summarizes the relationships between these hardness types and algorithm strengths. What we care about most is the distinction between pseudopolynomial and weakly polynomial. Assuming $P \neq N P$:

- If a problem is weakly NP-hard, there is no weakly polynomial algorithm (but there might be a pseudopolynomial algorithm).
- If a problem is strongly NP-hard, there is no pseudopolynomial algorithm (and therefore no weakly polynomial algorithm).

There is practical significance in showing strong vs. weak NP-hardness, since only the former rules out pseudopolynomial algorithms.

6.3 Partition Problems

Most of the proofs in this chapter will be reductions from 3-Partition. But before that, we'll introduce Partition (This is sometimes also called 2-Partition, though we will never call it that
since we will be defining 3-Partition which is very different. The ' 2 ' and ' 3 ' have nothing to do with each other)

Notation 6.3. If A is a multiset of numbers then $\sum_{i=1}^{n} a_{i}$ is the sum of all the numbers in A, counting multiplicities. For example, if $A=\{1,1,2\}$ then $\sum_{a \in A} a=4$.

All of the problems in this section are trivially in NP

6.3.1 Partition

Partition

Instance: Multiset of integers $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$. The a_{i} 's are in binary.
Question: Can A be partitioned into 2 sets A_{1} and A_{2} that have the same sum?
Formally: $\sum_{a \in A_{1}} a=\sum_{a \in A_{2}} a$.
Subset Sum is a generalization of this problem. It is also weakly NP-hard:
Subset Sum
Instance: n integers, $A=\left\{a_{1}, \ldots, a_{n}\right\}$ and a target sum t. The a_{i} 's are in binary.
Question: Is there a $S \subset A$ such that $\sum_{a \in S}=t$?
Garey \& Johnson [GJ79] (page 60) showed the following:
Theorem 6.4. Partition is NP-complete, hence Subset Sum is NP-complete. Since the numbers are in binary, they are both weakly $N P$-complete.

Is Partition strongly NP-complete? Unlikely, as Exercise 6.5 shows that Partition with numbers in unary is in P .

Exercise 6.5.

1. Show that there is an algorithm for Partition that is polynomial in $n, \max \left\{a_{i}\right\}$.

Hint: Use dynamic programming.
2. Show that Partition is NP-complete.

Alfonsín [Alf98] looked at variants of Subset Sum. We look at one of them. The basic idea is that instead of being able to use a_{i} just once, you can use it $\leq r_{i}$ times where r_{i} is part of the input.

Subset Sum With Repetition
Instance: Positive integers a_{1}, \ldots, a_{n} and r_{1}, \ldots, r_{n} and a target t.
Question: Does there exist $0 \leq x_{i} \leq r_{i}$ such that $\sum_{i=1}^{n} x_{i} a_{i}=t$?

Exercise 6.6.

1. Show that Subset Sum With Repetition is NP-complete.
2. Show that Subset Sum restricted to the case where the elements are superincreasing (every element is greater than or equal to the sum of all of the previous elements) is in P .
3. Show that Subset Sum With Repetition restricted to the case where the elements are superincreasing is NP-complete.
4. Show that Subset Sum With Repetition restricted to the case where the elements are superincreasing and $\forall i: r_{i} \in\{1,2\}$ is NP-complete.

6.3.2 3-Partition

3-Partition is a very useful strongly NP-hard problem:

3-Partition

Instance: A multiset of integers $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ (n is divisible by 3) such that, $\sum_{i=1}^{n} a_{i}=t n / 3$ and, for all $i, \frac{t}{4}<a_{i}<\frac{t}{2}$. We often write $t=\left(\sum_{i=1}^{n} a_{i}\right) /(n / 3)$. The a_{i} 's are given in unary.
Question: Can A be partitioned into $n / 3$ sets $A_{1}, \ldots, A_{n / 3}$ such that they all have equal sums? Formally, for all $1 \leq i \leq n / 3, \sum_{x \in A_{i}} x=t$? Each A_{i} has size exactly 3 (see Exercise 6.8).
Garey \& Johnson [GJ79] (page 96) showed the following:
Theorem 6.7. 3-Partition is $N P$-complete. Since the numbers are in unary it is strongly $N P$ complete.

Exercise 6.8.

1. Show that in any solution of 3-Partition all of the A_{i} have exactly 3 elements.
2. Prove Theorem 6.7.
3. Theorem 6.7 restricts the a_{i} 's by $\frac{t}{4}<a_{i}<\frac{t}{2}$. Show that 3-Partition remains NP-complete if use the restriction $\frac{7 t}{24}<a_{i}<\frac{10 t}{24}$. Show that, for all $\delta>0,3$-Partition remains NPcomplete if we use restriction $\left(\frac{1}{3}-\delta\right) t<a_{i}<\left(\frac{1}{3}+\delta\right) t$.
Exercise 6.9. Give a direct reduction from 3-Partition to Partition.
Hint: First reduce directly from 3-Partition to Subset Sum, then modify the proof to work with Partition.

We define a sequence of strongly NP-complete problems that will be useful in proving other problems strongly NP-complete.

First one is Numerical-3D-Matching. The adjective "Numerical" is because it has numbers in it (duh), in contrast to 3D-Matching, which we will study soon, that has no numbers in it. Numerical-3D-Matching is a closely related specialization of 3-Partition and is also strongly NP-hard.

Numerical-3D-Matching
Instance: Multisets $A=\left\{a_{1}, \ldots, a_{n}\right\}, B=\left\{b_{1}, \ldots, b_{n}\right\}, C=\left\{c_{1}, \ldots, c_{n}\right\}$ of integers. The a_{i} 's are in unary.
Question: Is there a partition of $A \cup B \cup C$ into n sets D_{1}, \ldots, D_{n} such that (1) each set has 3 elements, one from A, one from B, and one from C, and (2) each set has the same sum?

Garey \& Johnson [GJ79] noted (Page 224) that their proof of Theorem 6.7 can be easily modified to show the following:

Theorem 6.10. Numerical-3D-Matching is NP-complete. Since the a_{i} 's are in unary the problem is strongly NP-complete.

To explain the terminology Numerical-3D-Matching, we recall two related problems: 3DMatching and Exact Covering by 3Sets. We defined both of these problems in Chapter 2 and stated that there were NP-complete even in the planar version. We restate them here.

3D-MATCHING

Instance: a 3-hypergraph with vertices in A, B, C, disjoint, where $|A|=|B|=|C|=$ n, and hyperedges $E \subseteq A \times B \times C$. (If you want to relate this problem to aliens that have 3 sexes, see the definition in Section 6.3.2.)
Question: Are there n disjoint edges that cover all of the vertices? (See Figure ??.)

```
Exact Covering by 3Sets
Instance: A set \(X\) where \(|X| \equiv 0(\bmod 3)\) and a collection of 3 -sets \(E_{1}, \ldots, E_{m}\) of
\(X\). (So the input is a 3-ary hypergraph where the vertex set has size a multiple of 3.)
Question: Does there exist a set of \(|X| / 3 E_{i}\) 's that every elements of \(X\) occurs in exactly one of the \(E_{i}\) 's?
```

Since 3D-Matching and Exact Covering by 3Sets are NP-complete and do not involve numbers they are clearly strongly NP-complete. Hence they can be used in the next problem.

Exercise 6.11. For each of the following problems, either (I) show that the problem is in P by giving a polynomial-time algorithm or (II) show that the problem is NP-hard by reducing one of the following to it: (a) 3-Partition, (b) 3D-Matching, or (c) Numerical-3D-Matching. In the problems below the numbers are given in binary.

1. Given a set of numbers $A=\left\{a_{1}, \ldots, a_{2 n}\right\}$ that sum to $t \cdot n$, find a partition of A into n sets S_{1}, \ldots, S_{n} of size 2 such that each set sums to t.
2. Given a set of numbers $A=\left\{a_{1}, \ldots, a_{2 n}\right\}$ that sum to $t \cdot n$, find a partition of A into n sets S_{1}, \ldots, S_{n} of any size such that each set sums to t.
3. Given a set of numbers $A=\left\{a_{1}, \ldots, a_{2 n}\right\}$ and a sequence of target numbers $\left\langle t_{1}, \ldots, t_{n}\right\rangle$, find a partition of A into n sets S_{1}, \ldots, S_{n} of size 2 such that for each $i \in\{1, \ldots, n\}$, the sum of the elements in S_{i} is t_{i}.

Exercise 6.12. Given a graph $G=(V, E)$, we say the graph G is beautiful if we can color the vertices of G with either blue or red such that each vertex has exactly one blue neighbor. The Beautiful Problem is to, given a graph G, determine whether G is beautiful.

1. Show that The Beautiful problem is NP-complete.

Hint: Use Exact Covering by 3Sets.
2. What happens if you restrict The Beautiful Problem to planar graphs?

Exercise 6.13. Give an easy proof (not going through the Cook-Levin theorem whose proof uses Turing machines) that Numerical-3D-Matching reduces to 3-Partition
Hint: Let N be a large number. Let a, b, c be numbers you find. Add $a N$ to all the elements of A, $b N$ to all the elements of B, and $c N$ to all the elements of C.

Exercise 6.14. The connected bisection problem (CBS) is as follows. The input is a graph $G=$ (V, E) with n vertices. Determine whether V can be partitioned into two sets, each of size $n / 2$ such that each part induces a connected subgraph. Show that 3D-MATCHing $\leq_{p} \mathrm{CBS}$, and hence CBS is NP-complete.

6.4 Scheduling

All of the problems in this section are trivially in NP.
We use 3-Partition to show that some problems about scheduling are NP-complete. We'll begin with a trivial reduction.

Multiprocessor Scheduling

Instance: n jobs, with completion times a_{1}, \ldots, a_{n}, and p processors, each processor sequential and identical with each job running to completion on a single processor.
Question: Can all jobs be finished in time $\leq t$?
Note: The amount of time it takes for all jobs to finish is called the makespan.
Note: Figure 6.2 is the solution of a Multiprocessor Scheduling problem.

Theorem 6.15. Multiprocessor Scheduling is strongly NP-complete.

Proof:

Clearly Multiprocessor Scheduling \in NP. We show 3-Partition \leq_{p} Multiprocessor Scheduling.

1. Input $\left(a_{1}, \ldots, a_{n}\right)$, an instance of 3-Partition.

Figure 6.2: An assignment of processes to 3 processors.
2. Output $\left(a_{1}, \ldots, a_{n}\right), p=n / 3, t=\sum_{i=1}^{n} a_{i} / p$.

The proof that this reduction works is trivial.

6.5 1-Planar

We use 3-Partition to show a that 1-Planar is NP-complete.

Definition 6.16. A 1-planar graph is a graph that can be drawn in the plane with each edge crossing at most one other edge.

```
1-PlANAR
Instance: A graph G.
Question: If G 1-planar?
```

1-Planar does not have numbers in it and hence we do not call it weakly or strongly NPcomplete. However, it uses the proof is a reduction from 3-Partition so we present it here to get practice on reductions from 3-Partition.

Grigoriev \& Bodlaender [GB07] showed the following:

Theorem 6.17. 1-PLANAR is NP-complete.

Proof sketch:

Clearly 1-Planar $\in N P$. We show 3-Partition \leq_{p} 1-Planar.
The key idea in this construction is the creation of an uncrossable edge. An uncrossable edge is a subgraph (in fact, K_{6}) with the property that any edge passing through it must cross an edge that already has a crossing, so crossing this subgraph isn't allowed. Once we've created an uncrossable edge, we can use it as a black box to create graphs that only allow crossings in particular places.

1-Planarity: Each edge may cross once

Figure 6.3: The "uncrossable edge" gadget.

Lesson: It's often useful to create black box gadgets that you use as your notation-once you've established them, the rest of the construction becomes a lot easier.

We build two wheels out of uncrossable edges, one corresponding to the set A and one corresponding subsets of A. Using uncrossable edges, we can make each subset separate and force each a_{i} to belong to only one subset. Lots of cases to check, but uncrossable edges make the picture a lot clearer.

6.6 Packing Problems

Packing puzzles have been around for a while and are fun! The idea is to pack given shapes (e.g., rectangles) into a bigger given shape (e.g., rectangles). Eternity [Wikf] was a complicated packing puzzle that launched in 1999 with an offer of $£ 1,000,000$ for solving it. It sold around 500,000 copies, at $£ 35$ each. It was solved by two Cambridge mathematicians (working together) Alex Selby \& Oliver Riordan. Hence, one reason to study this topic is in case more money is offered for harder puzzles. But alas, we will show that such problems are generally hard.

Packing problems are unusual in that they are not known to be in NP.
Open Problem 6.18. Let X be a packing problem in this section. Either prove its in NP or give a reason why it is not.

Rect-Rect Packing

Instance: n rectangles and a target rectangle R.
Question: Can the rectangles be packed into R with no overlap? Rotation and translations are allowed. They do not need to cover all of R. (See Figure 6.4.)

Figure 6.4: An example of rectangle packing.
Unlike many problems in this book, it is not obvious that Rect-Rect Packing is in NP! This is because it is complicated to encode rotations efficiently.

Demaine \& Demaine [DD07] have shown that a variant of Rect-Rect Packing is strongly NP-hard.

Theorem 6.19. Rect-Rect Packing where (1) the packings should be exact - no gaps, and (2) no rotations are allowed, is strongly NP-hard.

Proof:

We show that 3-Partition is reducible to this restricted version of Rect-Rect Packing.

1. Input $\left(a_{1}, \ldots, a_{n}\right)$, an instance of 3-Partition. Let $t=\sum_{i=1}^{n} a_{i} /(n / 3)$. Recall that, for all i, $\frac{t}{4}<a_{i}<\frac{t}{2}$.
2. For $1 \leq i \leq n$ we have an $a_{i} \times 1$ rectangle (1 is the height).
3. Let the target rectangle be $\frac{n}{3} \times t$.

See Figure 6.5 for an example.
We view the target rectangle as being divided into $\frac{n}{3}$ mini-rectangles of height 1 .
Assume that $\left(a_{1}, \ldots, a_{n}\right)$ is in 3-Partition. By renumbering we can assume that the partition is $\left\{a_{1}, a_{2}, a_{3}\right\},\left\{a_{4}, a_{5}, a_{6}\right\}, \ldots,\left\{a_{n-2}, a_{n-1}, a_{n}\right\}$. Note that $a_{1}+a_{2}+a_{3}=t$, hence the $a_{1} \times 1, a_{2} \times 1$, and $a_{3} \times 1$ rectangles can exactly pack the first target mini rectangle. Proceed like this for all $\frac{n}{3}$ triples.

Assume the target rectangle can be packed without gaps or rotations. Look at the first target mini-rectangle. Since $\frac{t}{4}<a_{i}<\frac{t}{2}$, the first target rectangle must be covered by exactly 3 of the $a_{i} \times 1$ rectangles. Renumber and assume the first mini-rectangle is covered by $a_{1} \times 1, a_{2} \times 1, a_{3} \times 1$. Note that $a_{1}+a_{2}+a_{3}=t$. Proceed similarly for the $2 \mathrm{nd}, 3 \mathrm{rd}, \ldots, \frac{n}{3}$ mini-rectangles. This yields a solution to 3-Partition.

Figure 6.5: Reduction of 3-Partition Restricted to Rect-Rect Packing.
In a similar vein: What about packing squares into a rectangle? Or packing squares into squares?

SQ-Rect Packing

Instance: n squares and a target rectangle R.
Question: Can the squares be packed into R without overlap? No rotations are allowed. The squares do not need to cover the entire area.

Li \& Cheng [LC89] showed the following.
Theorem 6.20. SQ-Rect PACKING is strongly NP-hard.

Figure 6.6: Reduction of 3-Partition to SQ-Rect Packing.

Proof sketch:

We show 3-Partition is reducible to SQ-Rect Packing; refer to Figure 6.6.

1. Input $A=\left\{a_{1}, \ldots, a_{n}\right\}$. Let $t=\left(\sum_{i=1}^{n} a_{i}\right) /(n / 3)$. Note that the goal is to partition A into 3-sets that add up to t.
2. Let B be a (large) number to be named later.
3. The squares are of sides $a_{1}+B, \ldots, a_{n}+B$.
4. Let the target rectangle have width $(B+t) \frac{n}{3}$ and height $3 B+t$. We think of rectangle as $\frac{n}{3}$ subrectangles of width $B+t$ and height $3 B+t$.

We show this reduction works.
Assume that $\left(a_{1}, \ldots, a_{n}\right)$ is in 3-Partition. By renumbering, we can assume that the partition is $\left\{a_{1}, a_{2}, a_{3}\right\},\left\{a_{4}, a_{5}, a_{6}\right\}, \ldots,\left\{a_{n-2}, a_{n-1}, a_{n}\right\}$. Note that $a_{1}+a_{2}+a_{3}=t$ so $\left(a_{1}+B\right)+\left(a_{2}+B\right)+\left(a_{3}+B\right)=$ $3 B+t$, the width of each subrectangle. As you can see in Figure 6.6 we can pack the squares of sides $a_{1}+B, a_{2}+B, a_{3}+B$ into the first subrectangle. We do this for all $\frac{n}{3}$ parts to get a packing of the squares into the big rectangle.

Assume that there is a way to pack the squares into the big rectangle. We set B to be much larger than the sum of all a_{i}, which is equal to $t \cdot \frac{n}{3}$. Thus each square is roughly $B \times B$, and the target rectangle is roughly $3 B \times B \cdot \frac{n}{3}$. Because the number of squares is n, the packing must roughly consist of a $3 \times \frac{n}{3}$ grid of $B \times B$ squares. The columns of this grid correspond to the subrectangles. Thus we can assume that each subrectangle contains three full squares, stacked on top of each other.

By renumbering, assume that the first subrectangle contains the $a_{1}+B, a_{2}+B$, and $a_{3}+B$ squares. Because the height of the subrectangle is $3 B+t$, we have that $\left(B+a_{1}\right)+\left(B+a_{2}\right)+\left(B+a_{3}\right) \leq$ $3 B+t$, which is equivalent to $a_{1}+a_{2}+a_{3} \leq t$. Because this reasoning holds for all of the $\frac{n}{3}$ subrectangles, and the sum of a_{i} 's is $t \cdot \frac{n}{3}$, we must in fact have $a_{1}+a_{2}+a_{3}=t$.

Figure 6.7: Reduction of 3-Partition to SQ-SQ Packing.

Warning: Squares may not be cleanly split between subrectangles, and instead span two adjacent subrectangles. For example, the first subrectangle might have part of a fourth rectangle in it, using some of the leftover space on the right of the subrectangle. The space savings here will be minor, though, and it is possible to re-arrange any valid packing to put each square in just one subrectangle. Details are left to the reader.

SQ-SQ Packing

Instance: n squares and a target square S.
Question: Can the squares be packed into S without overlap? No rotations are allowed. The squares do not need to cover the entire area.

Leung et al. $\left[\mathrm{LTW}^{+} 90\right]$ showed the following:
Theorem 6.21. SQ-SQ PACKING is strongly NP-hard.

Proof sketch:

We show 3-Partition is reducible to SQ-SQ Packing, building on the reduction from 3-Partition to SQ-Rect Packing from Theorem 6.20. The main construction, shown in Figure 6.7, is parameterized by a positive integer x :

1. One large square of side $x(x+1)-1$.
2. x squares of side $x+1$.
3. $x+2$ squares of side x.
4. The target square has side $x(x+2)$.

For the purposes of packing remaining squares into the target square, we claim that the best packing of these squares is to leave a $1 \times x(x+1)-1$ empty rectangle, as shown in Figure 6.7. If we scale this construction by $3 B+t$, the empty rectangle has dimensions $(3 B+t) \times(3 B+t)(x(x+1)-1)$. If we set x to roughly $\sqrt{n} / 3$, then we get an empty rectangle of rough dimensions $(3 B+t) \times(B+t) \frac{n}{3}$. Then the construction and proof of Theorem 6.20 applies.

Exercise 6.22. Fill in the details of the proof of Theorem 6.21.
Chou [Cho16] studied the problems of (1) packing triangles into a rectangle (Тri-Rect Рacking) and (2) packing triangles into a triangle (Tri-Tri Packing). The triangles cannot be rotated.

Exercise 6.23.

1. Show that Tri-Rect Packing, restricted to right triangles, is NP-hard.

Hint: Use a reduction from 3-Partition.
2. Show that Tri-Tri Packing, restricted to triangles being right or equilateral, is NP-hard.

Hint: Use a reduction from 3-Partition.

6.7 Disk Packing

Disk Packing
Instance: A set of disks and a square.
Question: Can you place the disks so that they do not overlap and all of their centers are in the square?

This problem is interesting in and of itself; however, it also comes up in determining the complexity of some problems in origami. Note that the following theorem, from Demaine et al. [DFL10], used it for that purpose.

Theorem 6.24. Disk Packing is strongly NP-hard.

Proof sketch:

We show 3-Partition \leq_{p} Disk Packing.
The input to 3-Partition is $a_{1}, \ldots, a_{n}, t \in \mathbb{N}$ such that $\sum_{i=1}^{n} a_{i}=\frac{t n}{3}$ and $\frac{t}{4}<a_{i}<\frac{t}{2}$. We scale the instance to use rational numbers so that $t=1$. We will output an instance of Disk Packing.

Begin by thinking about packing an equilateral triangle rather than a square. We set up a triangular "grid" of large congruent disks (disks with the same diameter), and then build 3-Partition gadgets in the space between them, each of which will represent one of the subsets in our partition.

There are three kinds of disks.

1. Large disks. In the example of Figure 6.8, there are 10 of them, but in general their number is a triangular number of the form $k(k+1) / 2$. These disks are all the same size, chosen so that they are forced to be packed in a triangular grid as in Figure 6.8. We scale the packing so that the large disks have radius 1 . We call the circular-arc triangular regions in the cracks between three large disks pockets.
2. Medium disks. For each pocket, we place a medium disk in the center. These disks are all the same size, almost large enough that they are forced to touch all three large disks of the pocket (and thus be in the center of the pocket). In fact, we reduce the medium-disk radius by $1 / n$ to leave a little bit of wiggle room.
3. Small disks. For each a_{i}, we have a disk designed to go in a space between two large disks and one medium disk (as shown in Figure 6.8. If the medium disk's radius was not reduced, the small disk would have a natural size that forces it to touch all three disks. We increase the radius of the a_{i} small disk by $\frac{a_{i}}{n}-\frac{1}{n^{2}}$. This ends up forcing that the three small disks (say, $\left.a_{i}, a_{j}, a_{k}\right)$ in the same pocket as a medium disk satisfy that $a_{i}+a_{j}+a_{k}=1=t$, essentially because the medium disk is $1 / n$ smaller than natural while the small disks are a_{i} / n larger than natural.

Disk packing is NP-hard:

Figure 6.8: Disk packing in a triangle.

Working this out requires some subtlety because circles aren't straight (they're circles, after all), so sums do not map so clearly to the dimensions of circles. But they're like segments up to first order, so we use Taylor expansions to calculate the proper radii. In particular, we shrink each small circle by an amount $-1 / n^{2}+a_{i} / n$ because the $1 / n^{2}$ term cancels higher-order terms in the expansion.

Finally, we have the issue of packing everything into a square. The general idea is to fill up the grid with lots of circles of decreasing sizes in $O(\log n)$ steps, which constrains the gadgets to sit in the right place. By considering circles in decreasing size, we can be convinced at every stage that infrastructure circles are constrained.

Disk packing in a square:

Figure 6.9: How to adapt disk packing to a square instead of a triangle.

The key to the proof of Theorem 6.24 is that we represent numbers in different ways. This is a common technique in reducing arithmetic problems (like 3-Partition) to geometric ones (like Disk Packing).

6.8 Puzzles

We will show that four puzzle problems are equivalent and are all strongly NP-complete. All the results in this section are by Demaine \& Demaine [DD07].

6.8.1 Edge Matching

In an edge matching puzzle, you need to arrange several given pieces to match up the patterns across edges where pieces meet. The first edge matching puzzle was patented by E. L. Thurston in 1892 for use as advertising [SB86, Ste07].

Eternity II [Wike] was a complicated edge matching puzzle that launched in 2007 with an offer of $£ 2,000,000$ for the first solution before December 31, 2010 (it was made by the same people who made Eternity). We have not been able to find out how much it sold for or how many sold; however (1) it is available on eBay for around $\$ 40.00$, and (2) it seems to have never generated the same buzz as Eternity. Eternity II was never solved (though of course the sellers know how
to solve it), however, Louis Verhaard had a partial solution where he placed 467 of the 480 pieces. For this he received $\$ 10,000$. So a good reason to study these puzzles is that they may be lucrative. On the other hand, we will show that solving them is hard.

Edge Matching
Instance: A multiset of unit squares with the edges colored, and a target rectangle RECT.
Question: Is there a packing of the squares into RECT, which fills the entire space, such that all tiles sharing an edge have matching colors.
Note: The colors are unary numbers, hence the problem will be shown strongly NP-complete. (These tiles are called Wang Tiles and were introduced by Hao Wang to study problems in logic.)

Since all the squares are of unit size (so the same size) we cannot immediately reduce from 3-Partition. Instead, we will first construct gadgets composed of tiles that are forced to be joined together in a particular way.

Theorem 6.25. Edge Matching is strongly $N P$-complete.

Proof:

Clearly Edge Matching \in NP. We show 3-Partition \leq_{p} Edge Matching.
We first use unique, unmatchable colors to force tiles to the outer wall of B, thus creating a frame. With the borders occupied, all remaining edges must be matched with another tile. Thus, we may use uniquely colored pairs of edges to force tiles together, creating any composite shape we like.

Here is the reduction.

1. Input a_{1}, \ldots, a_{n}. Let $t=\left(\sum_{i=1}^{n} a_{i}\right) /(n / 3)$. We can assume that, for all $i, \frac{t}{4}<a_{i}<\frac{t}{2}$.
2. For each i create a set of a_{i} colored tiles that must be joined together as in the right part of Figure 6.10. (If you are reading the black \& white version of the book (1) the squares in the first strip are all colored RED, in the second strip PINK, in the third stripe ORANGE, (2) the triangles at the ends of the strip are all colored dark blue, (3) everything else in the three strips is colored light blue.)
3. Create a set of colored tiles that must go together to form the frame in the left part of Figure 6.10. Color the frame's inner horizontal edges and the pieces' outer horizontal edges a single color, and a use a second color for the vertical edges. This forces all pieces to be horizontally aligned, but does not otherwise restrict the arrangement of gadgets in the frame. The frame will have an empty rectangle of height $\frac{n}{3}$ and width t.
4. The frame gives the dimensions of RECT.

Clearly if $\left(a_{1}, \ldots, a_{n}\right) \in 3$-Partition then the edge puzzle problem has a solution.
We prove the converse. If there is a solution to the edge puzzle problem, all we need to show is that each row has exactly 3 of the a_{i}-shapes. This holds because $\frac{t}{4}<a_{i}<\frac{t}{2}$.

The left part of Figure 6.10 shows the frame. Unique colors $\mathrm{a}-\mathrm{x}$ force the frame tiles to go on the outer edge of B, while the light and dark green edges put them on a particular side. The

Figure 6.10: The frame and the a_{i}-gadgets.
red/pink/orange edges force a single piece gadget together. The dark/light blue edges prevent the piece gadgets from rotating. (Recall: If you are reading the black \& white version of the book (1) the squares in the first strip are all colored RED, in the second strip PINK, in the third stripe ORANGE, (2) the triangles at the ends of the strip are all colored dark blue, (3) everything else in the three strips is colored light blue.)

In the above reduction we create an instance of Edge Matching with $\Theta\left(\sum_{i} a_{i}\right)$ tiles. Thus, for the reduction to remain polynomial we need that each a_{i} is polynomial in the input size n. The strong NP-hardness of 3-Partition guarantees it is still NP-hard under this restriction. If we tried to reduce from Partition it would not work because a_{i} could be exponential.

6.8.2 Signed Edge Matching Puzzle

Signed Edge Matching Puzzle (Signed Edge Matching)
Instance: A set of unit squares with the edges colored, a set of pairs of colors, and a pairing of all the colors (we use a and A as a pair). We will call two colors that are a pair complementary.
Question: Is there a packing of the squares into RECT such that all edges between two squares have complementary colors?
Note: The colors are unary numbers which is why when we show it is NP-complete it will be of interest that it is strongly NP-complete.

In Signed Edge Matching we again must pack unit tiles with colored edges into a rectangle RECT. However, now colors come in pairs: $a \& A, b \& B$, etc. A color may no longer be matched with itself, but instead must be matched with a buddy color.

Theorem 6.26. Signed Edge Matching is strongly NP-complete.

Proof:

Clearly Signed Edge Matching \in NP. We show Edge Matching \leq_{p} Signed Edge MatchING.

Here is the reduction.

1. Input a set of colored unit tiles and a rectangle RECT. We refer to these unit tiles as unsigned tiles.
2. For each unsigned tile, create a 2×2 supertile of signed tiles as shown in Figure 6.11. These will be the tiles for our instance of Signed Edge Matching.
3. The pairs of colors are $\{a, A\},\{b, B\}$, etc.
4. Let RECT' be RECT with each side doubled. RECT' will be the rectangle in our instance of Signed Edge Matching.

It is easy to see that given a solution to the unsigned puzzle, we may give a solution to the signed puzzle by arranging the supertiles in like manner. To show the converse, first observe that because of the unique color-pairs used internally, all tiles must form into their intended supertiles (or partial supertiles, if on the border of B). Furthermore these supertiles must be aligned along a grid with spacing 2 (otherwise unfillable space is created). If the grid matches up with the borders, then all tiles belong to proper supertiles, and by replacing each supertile with the corresponding unsigned tile, we get a valid solution to the unsigned puzzle.

If the grid does not match up with the borders, so that there are partial supertiles on the borders, then we may fix this it to by shifting all tiles up and/or left by 1 tile (Figure 6.12). All tiles now outside of B may be recombined with their proper supertiles (on the bottom and/or right rows) to form a proper grid. The external coloring of the supertiles implies that since the partial supertiles matched on the bottom and/or left, the completed supertiles must also match. Again, this easily translates to an unsigned solution, and the proof is complete.

Figure 6.11: Creating a 'supertile' of signed tiles from an unsigned tile. The internal colors are unique to this supertile.

Figure 6.12: Aligning a mis-aligned solution by shifting left and up by 1. In this case, the supertile fragments directly across from each other line up. In general they may need to be rearranged, but are still guaranteed to fit.

6.8.3 Jigsaw

Consider a classic jigsaw puzzle, except with no guiding picture, and ambiguous mates (i.e. there may be more than one piece that fits any particular tab or pocket). Such a jigsaw puzzle is very similar to a signed color-matching puzzle. In the jigsaw puzzle, instead of pairs of colors, each side of a piece has either a tab or a pocket. A tab only matches a pocket if its shape is the exact inverse of the other. Also, some of the pieces have flat edges on 1 or 2 sides, which must be placed at the border.

Exercise 6.27.

1. Define Jigsaw rigorously.
2. Prove Theorem 6.28.

Theorem 6.28.

1. Signed Edge Matching \leq_{p} figsaw
2. FIGSAW is strongly NP-complete. (This follows from Part I and the obvious fact that figsaw \in $N P$.)

Note: Let Signed Edge Matching' be the problem of Signed Edge Matching on an $a \times b$ board where there are exactly $2(a+b)$ 'unmatchable' edges (i.e. it is obvious which edges must lie on the border). This special case may be seen to be NP-hard by digging into the previous reduction steps 3-Partition to Signed Edge Matching to Signed Edge Matching. See Demaine \& Demaine [DD07] for details.

Figure 6.13: The 5 polyominoes with 4 squares that are used in Tetris.

Figure 6.14: Encoding of jigsaw pieces into polyominoes.

6.8.4 Polyomino

Definition 6.29. A polyomino piece is a set of unit squares glued together on the edges. See Figure 6.13 for the four polyominoes used in Tetris.

Polyomino

Instance: n polyomino pieces and a target rectangle RECT.
Question: Can the polyomino be packed into RECT without overlap and no gaps?
All orthogonal rotations are allowed.
Polyomino is a generalization of Rect-Rect Packing (actually exact Rect-Rect Packing) where each piece is a polyomino. We already know it is NP-hard because it contains Rect-Rect Packing as a special case. However, the following reduction shows the same hardness even when all polyominoes are small.

Demaine \& Demaine [DD07] prove the following.

Theorem 6.30.

1. \mathcal{F} igsaw \leq_{p} Polyomino with pieces of area $O\left(\log ^{2} n\right)$ where n is the number of figsaw pieces.
2. Polyomino with pieces or are $O \log ^{2} n$) is strongly $N P$-complete. (This follows from Part 1 and that Polyomino is clearly in NP.)

Proof:

Here is the reduction.

1. Input a set of Jigsaw pieces and a target rectangle RECT.
2. First map each type of tab/pocket to a unique binary string b of length L (we determine L later). Now create a polyomino for each jigsaw piece as follows (see Figure 6.14 for example). Start with a solid square of size $(4+L) \times(4+L)$. For jigsaw sides with tab type b, append unit squares along the polyomino side corresponding to the position of 1 's in b, going in a clockwise direction. For pockets of type b, make unit square cuts into the polyomino, going in a counter-clockwise direction. Leave each 2×2 square at the corner alone as padding. In this way, two polyomino edges fit together with no blank space if and only if their corresponding jigsaw edges fit together. Since this is exact packing, any blank space left between two polyominoes will be unfillable by our large polyominoes. Flat jigsaw edges map to flat polyomino edges. Scaling the container dimensions up by ($4+L$) completes the reduction. If n is the number of jigsaw pieces, then there are $O(n)$ types of tabs and pockets, so we need L to be $O(\log n)$.

This shows it is NP-hard to decide Polyomino with pieces of dimension $O(\log n) \times O(\log n)$, and thus area $O\left(\log ^{2} n\right)$.

Exercise 6.31. Show that Jigsaw \leq_{p} Polyomino with pieces of area $O(\log n)$.
Hint: See Figures 6.15 and 6.16. (In Figure 6.16 the grey area represents free 'bits' which may be used to encode the tab type. The black areas always remain solid, and guarantee that the polyominoes are contiguous. (Likewise the white areas determine the shape of the 'key' and also are shaped to remain contiguous.) In the scheme depicted, a square with side length $8 r+5$ has $8 r^{2}$ grey bits available for each edge.)

Figure 6.15: A polyomino gadget.

6.8.5 Closing the Loop

The following is a slight modification of the reduction from 3-Partition to Signed Edge MatchING

Theorem 6.32.

1. Polyomino \leq_{p} Edge Matching.

Figure 6.16: Deeper 'keys' allows for more possible combinations than bumps and grooves on the edges.
2. 3 -Partition \leq_{p} Edge Matching \leq_{p} Signed Edge Matching \leq_{p} figsaw \leq_{p} Polyomino \leq_{p} Edge Matching where all the reductions have blowup in size at most logarithmic. (This follows from the earlier theorems in this section. We note that the reduction from figsaw to Polyomino has \log-blowup.)

Proof:

As in Theorem 6.25 we create an outer frame gadget and a gadget for each polyomino piece. Previously, the piece gadgets were $1 \times x$ rectangles. Now, we will create arbitrary polyominoes by fusing many tiles together in the same shape as the polyomino. To make sure the shape is preserved, use a unique color pair for each internal edge of the gadget. (This is the same method we used to force supertiles to stick together - see Figure 6.11.) Lastly, in the gadgets in Figure 6.10, we used dark and light blue for both the internal edges of the frame, and the external edges of each piece, in order to keep the pieces from rotating. (Recall: If you are reading the black \& white version of the book (1) the squares in the first strip are all colored RED, in the second strip PINK, in the third stripe ORANGE, (2) the triangles at the ends of the strip are all colored dark blue, (3) everything else in the three strips is colored light blue.) In polyominoes, we want the pieces to be freely rotatable, so just use one color instead of 2 for these edges.
-
Thus, all four puzzle types are essentially reducible to one another and strongly NP-complete, as shown in Figure 6.17.

6.9 Computer Games

6.9.1 CLICKOMANIA

Clickomania [Wikh] is a computer game. We describe it informally. The goal is to clear blocks by clicking contiguous groups of n blocks $(n>1)$ of the same color, which is thereby destroyed. Blocks fall column by column to fill up empty space, and empty columns disappear from the board. We denote the problem of, given a board, can the player win, by Clicкомania.

Figure 6.17: Each arrow represents a reduction from one problem to another.

Solving Clickomania with only one column is in P , by reduction to a context-free grammar. However, Biedl et al. [$\left.\mathrm{BDD}^{+} 01\right]$ showed the following.

Theorem 6.33.

1. 3 -Partition \leq_{p} Clickomania, even when Clickomania is restricted to (1) 2 columns and 5 colors, or (2) 5 columns and 3 colors.
2. Clickomaniarestricted as in Part 1 is strongly NP-complete. (This follows from Part 1 and that Clickomania is clearly in NP.)

Proof sketch:

In the 2 column $/ 5$ color case, we set it up so that the right column encodes the a_{i}, and the left column encodes the desired sum t of each partition.

The left column is mostly a symmetric checkerboard pattern interspersed with red squares; the only way to clear the entire column is to clear all the red squares (and thereby solve 3-Partition). Clicking on blocks in the right column corresponds to choosing elements for one subset A_{i}; when that subset reaches the desired sum, two red blocks in the left and right columns line up exactly and we can clear both. There are a lot of small numerical details to check, but otherwise the construction is straightforward.

6.9.2 TETRIS

Tetris is a computer game played on a rectangular board with falling tetrominoes which are the polyomino in Figure 6.13 that we saw in the section on Polyominoes. Each block can be rotated as it falls from the sky, and filled rows disappear. You lose if your pile of blocks ever reaches the top edge of the board (the "sky").

Tetris

Instance: An initial board and the sequence of future pieces.
Question: Is there a sequence of moves that result in a win?
Note that this is a problem with perfect information: we know everything about the current and future states of game. The actual game is an online problem where you must make decisions with incomplete information. Hence it would seem that Tetris is easier than the real game. Even so, Breukelaar et al. $\left[\mathrm{BDH}^{+} 04\right]$ showed the following.

Notation 6.34. We will let T be an instance of Tetris and $n(T)$ be the number of pieces in T.
Theorem 6.35. Let $0<\varepsilon<1$.

1. 3-Partition \leq_{p} Tetris, so Tetris is strongly NP-complete.
2. Let f be the function that, given an instance of Tetris, outputs the maximum number of lines of blocks until death. It is NP-hard to output a number that is $\geq n(T)^{1-\varepsilon} f(T)$.
3. Let g be the function that, given an instance of TeTRIS, outputs the maximum number of blocks that can be placed until death. It is NP-hard to output a number that is $\geq n(T)^{1-\varepsilon} g(T)$.

Proof sketch:

We have to reduce from a strongly NP-complete problem because the proof will require encoding the a_{i} in unary. We will use 3-Partition for our strongly NP-complete problem.

The starting board configuration contains gadgets called "buckets", each $\Theta(t)$ call. Filling these buckets corresponds to choosing a_{i} to fill your subsets. Once these buckets are filled, a single T-block can unlock an empty column to the right of the playing field, which can be filled by straight pieces. Without unlocking this column, it's impossible to survive.

The a_{i} 's correspond to a sequence of tetrominoes which fit perfectly in buckets. A key problem for the proof is the idea of splitting: since each element a_{i} is a series of pieces, there's the danger that the player will split the a_{i} 's into two or more buckets, which ruins the correspondence between Tetris and 3-Partition. The solution to this problem is to introduce a priming piece between each a_{i}. The priming piece "unlocks" a bucket, and trying to split an a_{i} won't properly prime the bucket, and won't lead to a solution.

By building this "lock" structure atop a large, empty space, we can ensure that opening the lock will increase the number of lines before dying by an exponential factor. This means that even approximating the number of lines a player can survive to within $n^{1-\varepsilon}$ is NP-hard.

More recently Asif et al. [$\left.\mathrm{ACD}^{+} 20\right]$ adapted this proof to show that Tetris is NP-complete even when restricted to $O(1)$ rows or $O(1)$ columns.

Open Problem 6.36. For each of the following situations, determine the complexity of Tetris.

1. Tetris with an initially empty board.
2. Tetris with restricted piece sets. (For instance, Tetris with only straight pieces is trivially easy. What subset of pieces is required to make Tetris hard?)
3. Tetris without last-minute slides (where every piece needs to be dropped from the sky).
4. Online Tetris where you do not know the future sequence of pieces. We discuss online algorithms more generally in Chapter 20.
5. 2-Player Tetris (which might be PSPACE-complete).

6.10 Three Dimensional Geometry

6.10.1 Edge Folding Polyhedron

Edge Folding Polyhedron (EFP)
Instance: A polyhedron.
Question: Can the polyhedron be cut along its edges to unfold it into a connected flat piece with no overlapping sections?
One might think that every polyhedron can be cut as such; however, Biedl et al. [$\mathrm{BDD}^{+} 98$], and Abel \& Demaine [AD11], have examples of polyhedron that cannot be so cut. Hence the problem is non-trivial. See Figure 6.18 for an example of a YES instance and a discussion of what could cause a NO instance.

Figure 6.18: Unfolding a cube.
Figure 6.18 gives an example of unfolding a cube. We can always cut along a minimum spanning tree of the edges of a polyhedron; the difficulty lies in cutting so that the result lies flat.

Notice that there do not seem to be any numbers here in the EFP problem. So in what sense is this problem strongly NP-complete? There are numbers encoded in the coordinates and sizes of the faces, and in this construction they are all polynomially large.

Abel \& Demaine [AD11] showed the following.
Theorem 6.37. EFP is strongly NP-complete.

Proof sketch:

We show SQ-SQ Packing \leq_{p} EFP.
The intuition is as follows: the infrastructure of the polyhedron will contain a large square hole, with a lot of smaller square faces. Unfolding the polyhedron without overlap will require to fitting those square faces into the large square hole, which is exactly the reduction we seek.

However, in a standard square packing problem we're allowed to move the square s around more or less freely within the larger square. Squares on the faces of a polyhedron are obviously quite constrained in their movements, so how do we construct squares that can move freely?

The most important "glue" in the construction is the idea of an atom, a gadget that sits on the face of a polyhedron and allows pieces of the unfolding to mover arbitrarily. Atoms are "bumpy squares" that can go left/right on the surface of the polyhedron and move a different direction when they're unfolded. Connecting the squares with atoms solves the problem of moving each of the squares without constraint-see the paper by Abel \& Demaine for details.

6.10.2 Ivan's Hinge

Ivan's Hinges are hinged loops of colored triangles which can be folded into colored shapes in the plane (we will not define this formally). Abel et al. [ADD $\left.{ }^{+} 14\right]$ showed that deciding whether a puzzle can be folded into a certain shape is NP-complete, by another reduction from 3-Partition

This problem also involves finding universal shapes that can form any other shape (in this case, called the GeoLoop), and the a_{i} are represented as colored blocks in the final construction. Choosing subsets corresponds to filling up contiguous regions of colored blocks, with the rest of the loop dedicated to allowing the a_{i} to move around freely.

6.10.3 CARPENTER's RULE

An "annoying" Carpenter's Rule is a foldable ruler of unit width, where each straight section can double back on the next (we will not define this formally). The goal is to fit the ruler into a long straight box of a specified size (we will not define this formally). Hopcroft et al. [HJW85], showed this problem is weakly NP-hard, and, like Partition, admits a pseudopolynomial algorithm.

The reduction is from Partition. Choosing which of the two subsets a_{i} should fall into corresponds to choosing whether a segment of length a_{i} goes left or right. If the two subsets are of equal size, then our ruler will start and end at exactly the same point.

Adding two long segments and two slightly shorter segments at each end, we can reduce from the problem of finding two equal subsets to the problem of fitting the ruler exactly into the box.

6.11 Further Results

We list problems that were proven strongly NP-complete by a reduction from 3-Partition. You can either consider these as exercises (so to not look up the references) or recommended reading (so do look up the references). We state them as function problems; however, the reader can translate them to set problems for the reductions.

1. (Mauro Dell'Amico \& Silvano Martello [DM99]) BP (Natural Number Version). Given $a_{1}, \ldots, a_{n} \in$ \mathbb{N} and bin capacity $C \in \mathbb{N}$, find the least number of bins B so that a_{1}, \ldots, a_{n} can be packed into B bins of capacity C.
2. (Bernstein et al. [BRG89]) Scheduling Problems for Parallel/Pipelined Machines. Imagine that there are two processors P_{1}, P_{2} and two types of jobs, so that P_{j} can process jobs of type j. The problem: Given n jobs $J=\left\{J_{1}, J_{2}, \ldots, J_{n}\right\}$ where each job is represented by $J_{i}=\left(K_{i}, T_{i}, D_{i}, R_{i}\right)$ where K_{i} is the job type, T_{i} is the execution time in unary, D_{i} is the time a job needs before it begins processing (called the Delay Time), and R_{i} resource requirement (this is either 0 or 1 and you cannot have two jobs with resource requirement 1 being processed at the same time). We are also given $G=(J, E)$ be the precedence graph which specifies which job should be executed before the other one. Find a way to schedule the jobs so as to minimize the the total completion time of all jobs.
3. (Cieliebak \& Eidenbenz [CE04]) Measurement-errors. Given $m \in \mathbb{N}$ and $\delta \in \mathbb{Q}, \delta>0$, and a multiset D of $\binom{m}{2}$ natural numbers, does there exist m points in the plane, on a line, such that the multiset of pairwise difference can be mapped to D such that if $|p-q|$ maps
to d then $d-\delta \leq|p-q| \leq d+\delta$. The above problem is additive error. They also showed that the problem for multiplicative error is reducible from 3-Partition.
4. (Formann \& Wagner [FW90]) The VLSI layout problem. Given a graph G of degree 4, and $A \in \mathbb{N}$, can G be embedded in a grid with area $\leq A$? (There are variants of this problem that are also strongly NP-complete.)

Chapter 7

The Exponential Time Hypothesis

7.1 Introduction

If Alice proved that $P \neq N$ P by showing that 3 SAT required at least $n^{\Omega(\log \log \log (n))}$ (where n is the number of variables) then she would still win the Millennium prize; however, the result would not really tell us what we want to know. All NP-complete problems would be proven to take at least $n^{\Omega(\log \log \log (n))}$ which is a much weaker lower bound than what we believe to be true. In this chapter we will look at conjectures that more precisely tell us how hard we think 3SAT and kSAT are.

Chapter Summary

1. We will look at the best known algorithms for $k S A T$ and use them to guide us to a conjectures about how fast kSAT can be solved. The conjectures are called the Expoential Time Conjecture (ETH) and the Strong Exponential Time Conjecture. We will only use SETH in the Further Results section.
2. We will show that, assuming ETH, many problems have run time $2^{\Omega(L)}$, where L is the length of the input. (We do not use n since n is usually the number of variables for a boolean formula.)
3. We will show that, assuming ETH, some problems have run time $2^{\Omega(\sqrt{L})}$, where L is the length of the input.

7.2 Conjectures on the Runtime for $k S A T$

What is a good conjecture for the runtime of 3SAT? Of k SAT? Let's turn this around: what are the best known algorithm for 3SAT? For $k S A T$?

1. Makino et at. [MTY13] have obtained a deterministic $O\left(1.3303^{n}\right)$ algorithm for 3SAT.
2. Hertli [Her14] has obtained a randomized $O\left(1.308^{n}\right)$ algorithm for 3SAT.
3. Dantsin et al. [$\left.\mathrm{DGH}^{+} 02\right]$ have obtained a deterministic $O\left(\left(2-\frac{1}{k+1}\right)^{n}\right)$ algorithm for k SAT.
4. Paturi et al. [PPZ99] have obtained a randomized $O\left(2^{n-(n / k)}\right)$ algorithm for $k S A T$.
(See the book by Schoning and Toran [ST13] for an overview of SAT algorithms.)
It is plausible that the bounds for 3SAT will be improved to $O\left(\alpha^{n}\right)$ for some $1<\alpha<1.3$. However, it seems likely that the bounds will always be of the form $O\left(\alpha^{n}\right)$. An algorithm running in time $O\left(n^{O(\log n)}\right)$ seems unlikely. It is plausible that the bounds for k SAT will be improved to $O\left(2^{n-(\alpha n / k)}\right)$ for some $\alpha>1$. However, it seems likely that as k goes to infinity, the exponent of 2 will have limit n.

We are going to hypothesize that the best algorithm for k SAT has time complexity $2^{s_{k} n}$ for some s_{k}. But this is not quite right. It is possible (though, we think, very unlikely) that, for example,

- For all i there is an algorithm for 3SAT that runs in time $O\left(2^{\left(0.1+\left(1 / 10^{i}\right) n\right)}\right)$.
- There is no algorithm for 3SAT that runs in time $O\left(2^{0.1 n}\right)$.

This (remote) possibility leads to the following notation, which we will need to state the hypothesis.

Notation 7.1. For $k \geq 1$,

$$
s_{k}=\inf \left\{s: \text { there is an } O\left(2^{s n}\right) \text { algorithm for } k S A T\right\} .
$$

Looking at the algorithms for k SAT mentioned above note that (1) they all have time of the form $2^{c n}$, and (2) as k goes to infinity, the exponent goes to n. Based on these intuitions Impagliazzo and Paturi [IP01] formulated the following hypotheses:

Hypothesis 7.2.

1. The Exponential Time Hypothesis (ETH): For all $k \geq 3, s_{k}>0$. Since $s_{3} \leq s_{4} \leq \cdots$ this is equivalent to $s_{3}>0$. It is also equivalent to 3 SAT requiring time $2^{\Omega(n)}$.
2. The Strong Exponential Time Hypothesis (SETH): The sequence s_{3}, s_{4}, \ldots converges to 1 .

Note that ETH in the form above uses the number of variables as the size of a formula. It turns out that it is better to use the actual length of the formula. Happily, these two different hypotheses are equivalent. We discuss this issue in In Section 7.3 and henceforth will us the length of formula formulation.

Based on their names, one would think that SETH $\Rightarrow \mathrm{ETH}$. While this is true, it is not obvious. The interested reader should see the paper by Impagliazzo et al. [IPZ01].

Open Problem 7.3. Prove or disprove that $E T H \Rightarrow S E T H$.

7.3 Number of Variables vs Actual Length

In the ETH (SETH) we are using n, the number of variables, as the length of the input. What if we took the real length of the input? Impagliazzo et al. [IPZ01] showed that such a hypothesis would be equivalent to ETH (SETH). We state the key lemma and then use it to prove the equivalence.

Lemma 7.4. (The Sparsification Lemma) Let $k \in \mathbb{N}$ and $\varepsilon>0$. There is a constants c (that depends on k, ε) and an algorithm such that the following hold when the input is a $k \mathrm{CNF}$ formula φ on n variables:

1. The output is $t k \mathrm{CNF}$ formulas $\varphi_{1}, \ldots, \varphi_{t}$ where $t \leq 2^{\varepsilon n}$.
2. $\varphi \in$ SAT if and only if there is an i such that $\varphi_{i} \in$ SAT.
3. The actual length of φ_{i} is $\leq c n$.
4. The algorithm runs in time $2^{\varepsilon n} n^{O(1)}$.

Theorem 7.5. Let ETH' (SETH') be ETH (SETH) only instead of n use the actual length of the input.

1. ETH' is equivalent to ETH.
2. SETH' is equivalent to SETH.

Proof: Clearly ETH' implies ETH and SETH' implies SETH. We show ETH implies ETH'. The proof that SETH implies SETH' is similar and left for the reader.

We show that ETH implies ETH' by showing its contrapositive. Assume ETH' is false. Let $\varepsilon>0$. We give an algorithm for 3SAT that runs in time $2^{\varepsilon n}$ where n is the number of variables. We have parameters ε^{\prime} and $\varepsilon^{\prime \prime}$ which we will pick later.

1. Input φ, a 3CNF formula with n variables.
2. Apply the algorithm from Lemma 7.4 to obtain $t 3 \mathrm{CNF}$ formulas $\varphi_{1}, \ldots, \varphi_{t}$ where $t \leq 2^{\varepsilon^{\prime} n}$ such that (1) $\varphi \in$ 3SAT if and only if there is an i such that $\varphi_{i} \in$ 3SAT, (2) each φ_{i} is of length $\leq c n$. The algorithm runs in time $2^{\varepsilon n} n^{O(1)}$.
3. Since ETH' is false there is an algorithm for 3SAT that takes time $2^{\varepsilon^{\prime \prime} L}$ where L is the actual length of the formula. Apply this algorithm to each φ_{i}. This take time $2^{\varepsilon^{\prime \prime} n} \times 2^{\varepsilon^{\prime \prime} c n}$.
4. If there is some i such that the in the last step the algorithm returned YES, then output YES. Otherwise output NO.

This algorithm takes time

$$
2^{\varepsilon^{\prime} n} n^{O(1)}+2^{\left(\varepsilon^{\prime}+\varepsilon^{\prime \prime} c\right) n} .
$$

We take $\varepsilon^{\prime}=\varepsilon / 3$ and $\varepsilon^{\prime \prime}=\varepsilon / 3 c$ to get running time

$$
2^{(\varepsilon n / 3)} n^{O(1)}+2^{(\varepsilon / 3+\varepsilon / 3) n} \leq 2^{\varepsilon n} .
$$

We now state ETH and SETH in an equivalent but more useful form.
Notation 7.6. Let L be the actual length of a formula. For $k \geq 1$,

$$
t_{k}=\inf \left\{t: \text { there is an } O\left(2^{t L}\right) \text { algorithm for } k \mathrm{SAT}\right\} .
$$

Hypothesis 7.7.

1. The Exponential Time Hypothesis (ETH): For all $k \geq 3$, $t_{k}>0$. Since $t_{3} \leq t_{4} \leq \cdots$ this is equivalent to $t_{3}>0$. It is also equivalent to 3 SAT requiring time $2^{\Omega(L)}$.
2. The Strong Exponential Time Hypothesis (SETH): The sequence t_{3}, t_{4}, \ldots converges to 1 .

From now on when we refer to ETH and SETH this is the version we mean.

7.4 Linear Blowup and Quadratic Blow up Reductions

ETH is stronger than $P \neq N P$; hence we do not think it will be proven anytime soon. However, we believe that it is true. Assuming ETH we can prove strong lower bounds on many problems. We need some more refined notions of reductions.

Definition 7.8. Let $A \leq_{p} B$ via f.

1. f is a linear blowup reduction if $|f(x)| \leq O(|x|)$.
2. f is a quadratic blowup reduction if $|f(x)| \leq O\left(|x|^{2}\right)$.

Note that for both linear and quadratic blowup the reduction can take non-linear (but polynomial) time. It is the length of the output that is constrained.

Theorem 7.9. In this theorem L is the length of the length of the input.

1. If $A \leq_{p} B$ with a linear blowup reduction, and $B \leq_{p} C$ with a linear blowup reduction, then $A \leq C$ with a linear blowup reduction.
2. Assume ETH. Assume that $3 S A T \leq_{p} B$ by a linear blowup reduction. Then B requires time $2^{\Omega(L)}$.
3. Assume ETH. Assume that $3 S A T \leq_{p} B$ by a quadratic reduction. Then B requires time $2^{\Omega(\sqrt{L})}$. (This we leave to the reader.)
4. Assume ETH. Assume that $3 S A T \leq_{p} B_{1} \leq_{p} \cdots \leq_{p} B_{m}$ and that all but one the reductions have linear blowup and the one that does not has quadratic blowup. Then B_{m} requires time $2^{\Omega(\sqrt{L})}$. (This follows from Part 1 and 2.)

Proof:

1) Assume $A \leq_{p} B$ via linear blowup reduction f and $B \leq_{p} C$ via linear blowup reduction g. Note that both f and g are in time $n^{O(1)}$.
1. Input x.
2. Run $f(x)$ to get y. Note that this takes time $|x|^{O(1)}$ and that $|y|=O(L)$.
3. Run $g(y)$ to get z. Note that this takes time $|y|^{O(1)}=|x|^{O(1)}$ and that $|z|=O(|y|)=O(|x|)$.

Clearly $x \in A$ iff $z \in C$. Note that the reduction takes time $|x|^{O(1)}$ and $|z|=O(|x|)$. Hence this is a linear reduction.
2) Assume 3 SAT $\leq_{p} B$ with a linear blowup reduction f. The reduction takes time $L^{O(1)}$ but outputs a string y of length $O(L)$.

Assume that B does not have a $2^{\Omega L}$ lower bound on time. Then, for all ε^{\prime}, there exists a $2^{\varepsilon^{\prime} L}$ algorithm for B (we use ε^{\prime} since we will soon use ε for something else). We show that, for all ε, there is a $2^{\varepsilon L}$ algorithm for 3SAT, which contradicts ETH.

The algorithm has parameter ε^{\prime} which we choose later.

1. Input φ, a formula of length L.
2. Compute $f(\varphi)=y$. This takes time $L^{O(1)} \cdot y$ is of length $a L$ for a constant a (which will be important).
3. Use the algorithm for B to determine if $y \in B$. This takes time $2^{\varepsilon^{\prime} L}$. Output the answer.

This algorithm takes time

$$
L^{O(1)}+2^{\varepsilon^{\prime} a L} .
$$

Pick $\varepsilon^{\prime}=\varepsilon / 2 a$ so that the above algorithm is

$$
L^{O(1)}+2^{(\varepsilon L) / 2} \leq 2^{\varepsilon L} \text {. }
$$

Exercise 7.10. Prove Part 3 and 4 of Theorem 7.9.
There is a difference between how we can use linear blowup reduction and quadratic blowup reductions.

1. By Theorem 7.9.1 we can string together a series of linear blowup reductions to get a linear blowup reduction. Hence we can use these strings of reductions to, assuming ETH, obtain a $2^{\Omega(L)}$ lower bound on a problem A that required many reductions to get from 3SAT to that A.
2. Quadratic blowup reductions are not transitive. Hence to get a lower bound of $2^{\Omega(\sqrt{L})}$ on a problem A you cannot string together a series of quadratic blowup reductions. You can string together reductions such that one has quadratic blowup and the rest have linear blowup.

Note the following parallel:

1. By assuming $P \neq N P$ and using polynomial time reductions, we can show many problems are not in P.
2. By assuming ETH and using linear blowup reductions we can show many problems require $2^{\Omega(L)}$ time.

7.5 ETH Yields $2^{\Omega(L)}$ Lower Bounds

By Theorem 7.9, if 3SAT $\leq_{p} A$ by a linear blowup reduction, and we assume ETH, then we get a $2^{\Omega(L)}$ lower bound on A. Many of the reductions we have already done have linear blowup. Hence we have, assuming ETH, many $2^{\Omega(L)}$ lower bounds.

We will need the following in both this section and the next.

1. The length of a formula in 3 CNF form is $O(m)$ where m is the number of clauses.
2. There are many ways to represent a graph and they may affect the length of the representation. We will represent graphs by a list of vertices and a list of edges. Hence $G=(V, E)$ has length $O(|V|+|E|)$
3. By Theorem 7.9.1. the composition of two linear blowup reductions in a linear blowup reduction. We will use this implicitly.
4. The composition of a several linear blowup reductions and one quadratic blowup reduction is a quadratic blowup reduction. They can be composed in any order. The proof of this is left to the reader.

Theorem 7.11. Assume ETH. Then the following problems require $2^{\Omega(L)}$ time to solve.

1. Clique.
2. Ind. SET.
3. Vertex Cover.
4. 3 COL .
5. Dom. Set.
6. Directed Ham Cycle.
7. Directed Ham Path, Нam Cycle, Нam Path. We leave this to the reader.

Proof:

1) Theorem 1.24 .1 gives a reduction from 3SAT to Cligue which takes a 3CNF formula on n variables and m clauses and produces a graph G on $O(m)$ clauses. This is clearly a linear blowup reduction.
2) Theorem 1.24 .2 gives a linear blowup reduction from Clique to Ind. Set.
3) Theorem 1.24 .3 gives a linear blowup reduction from Ind. Set to Vertex Cover.
4) Theorem 2.2.1 gives a reduction from 3SAT to 3COL that maps a 3CNF formula on n variables an m clauses to a graph with $O(m)$ vertices and $O(m)$ edges. This is clearly a linear blowup reduction.
5) Theorem 2.16 gives a linear blowup reduction from Vertex Cover to Dom. Set.
6) Theorem 2.17 gives a reduction from 3SAT to Directed Ham Cycle. The reduction takes a 3CNF formula φ with m clauses and constructs a graph G^{\prime} that does the following: (a) for every variable there is a gadget on $O\left(a_{v}\right)$ edges and $O\left(a_{v}\right)$ vertices where a_{v} is the number of times v
appears in the formula, (b) for every clause there is an vertex and $O(1)$ edges. G^{\prime} has $\sum_{v \in V} a_{v}=3 m$ vertices and edges from the variable-clauses, and $O(m)$ vertices and edges from the clause gadget. Hence G^{\prime} has $O(m)$ vertices and edges, so the reduction is linear.

Exercise 7.12. Assume ETH. Prove that the following problems, restricted to planar graphs, require $2^{\Omega(L)}$ time: Directed Hamiltonian Path, Hamiltonian Cycle, and Hamiltonian Path.

7.6 ETH Yields $2^{\Omega(\sqrt{L})}$ Lower Bounds

By Theorem 7.9, if 3SAT $\leq_{p} A$ by a quadratic blowup reduction, and we assume ETH, then we get a $2^{\Omega(\sqrt{L})}$ lower bound on A. Some of the reductions we have already done have quadratic blowup. Hence we have, assuming ETH, some $2^{\Omega(L)}$ lower bounds.

By Theorem 7.9, if a reduction has quadratic blowup, and we assume ETH, we get a $2^{\Omega(\sqrt{L})}$ lower bound. Some of the reductions in this book have quadratic blowup. Hence, assuming ETH, we have some $2^{\Omega(\sqrt{L})}$ lower bounds.

We first look at planar three-colorability and variants.
Theorem 7.13. Assume ETH. Then the following problems require $2^{\Omega(\sqrt{L})}$ time to solve.

1. Planar 3COL.
2. Degree-4 3COL

3. Planar Degree-4 3COL.

Proof: We assume ETH.
By Theorem 7.11.2 3COL requires $2^{\Omega(L)}$ time. Let A be a problem. If there is a quadratic blowup reduction from 3COL to A then A requires $2^{\Omega(\sqrt{L}}$ time. We will use this.

1) The proof of Theorem 2.2 .2 gives a reduction from 3COL to Planar 3COL. The reduction takes a graph $G=(V, E)$ and produces a graph $G^{\prime} . G^{\prime}$ is formed by replacing every crossing in G with a constant-sized gadget. There are at most $|E|^{2}$ crossings, so G^{\prime} has at most $|V|+|E|^{2}$ vertices and $|E|+|E|^{2}$ edges. Hence the length of G^{\prime} is $O\left(|V|+|E|^{2}\right) \leq O\left((|V|+|E|)^{2}\right)$. Hence the reduction from 3COL to Planar 3COL has quadratic blowup. By Theorem 7.11 Hence the reduction from 3COL to Planar 3COL has quadratic blowup.
2) The proof of Theorem 2.2 .2 gives a reduction from 3COL to Degree-4 3COL. The reduction takes a graph $G=(V, E)$ and replaces very vertex of degree $d \geq 5$ with a gadget. The gadget has $O(d)$ vertices and $O(d)$ edges. This replacement is how G^{\prime} is formed. Note that the max degree of any element of V is $|V|$. Hence G^{\prime} has at most $O\left(|V|^{2}\right)$ vertices and $O(|E|+|E||V|)$ edges. The length of G^{\prime} is

$$
O\left(|V|^{2}+|E|+|E||V|\right) \leq O\left((|E|+|V|)^{2}\right) .
$$

Hence the reduction of 3COL to Degree-4 3COL has quadratic blowup.

Recall that in Chapter 2 we proved 3 SAT \leq_{p} Planar 3SAT and then used Planar 3SAT to show many planar problems are NP-complete. We now analyze those reductions more carefully and get, assuming ETH, $2^{\Omega(\sqrt{L})}$ lower bounds.

Theorem 7.14. Assume ETH. Then the following problems require $2^{\Omega(\sqrt{L})}$ time to solve.

1. Planar 3SAT.
2. Planar Vertex Cover.
3. Planar Dom. Set.
4. Planar Directed Ham Cycle.

Proof:

1) Theorem 2.10 gives a quadratic blowup reduction from 3SAT to Planar 3SAT.
2) Theorem 2.15 .2 gives a linear blowup reduction from 3SAT to Planar Vertex Cover.
3) Theorem 2.16.2 gives a linear blowup reduction from Planar Dom. Set to Planar Vertex Cover.
4) Theorem 2.17.2 gives a linear blowup reduction from Planar 3SAT to Planar Ham Cycle.

Exercise 7.15. Assume ETH for this exercise.

1. Investigate the complexity of Clique restricted to planar graphs.
2. Investigate the complexity of variants of Directed Ham Cycle restricted to planar graphs.

Can we improve the lower bounds in Theorem 7.13 or 7.14 from $2^{\Omega(\sqrt{L})}$ to $2^{\Omega(L)}$? This is one of the rare times in this book we can give an answer without a hypothesis:

All of the problems in Theorem 7.13 and 7.14 can be solved in time $2^{O(\sqrt{n})}$.
These algorithms come from the theory of bidimensionality. See either the papers of Demaine et al. [DHT04, DFHT05], the references in those papers, or the slides of Marx [Mar13].

7.7 Further Results

7.7.1 Some Consequences of SETH

Orthogonal Vectors

Orthogonal Vectors (OrVecs)
Instance: $A, B \subseteq\{0,1\}^{d},|A|=|B|=n$.
Question: Does there exist $\vec{a} \in A, \vec{b} \in B$ with $\vec{a} \cdot \vec{b} \equiv 0(\bmod 2)$?
Note: It is easy to see that Orthogonal Vectors can be solved in $O\left(n^{2} d\right)$ time. Hence this seems unrelated to ETH or SETH. But things are not always how they seem.
Conjecture 7.16. The orthogonal Vectors Conjecture (OVC) is that, for all $\varepsilon>0$, there is no O($\left.n^{2-\varepsilon}\right)$ algorithm for Orthogonal Vectors.
R. Williams [Wil05] showed the following:

Theorem 7.17. SETH implies OVC.
We discuss consequences of OVC in Chapter 18.

Closest Vector Problem

Definition 7.18. A lattice \mathcal{L} in \mathbb{R}^{n} is a discrete subgroup of \mathbb{R}^{n}.
Closest Vector Problem (CVP)
Instance: A lattice \mathcal{L} (specified through a basis) together with a target vector $\vec{v} \in$ \mathbb{R}^{n}.
Output: A vector $\vec{u} \in \mathcal{L}$ that is closest to \vec{v}.
Note: What do we mean by closest? Let $1 \leq p \leq \infty$. Then the \boldsymbol{p}-norm of a vector $\left(x_{1}, \ldots, x_{n}\right)$ is

- $\left(\left|x_{1}\right|^{p}+\cdots+\left|x_{n}\right|^{p}\right)^{1 / p}$ if $p \neq \infty$.
- $\max _{1 \leq i \leq n}\left|x_{i}\right|$ if $p=\infty$.

Note: A norm p will be specified as well. We will discuss a variety of values for p.
The common case is $p=2$ which is the standard Euclidean distance. To indicate that the p-norm is being used, the notation CVP_{p} is the convention. Aggarwal et al. [ABGS21] showed the following:
Theorem 7.19. Assume SETH. For all $\varepsilon>0$, for all $p \notin 2 \mathbb{Z}$, there is no $2^{(1-\varepsilon) n}$ algorithm for $C V P_{p}$.
It is unfortunate that they do not have the result for $p=2$ which is the case of most interest. They comment that the gadgets they use do not exist for $p \in 2 \mathbb{Z}$.
H. Bennett et al. [BGS20] have a survey of open problems on the complexity of lattice problems. We state one about CVP.

Open Problem 7.20. Assume SETH. Show there is no $O\left(2^{0.99 n}\right)$ time algorithm for $C V P_{2}$.

Shortest Vector Problem

Shortest Vector Problem (SVP)
Instance: A lattice \mathcal{L} (specified through a basis).
Output: A vector $\vec{u} \in \mathcal{L}$ that is of minimal norm.
Note: A norm p will be specified as well. We will discuss a variety of values for p.
Note: Shortest Vector Problem is NP-complete.
Note: For lower bounds on Shortest Vector Problem that do not use SETH or other assumptions from this chapter, see Theorem 10.38. For upper and lower bounds on approximating Shortest Vector Problem, see Section 10.8.2.

The common case is $p=2$ which is the standard Euclidean distance. To indicate that the p-norm is being used, the notation SVP_{p} is the convention. Aggarwal et al. [ABGS21, Theorem A.1], building on the work of Bennett et al. [BGS17] and Aggarwal \& Stephens-Davidowitz. [AS18], showed the following:

Theorem 7.21. Assume a randomized version of SETH. There exists $p_{0} \sim 2.1357$ and, for every $p \geq p_{0}, p \notin 2 \mathbb{Z}$, there is a real C_{p}, such that the following hold.

1. Forn large, there is no $2^{n / C_{p}}$ algorithm for $S V P_{p}$.
2. $\lim _{p \rightarrow \infty} C_{p}=1$

It is unfortunate that they do not have the result for $p=2$ which is the case of most interest.
H. Bennett et al. [BGS20] have a survey of open problems on the fine grained complexity (e.g., uses assumptions like ETH) of lattice problems. In addition, H. Bennett [Ben23] has a survey of open problems about Shortest Vector Problem that covers both fine-grained complexity (e.g., uses assumptions like ETH) and computational complexity (e.g., uses assumptions like $P \neq N P$). We state one of those

Open Problem 7.22. Assume SETH. Show that there is no $O\left(2^{n / 10}\right)$ time algorithm for $S V P_{2}$.

7.7.2 Some More Consequences of ETH

Graph Номомorphism

Instance: Graphs G, H.
Question: Is there a homomorphism from G to H ? (A homomorphism from $G=$ (V, E) to $H=\left(V^{\prime}, H^{\prime}\right)$ is a function $f: V \rightarrow V^{\prime}$ such that if $(u, v) \in E$ then $(f(u), f(v)) \in E^{\prime}$.
Note: If H is K_{c} then this question is asking whether G is c-colorable. Hence Graph Номомоrphism is NP-complete.

```
SUbGRAPH IsOMORPHISM
Instance: Graphs G, H.
Question: Is \(H\) isomorphic to some subgraph of \(G\) ?
Note: If \(H=K_{c}\) then this question is asking whether \(G\) has a clique of size \(k\). Hence Subgraph Isomorphism is NP-complete.
```

Cygan et al. [CFG $\left.{ }^{+} 17\right]$ showed that, assuming ETH, the following hold:

1. Graph Номомоrphism can't be done in $|V(H)|^{O(|V(G)|)}$ time.
2. Subgraph Isomorphism can't be done in $|V(H)|^{O(|V(G)|)}$ time.

We will now look at a graph coloring problem.
Definition 7.23. An $(a: b)$ coloring of a graph is a coloring where you assign b colors to each vertex out of a total a colors, so that adjacent vertices have disjoint sets of colors. One may also say informally that G is $\frac{a}{b}$-colorable. This number is called the Fractional Chromatic Number.

Fractional Chrom $\operatorname{Numb}(a, b)$
Instance: A graph G and a, b.
Question: Is $G(a: b)$-colorable?
Note: If $b=1$ this is asking whether G is a-colorable. Hence this problem is NPcomplete.
The study of fractional chromatic number was motivated as follows.

- Appel et. al [AH77a, AHK77] showed that every planar graph is 4-colorable. Their proof made extensive use of a computer program to check a massive amount of cases. Robertson et al. [RSST97] had a simpler proof, though it still needed a computer program. In short, the proof is not human readable.
- By contrast, the proof that every planar graph is 5-colorable is easy to follow and is clearly human-readable.
- Fractional chromatic number was defined with the goal of finding human-readable proofs that every planar graph is c-colorable for some values of $c<5$. Cranston \& Rabern [CR18] showed that every planar graph is 4.5 -colorable. It is open to lower that.
- For more on fractional concepts in graph theory see the book by Scheinerman \& D. Ullman [SU96].

The following lower bounds are known.

Theorem 7.24.

1. (Grötschel et al. [GLS81]) For all $c>2, c \in \mathbb{Q}$, determining whether G is c-colorable is $N P$ complete.
2. (Bonamy et al. $\left[B K P^{+}\right.$19]) Assume ETH. Fix $a, b \in \mathbb{N}$ such that $b \leq a$. For any computable function f, Fractional Chrom $\operatorname{Numb}(a, b)$ cannot be solved in time $O\left(f(b) 2^{o(\log b) n}\right)$.

7.8 We Will Return to ETH and SETH Later

The assumptions ETH and SETH are used to show several results in this book:

1. Lower bounds in Parameterized Complexity: Sections 8.1 and 8.14.
2. Lower bounds on the approximate nearest neighbor problem: Section 10.8.3.
3. Lower bounds for d SUM: Theorem 18.33.
4. Quadratic lower bounds on problems in computational Geometry: Section 19.9.
5. Lower bounds on the approximate Nash Equilibrium problem: Theorem 23.40.

Chapter 8

Parameterized Complexity

8.1 Introduction

In this chapter we will present several results about fixed-parameter tractability and parameterized complexity. For more on these fields there are several good books. We mention four: Cygan et al. [CFK ${ }^{+}$15], Downey \& Fellows [DF99], Flum \& Grohe [FG06], and Niedermeier [Nie06].

Recall that the following two problems are NP-complete
Vertex Cover $=\{(G, k): G$ has a Vertex Cover of size $k\}$

Let $k \in \mathbb{N}$. Let

$$
\text { Clique }=\{(G, k): G \text { has a Clique of size } k\} .
$$

$$
\text { Vertex } \operatorname{Cov}_{k}=\{G: G \text { has a Vertex Cover of size } k\}
$$

$$
\mathrm{Clique}_{k}=\{G: G \text { has a Clique of size } k\} .
$$

Both of these problems are in time $O\left(k^{2} n^{k}\right)$ by a brute force algorithm $\binom{n}{k} \sim n^{k} k$-sets of vertices to check, and each one takes k^{2} to check). Hence they are both in P. Note that the degree of the polynomial depends on k. Is there a polynomial time algorithm for either Vertex Cov_{k} or CLIQUe_{k} such that the degree of the polynomial does not depend on k ?

1. For Vertex Cov_{k} the answer is yes. We give such an algorithm in Theorem 8.1 and an even better algorithm in Theorem 8.2.
2. For Clique k we show that, under reasonable assumptions, there is no such algorithm.

The field of Fixed Parameter Tractability is the study of what happens to a (usually) NPcomplete problem that has a natural parameter k if that parameter is fixed.

Chapter Summary

1. We give two algorithms for Vertex Cover. One has complexity $O\left(2^{k} n\right)$ and the other has complexity $O\left(k n+k^{2} 2^{k}\right)$. These algorithms motivate the definitions of Fixed Parameter Tractable.
2. We define Fixed Paramter Tractable (FPT) to capture problems like Vertex Cover that have drastically short running times if a natural parameter k is fixed.
3. We define an appropriate notion of reduction so that if we have a problem that is unlikely to be FPT, we can use these reductions to prove other problems are unlikely to be FPT.
4. We present a problem that we will assume is not FPT. We use this one problem, and the notion of reduction in the last item, to define a complexity class W[1]. We also define W[2] though that is used much less.
5. We show that a large set or problems are W[1]-hard and hence unlikely to be FPT.

8.2 A Good Algorithm for Vertex Cover

Mehlhorn [Meh84] showed the following.
Theorem 8.1. Vertex Cover can be solved in time $O\left(2^{k} n\right)$.

Proof:

Algorithm for Vertex Cover:

1. Input $G=(V, E)$ and $k \in \mathbb{N}$.
2. Form a tree as follows. The root has $\left(G, e_{1}, \emptyset\right)$ where $e_{1}=(u, v)$ is an edge (chosen arbitrarily) and the set $X=\emptyset$ which we will add to. Note that either u or v is in the Vertex Cover. We will branch two ways depending on if we choose u or v. The two children of the root are as follows:
(a) The right child is $\left(G-\{u\}, e_{2},\{u\}\right)$ where e_{2} is some edge of $G-\{u\}$, together with $X \cup\{u\}$.
(b) The left child is $\left(G-\{v\}, e_{3},\{v\}\right)$ where e_{3} is some edge of $G-\{v\}$, together with $X \cup\{v\}$.
3. Keep doing this until you have a tree of height k or every leave has the empty graph associated to it so that no edge can be chosen. One of he following happens.
(a) There is some leaf that is associated to the empty graph. Then there is a vertex cover of size k.
(b) Every leaf is associated to a non-empty graph. Theren there is no vertex cover of size k.

There are $O\left(2^{k}\right)$ nodes on the tree. Forming each node takes $O(n)$ time. Hence the algorithm runs in $O\left(2^{k} n\right)$ time.

Are better results known or likely? The following two theorems give a yes or a no depending on your definitions of "better" and "likely".

1. Chen et al. [CKX10] showed Vertex Cover is in time $O\left(k n+1.2738^{k}\right)$.
2. Cai \& Juedes [CJ03] showed that if Vertex Cover is in time $2^{o(k)} n^{L}$ for some L, then 3SAT is in time $2^{o(n)}$, which violates the ETH. So, for example, it is unlikely that there is an algorithm for Vertex Cover that runs in time $O\left(2^{k / \log k} n^{100}\right)$. We will prove this in Theorem 8.52.

What if we restrict to planar graphs?

1. Demaine et al. [DFHT05] showed that Planar Vertex Cover can be solved in $2^{O(\sqrt{k})} n^{O(1)}$ time.
2. Cai \& Juedes [CJ03] showed that if Planar Vertex Cover is in time $2^{o(\sqrt{k})} n^{L}$ for some L, then 3SAT is in time $2^{o(n)}$, which violates the ETH. We will prove this in Theorem 8.52.

We will later see that there are reasons to think any polynomial time algorithm for Clique will have degree that depends on k.

8.3 A Better Algorithm for Vertex Cover

By Theorem 8.1 Vertex Cover is in time $O\left(2^{k} n\right)$. We will show a better algorithm. The key to the algorithm is that if there is a vertex of degree $k+1$ then it must be in the vertex cover, else all $k+1$ of its neighbors has to be in the vertex cover.

The following theorem is (correctly) attributed to S. Buss, though it is not published.
Theorem 8.2. Vertex Cover can be solved in time $O\left(k n+k^{2} 2^{k}\right)$.

Proof:

1. Input $G=(V, E)$ and k.
2. Let $U=\emptyset$. We will be adding vertices of the vertex cover to U. Let $L=k$. We are currently looking for a vertex cover of size $L=k$. At each step we will be looking for a vertex cover of size L. We will always have $|U|+L=k$.
3. If there is a vertex v of degree $\geq L+1$ then (1) $U \leftarrow U \cup\{v\}$, (2) $L \leftarrow L-1$, (3) $G \leftarrow G-\{v\}$. Repeat until the answer is NO. There will be at most k iterations, each taking at most $O(n)$ steps, so $O(k n)$ steps.
4. (This is a comment, not part of the algorithm.) Every vertex of G has degree $\leq L$. Hence if there is a vertex cover of size L, with each vertex covering $\leq L$ edges, there has to be at most L^{2} edges. Therefore there are at most $2 L^{2}$ nonisloated vertices (we can ignore the isolates vertices). We will assume the worse case which is that initially every vertex is of degree $\leq k$.
5. If G has more than k^{2} edges then output NO and stop.
6. (If you got here then G has $\leq k^{2}$ edges and hence $\leq 2 k^{2}$ non-isolated vertices.) Do the algorithm from Theorem 8.1 to determine if there is a vertex cover of size k on a graph with $\leq 2 k^{2}$ vertices. This step takes time $O\left(k^{2} 2^{k}\right)$.

From the comments in the algorithm it works and it takes time $O\left(k n+k^{2} 2^{k}\right)$.

The algorithm in Theorem 8.2 took a Vertex Cover problem of size n vertices with parameter k and reduced it to a Vertex Cover problem of size $2 k^{2}$ vertices and parameter k. We will return to this point in Section 8.5.

8.4 Fixed-Parameter Tractable

For Vertex Cover there is a polynomial-time algorithm where the degree of the polynomial does not depend on k. We will define this notion formally. We will look at (usually) NP-complete problems that have a parameter (like k for Vertex Cover) and ask what happens if k is fixed.

Definition 8.3. A parameterized problem is a subset of $\Sigma^{*} \times \mathbb{N}$. An instance of a parameterized problem will be (x, k). We will almost always use k.

Definition 8.4. Let A be a parameterized problem. A is Fixed-Parameter Tractable (FPT) if there is an algorithm for A and a computable function f such that the algorithm, on input (x, k) runs in time $f(k)|x|^{O(1)}$

Note that (1) $f(k)$ might be quite large, and (2) the degree of the polynomial $f(k) n^{O(1)}$ does not depend on k.

8.5 Kernelization

Definition 8.5. Let A be a parameterized problem. A has a kernelization if there exists a polynomial time function $g: \Sigma^{*} \times \mathbb{N} \rightarrow \Sigma^{*} \times \mathbb{N}$ and a computable function $h: \mathbb{N} \rightarrow \mathbb{N}$ such that the following holds: Let $g(x, k)=\left(x^{\prime}, k^{\prime}\right)$.

1. $(x, k) \in A$ iff $\left(x^{\prime}, k^{\prime}\right) \in A$.
2. $k^{\prime} \leq k$ and $|x| \leq h(k)$.
(Formally we will need to specify the notion of size that we use. Assume it is the length of the input unless otherwise specified. For graphs we will use $|V|$ and $|E|$ for size and will specify which one when the issue arises.)

Definition 8.6. Let A be a parameterized problem. Assume it has a kernelization via (g, h).

1. Let $g(x, k)=\left(x^{\prime}, k^{\prime}\right) .\left(x^{\prime}, k^{\prime}\right)$ is called the kernel of (x, \boldsymbol{k}) or just the kernel if (x, k) is understood.
2. $h(k)$ is called the size of the kernel.

In general $h(k)$ can be exponential but a good kernel should be polynomial or even linear in k.

By the proof of Theorem 8.2 Vertex Cover has a kernel of size $2 k^{2}=O\left(k^{2}\right)$ vertices. Soleimanfallah \& Yeo [SY11] showed that, for all $c \in \mathbb{N}$, there is a kernel of size $2 k-c$ vertices. Lampis [Lam11] showed that, for all $c \in \mathbb{N}$, there is a kernel of $\operatorname{size} 2 k-c \log k$ vertices. This is the smallest kernel currently known. How much smaller can the kernel be? We state two theorems about this. The first is an easy exercise for the reader. The second is a difficult result of Dell \& van Melkebeek [DvM14].

Theorem 8.7.

1. If there is a kernelization of Vertex Cover with kernel of size $O(\log k)$ vertices then $P=N P$.
2. If there exists ε and a kernelization of Vertex Cover with kernel of size $O\left(k^{2-\varepsilon}\right)$ edges then $\operatorname{coNP} \subseteq N P /$ poly (which is thought to be unlikely and implies that $\Sigma_{2}=\Pi_{2}$).

Niedermeier [Nie02] (see also Flum \& Grohe [FG06]) showed the following connection between FPT and kernelization. We omit the proof.

Theorem 8.8. Let A be a parameterized problem. The following are equivalent.

1. $A \in F P T$.
2. A is decidable and has a kernelization.

8.6 Parameterized Reductions

As usual, we'll show problems are hard via reductions. In general, we have a parameterized problem A, a parameterized problem B, and a map from (x, k) to $\left(x^{\prime}, k^{\prime}\right)$. This is going to look similar to Karp-style reductions, but with a few tweaks.

Definition 8.9. Let A and B be parameterized problems. Recall that they are both subsets of $\Sigma^{*} \times \mathbb{N}$. A is parameterized reductible to B if there exists computable functions f and g and a map from A to Σ^{*} such that the following hold. Assume that (x, k) maps to x^{\prime} and $g(k)=k^{\prime}$.

1. $(x, k) \in A$ iff $\left(x^{\prime}, k^{\prime}\right) \in B$.
2. The map can be computed in time $f(k)|x|^{O(1)}$.

Theorem 8.10.

1. If A is parameterized-reducible to B and $B \in F P T$ then $A \in F P T$.
2. If $A \notin F P T$ and A is parameterized-reducible to B then $B \notin F P T$. (This is just the contrapositive of Part 1. However, we will use this to show, under assumptions, that some problems are not FPT.)

Proof:

Assume A is parameterized-reducible to B with computable functions f_{1} and g, and polynomial p. Assume that $g(k)$ can be computed in time $h(k)$. Assume that $B \in$ FPT with computable function f_{2}.

We show $A \in$ FPT.

1. Input (x, k), and instance of A.
2. Compute the mapping on (x, k) to get x^{\prime}. This take time $f_{1}(k)|x|^{O(1)}$. Note that $\left|x^{\prime}\right| \leq$ $f_{1}(k)|x|^{O(1)}$.
3. Compute the function $g(k)$ to get k^{\prime}. This takes time $h(k)$. Note that $k^{\prime} \leq h(k)$.
4. Use the FPT algorithm for B on $\left(x^{\prime}, k^{\prime}\right)$. This takes time

$$
f_{2}\left(k^{\prime}\right)\left|x^{\prime}\right|^{O(1)} \leq f_{2}(h(k))\left(f_{1}(k)|x|^{O(1)}\right)^{O(1)}=f_{2}(h(k)) f_{1}(k)^{O(1)}|x|^{O(1)} .
$$

The algorithm has total run time

$$
f_{1}(k)|x|^{O(1)}+h(k)+f_{2}(h(k)) f_{1}(k)^{O(1)}|x|^{O(1)} \leq h(k)+f_{2}(h(k)) f_{1}(k)^{O(1)}|x|^{O(1)} .
$$

Many reductions that we have seen before are not parameterized reductions. We give an example of a reduction that is not a parameterized reduction and then an example of one that is.

Example 8.11. We give an example of a reduction that is not a parameterized reduction. The standard reduction of Ind. Set to Vertex Cover is to map (G, k) to ($G, n-k$). For this to be a parameterized reduction we would need the map from k to $n-k$ be of the form $g(k)$. But it is not since it uses n. Hence this is not a parameterized reduction.

Is there a parameterized reduction from Ind. Set to Vertex Cover? Unlikely since (1) Vertex Cover \in FPT and (2) Chen et al. [CHKX06] showed that if Clique is FPT then ETH is false.

Example 8.12. The standard reduction of Ind. Set to Clique is to map (G, k) to (\bar{G}, k) Here $k^{\prime}=k$, so k^{\prime} depends on k and is easily bounded by a function of k. Hence this is a parameterized reduction. Note that the reduction from Ind. Set to Clique is very similar and is also a parameterized reduction.

Notation 8.13. Henceforth, in this chapter, "reduction" means "parameterized reduction".

8.7 The Complexity Class W[1]

In order to use reductions to show problems are not FPT we need to have some problems that we already think are not FPT. That is, we need an analog of SAT for showing problems not in P. Recall that we think SAT is not in P because (1) by the Cook-Levin theorem, if SAT $\in P$ then $P=N P$, (2) people have been trying to get SAT (and many other problems in NP) into P without
any success (some of the effort was before P was defined), and (3) gee, it just seems to require brute force.

Is there some problem that we are confident is not in FPT? There is, though frankly, the evidence is nowhere near as strong as for SAT not being in P. The evidence is similar to points (2) and (3) about SAT. Once we have the problem defined we will define a complexity class based on it.

The problem we discuss involves nondeterministic Turing machines. The reader may take on faith what we say about these devices or look up the concept.

Definition 8.14. Let N be a nondeterministic Turing machine over alphabet Σ and state set Q. Let x be an input to it and let $k \in \mathbb{N}$. Run $N(x)$ for k steps. A configuration is an element of $\Sigma^{*}(Q \times \Sigma) \Sigma^{*}$ that represents the content of the tape, the position of the head (on the $Q \times \Sigma$ spot), and the state of the machine. Note that since the machine has run for $\leq k$ steps we can assume that all configurations are of length $O(k)$.

Nondeterministic Turing Machine Acceptance (Nondet TM Acceptance)
Instance: A Nondeterministic Turing machine M and a number k. We will assume that there are $O(n)$ states, $O(n)$ alphabet size, and $O(n)$ choices at each step. Question: If M is run on 0^{n} is there an accepting path of length k ?

Nondet TM Acceptance can be solved in $O\left(n^{k}\right)$ steps. Fix k. There does not seem to be any way to do this problem in $f(k) n^{O(1)}$ for some (even quite large) f. In short, it looks like this problem is not in FPT. Indeed, we will assume that it is not.

We now define a complexity class based on Nondet TM Acceptance. It is called W[1] for reasons we will get into in Section 8.11.

Definition 8.15. Let A be a parameterized problem.

1. $A \in \mathrm{~W}[1]$ if there is a parameter reduction from A to Nondet TM Acceptance. (This will usually be easy to show.)
2. A is $\mathrm{W}[1]$-hard if there is a parameter reduction from Nondet TM Acceptance to A.
3. A is $\mathrm{W}[1]$-complete if it is in $\mathrm{W}[1]$ and is $\mathrm{W}[1]$-hard.

Some sources, including Niedermeier's book [Nie06], use a different problem, Weighted 2SAT, to define W[1]-complete. We will re-examine Weighted 2SAT problems in Section 8.10 as a prelude to defining the W -hierarchy.

Weighted 2SAT

Instance: A 2CNF φ and $k \in \mathbb{N}$. (k is the parameter.)
Question: Is there a satisfying assignment of φ with exactly k variables set to true? This is called an assignment of weight \boldsymbol{k}.
Note: This is a terrible name for this problem since weighted SAT usually means that the clauses have weights and you want to maximize the sum of the weights of the satisfied clauses.
It turns out that Nondet TM Acceptance and Weighted 2SAT are reducible to each other by parameterized reductions the definition of W[1] using Nondet TM Acceptance and the one
using Weighted 2SAT are equivalent. We will use the definition based on Nondet TM AccepTANCE.

According to D. Marx [Mar14] there are hundreds of W[1]-complete problems. This seems like an exaggeration; however, there are many W[1]-complete problems. If any of them are FPT they are all FPT. Many are problems that have been worked on a lot. This is good evidence that (1) none of them are FPT, and (2) hence Nondet TM Acceptance is not FPT.

8.8 Ind. Set and Clique are W[1]-Complete

8.8.1 Ind. Set and Clique

The reader is advised to read about nondeterministic Turing machines in Section 0.3.

Theorem 8.16.

1. Ind. SET is W[1]-complete.
2. CLIQUE is W[1]-complete. (This is an easy reduction from Ind. SET hence we omit it.)

Proof:

We show Ind. Set is reducible to Nondet TM Acceptance which proves Ind. Set \in W[1]. We then show Ind. Set is reducible to Nondet TM Acceptance which proves Ind. Set is W[1]hard.

Ind. Set reducible to Nondet TM Acceptance: Given (G, k) set up a nondeterministic Turing machine that has G built into it and guesses k vertices (that's k moves) and then checks that each pair is not an edge (that's k^{2} moves). The length of the path in the NTM is $O\left(k^{2}\right)$. Thus Ind. Set $\in \mathrm{W}[1]$.

Nondet TM Acceptance reducible to Ind. Set:

1. Input nondeterministic Turing machine N and $k \in \mathbb{N}$. Note that N has $O(n)$ states, $O(n)$ alphabet size, $O(n)$ nondeterministic branching. N has alphabet Σ and state set Q. The alphabet is Σ and the state set is Q.
2. k^{\prime} will be k^{2}.
3. Imagine the possible sequence of k configurations of the nondeterministic Turing machine M going for k steps. This sequence will have k^{2} cells which are labeled (i, j) for i th row, j th column.
4. For each cell we create a clique (which we describe soon). So far there are k^{2} cliques.
5. Each clique is the same: the vertices are $\Sigma \cup \Sigma \times Q$ which are all possible entries in a cell. So there are $O\left(n^{2}\right)$ nodes in the clique.
6. The idea is to put in edges between nodes that cannot both be in the sequence of configurations.
(a) Put an edge between two vertices in the same row that both think the head is there. Formally let $i \in \mathbb{N}$ and $j_{1} \neq j_{2}$. Any vertex of the (i, j_{1}) clique labeled with an element of $\Sigma \times Q$ (so the head is at j_{1}) will have an edge to any element of the $\left(i, j_{2}\right)$-clique labeled with an element of $\Sigma \times Q$ (so the head is at j_{2}).
(b) Put an edge between two vertices from different rows that clearly cannot occur. Formally let $i, j \in \mathbb{N}$ and look at a vertex of the (i, j)-clique that is labeled with an element of $\Sigma \times Q$, say (a, p). If the Turing machine was in state p and was looking at an a then the transition function constrains what happens next. Put an edge between that vertex and the vertices in the $(i+1, j-1)$-clique, $(i+1, j)$-clique, and $(i+1, j+1)$-clique that are incompatible with the (i, j) cell having (p, a).
7. Call this graph G. We show that G has an Ind. Set of size k^{2} if and only if there is an accepting path in N of length k.

If G has a Ind. Set of size k^{2} then it has to take one node from each of the (i, j)-cliques. These nodes code an accepting path of length k.

If there is an accepting path of length k then that tells you how to fill out all the cells, and hence gives an Ind. Set of size k^{2}.

Mathieson \& Szeider [MS08] showed that Clique is still W[1]-complete when restricted to regular graphs. We leave this as an exercise.

Exercise 8.17. Prove the following.

1. Clique restricted to regular graphs is $\mathrm{W}[1]$-complete.
2. Ind. Set restricted to regular graphs is W[1]-complete. (This is a reduction from Clique restricted, so we omit the proof.)

8.8.2 Using Ind. Set and Clique to Prove Problems W[1]-Complete

> Partial Vertex Cover
> Instance: A graph G and two numbers $k, l \in \mathbb{N}$. We will regard this as a parameterized problem with parameter k.
> Question: Is there a set of vertices of size k that covers l edges?

We will show Partial Vertex Cover is W[1]-hard. Had we made l the parameter then this problem would be FPT. Note that if there is more than one choice for a parameter, which one is chosen matters!

Theorem 8.18. Partial Vertex Cover is W[1]-hard.

Proof:

By Exercise 8.17, Ind. Set on regular graphs is W[1]-complete. We show that Ind. Set for regular graphs is reducible to Partial Vertex Cover.

1. Input $(G, k) . G$ is regular with degree Δ.
2. We will just use G, k, and $l=\Delta k$.

If G has an Ind. Set of size k then those k vertices cover Δk edges since no two of the vertices are adjacent to the same edge.

If G has a set of k vertices that cover Δk edges then they must be independent since otherwise they would cover $<\Delta k$ edges.

Open Problem 8.19. Is Partial Vertex Cover in W[1]?

```
Multi Colored Clique (MClique) and Multicolored Ind. Set (MIS)
```

Instance: A graph $G=(V, E)$ and a partition $V=V_{1} \cup \cdots \cup V_{k}$. k will be the parameter.
Question: Is there a clique (independent set) with one vertex from each V_{i} ? (It is called "multicolored" since we think of each V_{i} as a color.)

Pietrzak [Pie03] and independently Fellows et al. [FHRV09] showed the following.

Theorem 8.20.

1. Multi Colored CliQue is W[1]-complete.
2. Multicolored Ind. Set is W[1]-complete (this is an easy reduction from Part 1, or a proof similar to Part 1, so we omit the proof).

Proof:

Multi Colored Clique is reducible to Clique (exercise) which is in W[1], hence Multi Colored CliQue is in W[1].

We show that Clique is reducible to Multi Colored Clique.

1. Input $G=(V, E)$ and k.
2. Create a graph G^{\prime} and a partition of the vertices as follows.
(a) For every $x \in V$ there are k vertices x_{1}, \ldots, x_{k}.
(b) V_{i} is the set of all vertices with subscript i.
(c) $\left(x_{i}, y_{j}\right)$ is an edge if $i \neq j$ and $(x, y) \in E$. Note that within V_{i} there are no edges.
3. If G^{\prime} has a clique with a vertex in each V_{i}, then G has a clique of size k. We leave the easy proof to the reader.

Exercise 8.21.

1. Show that Multi Colored Clique is reducible to Clique.
2. Show that the construction in the proof of Theorem 8.20 works.

Set Cover
Instance: n and Sets $S_{1}, \ldots, S_{m} \subseteq\{1, \ldots, n\}$.
Question: What is the smallest size of a subset of S_{i} 's that covers all of the elements in $\{1, \ldots, n\}$?

Exercise 8.22. Prove there is a parameterized reduction from Dom. Set to Set Cover.
For the next exercise we will consider the following variant of the Node-Weighted Steiner Tree.

Strongly Connected Steiner Subgraph Problem (SCSS)
Instance: A directed graph $G=(V, E)$, a set $U \subseteq V$, and $k \in \mathbb{N}$.
Question: Is there a strongly connected subgraph of G with $\leq k$ vertices that contains every vertex of U ? (A directed graph is strongly connected if there is a directed path between every pair of vertices.)

Exercise 8.23. Show that there is a parameterized reduction from Multi Colored Clique to SCSS. Note that this shows SCSS is W[1]-hard.

8.9 Dom. Set

The reader should go to Section 2.7 for a definition of Dom. Set.
It is not obvious (and it is likely false) that Dom. SEt is in W[1]. After guessing the k vertices for the dominating set D one then has to check whether every vertex is in D or adjacent to D. This takes $O(k n)$ steps. Why is Dom. Set (apparently) not in W[1] whereas Cligue is? Because Clique is local: once you guess a set C for the clique you need only check whether every pair in C has an edge. We will later define W[2] and note (but not prove) that Dom. Set is W[2]-complete. For now we show the following:

Theorem 8.24. Dом. SET is W[1]-hard.

Proof:

We reduce Multicolored Ind. Set to Dom. Set.

1. Input $G=(V, E)$ with V partitioned as $V_{1} \cup \cdots \cup V_{k}$
2. Create a graph G^{\prime} which will be formed by adding vertices and edges to G as follows
(a) For each i (1) put an edge between every pair of vertices in V_{i}, (2) create two new vertices x_{i}, y_{i}, (3) for all $v \in V_{i}$ put in an edge from v to x_{i} and from v to y_{i}. Note that there is no edge between x_{i} and y_{i} (Figure 8.1 makes it look like there is an edge between x_{i} and y_{i}; however, there is not.)
(b) For every edge $e=(u, v)$ where $u \in V_{i}, v \in V_{j}, i \neq j$, create a new node w_{e}. Put an edge between w_{e} and (1) every vertex of $V_{i}-\{u\}$ and (2) every vertex in $V_{j}-\{v\}$. (See Figure 8.1 for a picture of G^{\prime})

Multicolored Independent Set \rightarrow Dominating Set

Figure 8.1: Reduction of Multicolored Ind. Set to Dom. Set.

We will show that G has an independent set with one vertex from each V_{i} if and only if G^{\prime} has a dominating set of size k.

Assume G has an independent set I with one vertex from each V_{i}. We show that I is a dominating set for G^{\prime}. Since there is one vertex in each $V_{i},|I|=k$ and every vertex in $V_{i} \cup\left\{x_{i}, y_{i}\right\}$ is covered. Let $e=(u, v)$ and w_{e} be as in the construction. Since I is an independent set in $G I$ cannot have both u and v. Assume $u \in V_{i} \cap \bar{I}$. The element $u_{i} \in V_{i} \cap I$ is not u and hence it is adjacent to w_{e}, so w_{e} is covered.

Assume that G^{\prime} has a dominating set D of size k.

1. We first show that it has exactly one vertex in each $V_{i} . x_{i} \in V_{i}$ and all of its neighbors are in V_{i}, hence some element of $V_{i} \cup\left\{x_{i}\right\}$ is in D. Similarly, some element of $V_{i} \cup\left\{y_{i}\right\}$ is in D. If $x_{i} \in D$ then we need $y_{i} \in D$ to cover y_{i}. then there would be 2 elements in $D \cap V_{i}$. Since $|D|=k$ there would be some j with $D \cap V_{j}=\emptyset$. The neither x_{j} nor y_{j} would be covered.
2. We have that D has one vertex in each V_{i}. We now prove that D is an independent set in G. Assume, by way of contradiction, that there exists $v_{i} \in V_{i} \cap D, v_{j} \in V_{j} \cap D$, such that $\left(v_{i}, v_{j}\right) \in E$. Denote this edge e. Then the node w_{e} in G^{\prime} is not covered, which contradicts D being a dominating set.

Exercise 8.25. Show that Clique reduces to the following problems.

1. Sparsest cut.
2. Connected Dom. Set (the dominating set has to be connected).
3. Independent Dom. Set (the dominating set has to be independent).

What happens if we restrict G to be planar? The problem is known to be in FPT. See Alber et al. [$\left.\mathrm{ABF}^{+} 02\right]$ for the most recent results and the history of prior results. In a nutshell: Planar Dom. Set was in $O\left(c^{k} n\right)$ for some c, and Alber et al. [$\left.\mathrm{ABF}^{+} 02\right]$ got it down to $O\left(c^{\sqrt{k}} n\right)$ for some c.

8.10 Circuit SAT and Weighted Circuit SAT

Definition 8.26.

1. A boolean circuit is a circuit consisting of input gates, negation (\sim), AND (\wedge), OR (\vee) and output gates.
2. An assignment of variables has weight k if k of the input are true.

Circuit SAT and Weighted Circuit SAT
Instance: A boolean circuit C and (for Weighted Circuit SAT) $k \in \mathbb{N}$.
Question: Is there an assignment on the inputs of C (for Weighted Circuit SAT the assignment has weight k) such that the output is T ?
Note: This is a terrible name for the problem since the term "weighted" usually means that weights are given.

Theorem 8.27.

1. Ind. Set is reducible to Weighted Circuit Sat. Hence Weighted Circuit SAT is W[1]-hard.
2. Dom. Set is reducible to Weighted Circuit SAT. We will later see that this means it is unlikely that Weighted Circuit SAT is in W[1].

Proof:

1) We reduce Ind. Set to Weighted Circuit SAT. See the circuit labeled Independent Set in Figure 8.2 for an example of the reduction.
1. Input $G=(V, E)$ and $k \in \mathbb{N}$.
2. We create a circuit C as follows.
(a) For each $v \in V$ we have an input.
(b) On the second level of the circuit we have the negation of all of the inputs.
(c) On the third level, for all $(u, v) \in E$, there is a gate that computes $\neg u \vee \neg v$.
(d) The fourth level is the AND of all of the gates on the third level.
3. It is easy to see that G has an Ind. Set of size k if and only if there is an input of weight k that satisfies C.
2) We reduce Dom. Set to Weighted Circuit SAT. See the circuit labeled Dominating Set in Figure 8.2 for an example of the reduction.

W[1] vs. W[2]

Figure 8.2: Circuits for Ind. Set and for Dom. Set.

1. Input $G=(V, E)$ and $k \in \mathbb{N}$.
2. We create a circuit C as follows.
(a) For each $v \in V$ we have an input.
(b) For every $v \in V$ we have a gate at the second level that computes the OR of (from the input level) v and all of the neighbors of v.
(c) The third level is the AND of all of the gates on the second level.
3. It is easy to see that G has a Dom. Set of size k if and only if there is an input of weight k that satisfies C.

I

8.11 W-Hierarchy

Let us recap what we have.

1. The following problems are W[1]-complete and hence equivalent to each other: Nondet TM Acceptance, Ind. Set, Clique, Ind. Set restricted to regular graphs, Clique restricted to regular graphs, partial vertex cover, Multi Colored Clique, Multicolored Ind. Set, SCS, RSCS, and Flood-it on Trees.
2. The following problems are W[1]-hard but do not seem to be in W[1]: Dom. Set, Weighted Circuit SAT.

Why is (say) Clique in W[1] but Dom. Set does not appear to be? As noted earlier Clique is local: once you have a potential clique of k vertices, to check they are a clique you need only look at those k vertices. Dom. Set is global: once you have a potential dominating set of k vertices, to check that they are a dominating set you need to look at all vertices.

With an eye towards formalizing the difference, we state the difference in terms of circuits. The different circuits we used for Ind. Set and Dom. Set (see Figure 8.2) are instructive. Both circuits take a set of vertices (as a bit vector) and determine whether it satisfies the condition (Ind. Set or Dom. Set). But note the following:

1. In the Ind. Set-circuit, all paths from an input to the output pass through only one gate that has a large number of inputs (in Figure 8.2 the gate has 7 inputs but more generally the number of edges between the k vertices, so at most $O\left(k^{2}\right)$).
2. In the Dom. Set-circuit, all paths from an input to the output pass through two gates that have a large number of inputs (1) on the second level gate x has $\operatorname{deg}(x)+1$ inputs, (2) the output node will have n (the number of vertices) inputs.

We will measure the complexity of a problem by the maximum number of big gates it has on a path from the input to the output.

Definition 8.28.

1. A large gate is a gate that has more than two inputs. We may make it more than some constant number of inputs if we are discussing a family of circuits.
2. The depth of a circuit is the maximum length of a path from an input to the output.
3. The weft of a circuit is the maximum number of large gates on a path from an input to the output.

$C[t, d]$

Instance: A circuit with weft at most t and depth at most d, and a parameter k.
Question: Is there a satisfying input of weight k ?
We define the W-hierarchy. Downey \& Fellows [DF99] first defined the W-hierarchy; however, J. Buss \& Islam [BI06] is an excellent modern reference with simplified proofs.

Definition 8.29. Let A be a parameterized problem. Let $t \in \mathbb{N}$.

1. $A \in \boldsymbol{W}[\boldsymbol{t}]$ if there is a constant d (which may be a function of k) and a reduction from A to $C[t, d]$. (This will usually be easy to show.)
2. A is $\boldsymbol{W}[t]$-hard if, for all $d, C[t, d]$ reduces to A.
3. A is $\boldsymbol{W}[t]$-complete if it is in $\mathrm{W}[t]$ and is $\mathrm{W}[t]$-hard.
4. $A \in \boldsymbol{W}[\boldsymbol{S A T}]$ if A is reducible to SAT. Hard and complete are defined in the usual way.
5. $A \in \boldsymbol{W}[\mathbf{P}]$ if A is reducible to Circuit SAT. Hard and complete are defined in the usual way.
6. $A \in \boldsymbol{X P}$ if there exists functions f, g such that A can be solved in time $f(k) n^{g(k)}$. Hard and complete are defined in the usual way.

The following are known.

1. FPT problems are reducible to $C[0, O(f(k))]$ and thus in $\mathrm{W}[0]$.
2. We have defined W [1] in two ways, one using Nondet TM Acceptance and one using $C[1, d]$. These are equivalent.
3. One can also define $\mathrm{W}[i]$ just like the Nondet TM Acceptance definition of $\mathrm{W}[1]$ except we allow the Turing machine to have i tapes.
4. If $i \leq j$ then $\mathrm{W}[i] \subseteq \mathrm{W}[j]$ (this is obvious). This hierarchy is believed to be proper.
5. Ind. Set is W[1]-complete and Dom. Set $\in \mathrm{W}$ [2]-complete. Hence if Dom. Set is reducible to Ind. Set then W[1] = W[2], which, as noted in the last point, is thought to be unlikely.
6. There are many problems that are $\mathrm{W}[1]$-complete. There are a few that are $\mathrm{W}[2]$-complete. There seem to be very few problems that are in higher levels or even seem to be in higher levels.
7. Downey \& Fellows [DF99] (see also [Nie06]) showed the following problem is W[2]-complete.

Hitting Set

Instance: A hypergraph $H=(V, E)$ and a number $k \in \mathbb{N}$. (k will be the parameter.)
Question: Is there a set $V^{\prime} \subseteq V .\left|V^{\prime}\right|=k$, such that, for all $e \in E$, there exists $v \in V^{\prime} \cap E$? The set V^{\prime} is called a Hitting Set.

So we have

$$
\mathrm{FPT}=\mathrm{W}[0] \subseteq \mathrm{W}[1] \subseteq \mathrm{W}[2] \subseteq \cdots \subseteq \mathrm{W}[\mathrm{SAT}] \subseteq \mathrm{W}[\mathrm{P}] \subseteq \mathrm{XP}
$$

There is a (somewhat) natural problem in XP - FPT. We present it and give some points about the proof.

```
Deterministic TM Empty String Acceptance (DTMESA)
Instance: A Deterministic Turing Machine \(M, n \in \mathbb{N}\) (in unary) and \(k \in \mathbb{N}\) (the
    parameter).
Question: Does \(M\) accept the empty string in time \(\leq n^{k}\) ? Note that Deterministic
    TM Empty String Acceptance \(\in\) XP.
```

Downey \& Fellows [DF99] proved the following:

Theorem 8.30.

1. $X P-F P T \neq \emptyset$. This is proven by a diagonalization and hence does not yield a natural set in $X P-F P T$. Let $D \in X P-F P T$ be this set.
2. Deterministic TM Empty String Acceptance is XP-complete under parameterized reductions. Hence D reduces to Deterministic TM Empty String Acceptance.

3. Deterministic TM Empty String Acceptance $\in X P-F P T$. This follows from items 1 and 2.

Very few other XP-complete sets are known.

Note: Downey et al. [DFR98] have defined an alternative (but equivalent) definition of the W hierarchy that uses descriptive complexity theory.

For the next exercise we will consider the following variant of Dom. Set.
Connected Dom. Set
Instance: A graph G and a number k.
Question: Is there a dominating set X of size $\leq k$ such that X induces a connected graph?

Exercise 8.31.

1. Prove there is a parameterized reduction from Dom. Set to Connected Dom. Set. (Since Dom. Set is W[2]-complete, this shows Connected Dom. Set is W[2]-hard.)
2. Prove Connected Dom. Set $\in \mathrm{W}[2]$ by creating an instance of Weighted Circuit SAT with weft two for it.
3. Prove that Connected Dom. Set is $\mathrm{W}[2]$-complete. (This follows from the first two parts.)

8.12 Lower Bounds on Approximations via W[1]-Hardness

We define Polynomial Time Approximation Schemes (PTAS) and Efficient Polynomial Time Approximation Schemes (EPTAS). (We will study PTAS a lot in Chapter 10) We then use the assumption $\mathrm{W}[1] \neq$ FPT to show that some problems are unlikely to have an EPTAS. In Chapters 9 and 10 we will use the assumption $P \neq N P$ to show that some problems are unlikely to have a PTAS.

Definition 8.32.

1. Let A be a min-problem (e.g., given a graph return the size of the smallest vertex cover). A polynomial time approximation scheme (PTAS) for A is an algorithm that takes as input $(x, \varepsilon)(x$ an instance of A and $\varepsilon>0)$ and outputs a solution that is $\leq(1+\varepsilon) A(x)$. The only running time constraint is that if we fix ε, the PTAS must run in time polynomial in the size of the remaining input. Note that this allows very bad running times in terms of ε. For example, a PTAS can run in time $n^{2^{\varepsilon^{\varepsilon^{-1}}}}$ because for any given value of ε this is a polynomial running time.
2. Let A be a max-problem (e.g., given a graph return the size of the largest clique). A polynomial time approximation scheme (PTAS) for A is an algorithm that takes as input (x, ε) (x an instance of A and $\varepsilon>0$) and outputs a solution that is $\geq(1-\varepsilon) A(x)$. We have the same running time constraint as in part 1.

Taking a hint from our study of FPT we define the following.

Definition 8.33. Let A be a min-problem (a similar definition can be made for max-problems). An efficient polynomial time approximation scheme (EPTAS) for A is an algorithm that takes as input $(x, \varepsilon)(x$ an instance of A and $\varepsilon>0)$ and outputs a solution that is $\leq(1+\varepsilon) A(x)$. The only running time constraint is that there is a computable function f so that the algorithm runs in time $f\left(\frac{1}{\varepsilon}\right) n^{O(1)}$. Note that this allows very bad running times in terms of ε. For example, a EPTAS can run in time $2^{2^{\varepsilon^{-1}}} n^{2}$ because for any given value of ε this is of the right form. One caveat: we will have a problem where sometimes there is no solution at all. In this case, an EPTAS will just output "no solution".

The following problem comes up in the human genome project. We use the formulation of Deng et al. [DLL ${ }^{+} 02$].

Definition 8.34. If x, y are strings of the same length then $d(x, y)$ is the number of places they differ on.

Distinguished Substring Selection Dist Substring Sel
Instance: A set $B=\left\{b_{1}, \ldots, b_{n_{1}}\right\}$ of bad strings, a set $G=\left\{g_{1}, \ldots, g_{n_{2}}\right\}$ of good strings, and $L, k_{b}, k_{g} \in \mathbb{N}$. All of the strings in B are of length $\geq L$ and all the strings in G are of length L. All of the strings are over the same alphabet Σ which we will assume is a constant. We will take $n=\max \left\{n_{1}, n_{2}\right\}$ and we assume that the strings in B are of length $\leq 2 L$, so the input size is $O(n L)$.
Question: (Set Version) Is there a string $s,|s|=L$, such that the following occur:

1. For every $1 \leq i \leq n_{1}$ there is a substring t_{i} of $b_{i},\left|t_{i}\right|=L$, such that $d\left(s, t_{i}\right) \leq$ k_{b}. (So s is close to a substring of every bad string.)
2. For every $1 \leq i \leq n_{2}, d\left(s, g_{i}\right) \geq k_{g}$. (So s is far from every good string.)

Output: (Function Version) If no such string s exists then output NO; however if a string exists, output one of them.
Note: Dist is for Distinguished and Sel is for Selection.
Note: The terminology "good" and "bad" has its motivation in the application to designing genetic markers to distinguish the sequences of harmful germs, for which it is good for the markers to bind, from the human sequences, for which it is bad for the markers to bind. This terminology may have its origin in Lanctôt et al. [LLM $\left.{ }^{+} 03\right]$.

Deng et al. [DLL $\left.{ }^{+} 02\right]$ proved the following.
Theorem 8.35. There is a PTAS for Dist Substring Sel. In particular, there is a function f and an algorithm A such that on an instance of Dist Substring Sel and an ε, A runs in time time $(n L)^{f(1 / \varepsilon)}$ and outputs, if it exists, an s such that the following holds:

1. For every $1 \leq i \leq n_{1}$ there is a length- L substring t_{i} of b_{i} such that $d\left(s, t_{i}\right) \leq(1+\varepsilon) k_{b}$.
2. For every $1 \leq i \leq n_{2}, d\left(s, g_{i}\right) \geq(1-\varepsilon) k_{g}$.

We have used the term Dist Substring Sel for both the function version and set version of the problem. We will now need to distinguish them.

Notation 8.36.

1. Dist Substring Sel-fun is the function version of Dist Substring Sel.
2. Dist Substring Sel-set- k_{b}, k_{g} is the parameterized version with k_{b}, k_{g} fixed.

We will now link approximating Dist Substring Sel-fun to Dist Substring Sel-set- k_{b}, k_{g} having an FPT. Our proof is essentially due to Cesati \& Trevisan [CT97] who proved a general theorem relating EPTAS's and FPT (which you will prove in the exercises after the next theorem).

Theorem 8.37. If Dist Substring Sel-fun has an EPTAS then the Dist Substring Sel-set- k_{b}, k_{g} is in FPT.

Proof:

Assume there is an EPTAS for Dist Substring Sel-fun. It runs in time $f(1 / \varepsilon)(n L)^{O(1)}$.
The following is an FPT algorithm for Dist Substring Sel-set- k_{b}, k_{g}. Fix k_{b} and k_{g} and let $k=\max \left\{k_{b}, k_{g}\right\}$.

1. Input an instance I of Dist Substring Sel-set- k_{b}, k_{g}. We take I to be the the entire instance including k_{b}, k_{g}.
2. Run the EPTAS on I with $\varepsilon=\frac{1}{2 k}$. Note that this takes time $f(2 k)(n L)^{O(1)}$.
3. (This is commentary and is not part of the algorithm.)

If the EPTAS outputs a string s then the following holds:
(a) For every $1 \leq i \leq n_{1}$ there is a length- L substring t_{i} of b_{i} such that $d\left(s, t_{i}\right) \leq\left(1+\frac{1}{2 k}\right) k_{b}=$ $k_{b}+\frac{k_{b}}{2 k}$. Since $d\left(s, t_{i}\right) \in \mathbb{N}$ we have $d\left(s, t_{i}\right) \leq k_{b}$.
(b) For every $1 \leq i \leq n_{2}, d\left(s, g_{i}\right) \geq\left(1-\frac{1}{2 k}\right) k_{g}=k_{g}-\frac{k_{g}}{2 k}$. Since $d\left(s, t_{i}\right) \in \mathbb{N}$ we have $d\left(s, g_{i}\right) \geq k_{g}$.
(c) Because of the above two points, $I \in$ Dist Substring Sel-set- k_{b}, k_{g}

If the EPTAS outputs "there is no such string" then clearly $I \notin$ Dist Substring Sel-set- k_{b}, k_{g}.
4. If the EPTAS returns a string then output YES $I \in$ Dist Substring Sel-set- k_{b}, k_{g}.

If the EPTAS does not return a string then output NO, $I \notin$ Dist Substring Sel-set- k_{b}, k_{g}.
From the comments made in the algorithm we have that it is correct and works in time $\left.f(k)(n L)^{O(1)}\right)$. Hence Dist Substring Sel-set- k_{b}, k_{g} is FPT.

The above theorem is only interesting if Dist Substring Sel-set- k_{b}, k_{g} is W[1]-hard. It is! Gramm et al. [GGN06] proved the following which we will not prove.

Theorem 8.38.

1. Dist Substring Sel-set- k_{b}, k_{g} is W[1]-hard.
2. If there is an EPTAS for Dist Substring Sel then $W[1]=$ FPT. (This follows from Part 1.)

Exercise 8.39.

1. Show that if there is an EPTAS for Dom. Set then FPT $=\mathrm{W}[1]$.
2. Formulate a general theorem that links EPTAS's and FPT.

The general theorem that you will prove in Exercise 8.39 and that Cesati \& Trevisan [CT97] proved has very few applications. See the paper of Cesati \&Trevisan for one more.

8.13 Grid Tiling

All of the results in this section are from Cygan et al. [CFK $\left.{ }^{+} 15\right]$.
We introduce two parameterized Grid Tiling problems and obtain lower bounds on them. These problems are contrived; however, by reductions, we will use them to get lower bounds on other parameterized problems that we do care about.

8.13.1 Grid Tiling

Definition 8.40. Let G be a grid.

1. Two cells are up-down neighbors if one is directly above the other.
2. Two cells are left-right neighbors if one is directly to the right of the other.

Grid Tiling Problem (Grid)

Instance: A $k \times k$ grid, an $n \in \mathbb{N}$, and each cell $S(i, j)$ in the grid has a subset of $\{1, \ldots, n\} \times\{1, \ldots, n\}$. (We will use $S(i, j)$ to denote the set of ordered pairs.)
Question: Is there a set of ordered pairs

$$
\left\{p_{i, j}=\left(x_{i, j}, y_{i, j}\right) \in S_{i, j}: 1 \leq i, j \leq n\right\}
$$

such that the following happens?

- For all $1 \leq j \leq n, 1 \leq i \leq n-1, y_{i, j}=y_{i+1, j}$ (so all of the up-down neighbors have the same second coordinate).
- For all $1 \leq i \leq n, 1 \leq j \leq n-1, x_{i, j}=x_{i, j+1}$ (so all of the left-right neighbors have the same first coordinate).

Such a way to pick out ordered pairs is called a solution.
Note: Grid Numbering: The cell $S(1,1)$ is the bottom left cell. The k-Grid Tiling LE Problem.
Note: Example 8.41 gives an instance of Grid and a solution.
Note: As presented this is not a parameterized problem; however, it can easily be made into one. k is the parameter.

Example 8.41. An instance and solution for Grid with $k=3$ and $n=100$.

$(2,13)$	$(7,11)$	$(7, \mathbf{1})$
$(7,8)$	$(8,8)$	$(11,2)$
$(8,12)$		
$(1,12)$	$(5,100)$	$(\mathbf{9 , 1)}$
$(\mathbf{9}, \mathbf{8})$	$(6,99)$	$(41,8)$
$(10,11)$	$(\mathbf{9}, \mathbf{1 1})$	
$(20,80)$		
$(1,1)$	$(21,11)$	$(21, \mathbf{1})$
$(21,8)$	$(15,37)$	

Theorem 8.42.

1. There is a k-linear FPT reduction from CLIQue to Grid.
2. Grid is W[1]-hard. (This follows from Part 1.)
3. Let f be any computable function. Assuming ETH, GRID requires $f(k) n^{\Omega(k)}$ (This follows from Part 1 and Exercise 8.57.)

Proof:

Here is the reduction:

1. Input (G, k). Let $G=(V, E)$. We assume $V=\{1, \ldots, n\}$. The k-parameter for the Grid problem will be k, and the n will be n.
2. For $1 \leq i, j \leq k$ we define the set $S(i, j)$:
(a) For $1 \leq i \leq k, S(i, i)=\{(a, a): 1 \leq a \leq n\}$. (So all of the diagonal cells have the same set of ordered pairs.)
(b) For $1 \leq i<j \leq k, S(i, j)=\{(a, b):\{a, b\} \in E\}$. (So all of the off-diagonal cells have the same set of ordered pairs. Note that if a cell has (a, b) then it also has (b, a).)

If G has k-clique $\left\{v_{1}, \ldots, v_{k}\right\}$ then there is a solution to the Grid problem:

1. For $1 \leq i \leq k$ pick $\left(v_{i}, v_{i}\right)$ from $S(i, i)$.
2. For $1 \leq i<j \leq n$ pick $\left(v_{i}, v_{j}\right)$ out of $S(i, j)$ and $S(j, k)$. Note that since $\left\{v_{1}, \ldots, v_{k}\right\}$ is a clique, $\left(v_{i}, v_{j}\right) \in E$, so $\left(v_{i}, v_{j}\right) \in E$.

We leave the following as an exercise: if the Grid has a solution then G has a clique of size k.

We will now use the lower bounds on Grid to get lower bounds on a parameterized version of list coloring.

```
List Col and Planar List Col
Instance: Graph G = (V,E), and, for every v\inV a subset L}\mp@subsup{L}{v}{}\mathrm{ of colors. We take the
    colors to be {1,\ldots,n} and note that n is not the number of vertices.
Instance: Planar List Col is List Col restricted to planar graphs.
Instance: Parameterized Planar List Col will also have as input a parameter }
    and the graph is restricted to treewidth }\leqk\mathrm{ . We will still call this problem
    Planar List Col (this is not standard).
Question: Is there a proper coloring of \(G\) where vertex \(v\) is colored by some color in \(L_{v}\) ?
```


Theorem 8.43.

1. There is a k-linear FPT reduction from Grid to Planar List Col.
2. Planar List Col is W[1]-hard. (This follows from Part 1.)
3. Let f be any computable function. Assuming ETH, PLANAR LIST COL requires $f(k) n^{\Omega(k)}$. (This follows from Part 1 and Exercise 8.57.)

Proof:

Here is the reduction:

1. Input: k, n, a $k \times k$ grid of cells $S(i, j)$ which contain a set of elements of $\{1, \ldots, n\} \times\{1, \ldots, n\}$. We will call this instance of Grid, \mathcal{G}.
2. For every $a, a^{\prime} \in\{1, \ldots, n\}$ such that $a<a^{\prime}$, and every $b, b^{\prime} \in\{1, \ldots, n\}$ (no restriction), create a vertex v with $L_{v}=\left\{(a, b),\left(a^{\prime}, b^{\prime}\right)\right\}$. Let X be the set of these $\binom{n}{2} n^{2}$ vertices. We will need several copies of X but we do not subscript it to avoid too much notation.
3. For every $1 \leq i \leq j \leq n$ create node $v_{i, j}$ with $L_{v(i, j)}=S(i, j)$.
4. We now put in the horizontal edges. For every $1 \leq i \leq k-1$ and $1 \leq j \leq k$ take a copy of X. Put an edge between (1) $v_{i, j}$ and every vertex in X, and (2) $v_{i+1, j}$ and every vertex in X.
5. We now put in the vertical edges. For every $1 \leq i \leq k$ and $1 \leq j \leq k-1$ take a copy of X. Put an edge between (1) $v_{i, j}$ and every vertex in X, and (2) $v_{i, j+1}$ and every vertex in X.
6. Call the resulting graph together with the lists of colors (G, L).

Exercise 8.44 completes the proof.
I

Exercise 8.44. This exercise refers to Theorem 8.43

1. Show that \mathcal{G} has a solution if and only if (G, L) has a list coloring.
2. Show that G has treewidth $\leq k$.

8.13.2 Grid tiling with \leq

We now look at a variant of Grid Tiling that will help us prove a lower bound on the Scattered Set Problem.

The Grid Tiling LE Problem (Grid-LE)
Instance: A $k \times k$ grid, an $n \in \mathbb{N}$, and each cell $S(i, j)$ in the grid has a subset of $\{1, \ldots, n\} \times\{1, \ldots, n\}$. (We will use $S(i, j)$ to denote the set of ordered pairs.)
Question: Is there a set of ordered pairs

$$
\left\{p_{i, j}=\left(x_{i, j}, y_{i, j}\right) \in S_{i, j}: 1 \leq i, j \leq n\right\}
$$

such that the following happens?

- For all $1 \leq j \leq n, 1 \leq i \leq n-1, y_{i, j} \leq y_{i+1, j}$ (so all of the up-down neighbors have the second coordinate monotone increasing as you go up).
- For all $1 \leq i \leq n, 1 \leq j \leq n-1, x_{i, j} \leq x_{i, j+1}$ (so all of the left-right neighbors have the first coordinate monotone increasing as you go right).

Such a way to pick out ordered pairs is called a solution.
Note: Grid Numbering: The cell $S(1,1)$ is the bottom left cell.
Note: Example 8.45 gives an instance of Grid and a solution.

Example 8.45. An instance and solution for GRID-LE with $k=3$ and $n=100$.

$(2,13)$	$(11,27)$	$(87,17)$
$(7,9)$	$(8,8)$	$(11,2)$
$(8,12)$		
$(1,12)$	$(5,100)$	$(84,17)$
$(9,8)$	$(6,99)$	$(41,8)$
$(10,11)$	$(9,15)$	
$(20,80)$		
$(1,1)$	$(31,11)$	$(42,1)$
$(21,8)$	$(15,37)$	

Theorem 8.46.

1. There is a k-linear FPT reduction from Grid to GRId-LE.
2. Grid-LE is W[1]-hard. (This follows from Part 1.)
3. Let f be any computable function. Assuming ETH, Grid-LE requires $f(k) n^{\Omega(k)}$. (This follows from Part 1 and Exercise 8.57.)

Proof sketch:

Here is the reduction:
Takes the same input as Grid Tiling, but instead requires that the first coordinate of $p_{i, j} \leq$ the first coordinate of $p_{i+1, j}$. Similarly, the second coordinate of $p_{i, j} \leq$ the second coordinate of
$p_{i, j+1}$. We can prove this problem is W[1]-hard and imply no $f(k) n^{o(k)}$ algorithm by reduction from Grid Tiling. We use the gadget in Figure 8.3 to blow up each tile in our original instance into a grid of four by four tiles.

$\begin{gathered} S_{4 i-3,4 j-3}^{I}: \\ (i N-z, j N+z) \end{gathered}$	$\begin{gathered} S_{4 i-3,4 j-2}^{J}: \\ (i N+\alpha, j N+z) \end{gathered}$	$\begin{gathered} S_{4 i-3,4 j-1}^{I}: \\ (i N-\alpha, j N+z) \end{gathered}$	$\begin{gathered} S_{4 i-3,4 j}^{J}: \\ (i N+z, j N+z) \end{gathered}$
$\begin{gathered} S_{4 i-2,4 j-3}^{I}: \\ (i N-z, j N+b) \end{gathered}$	$\left\|\begin{array}{c} S_{4 i-2,4 j-2}^{J}: \\ ((i+1) N,(j+1) N) \end{array}\right\|$	$\begin{gathered} S_{4 i-2,4 j-1}^{I}: \\ (i N,(j+1) N) \end{gathered}$	$\left\lvert\, \begin{gathered} S_{4 i-2,4 j}^{J}: \\ (i N+z,(j+1) N+b) \end{gathered}\right.$
$\begin{gathered} S_{4 i-1,4 j-3}^{I}: \\ (i N-z, j N-b) \end{gathered}$	$\begin{gathered} S_{4 i-1,4 j-2}^{J}: \\ ((i+1) N, j N) \end{gathered}$	$\begin{gathered} S_{4 i-1,4 j-1}^{I}: \\ (i N, j N) \end{gathered}$	$\left.\left\lvert\, \begin{array}{c} S_{4 i-1,4 j}^{J}: \\ (i N+z,(j+1) N-b) \end{array}\right.\right)$
$\begin{gathered} S_{4 i, 4 j-3}^{I}: \\ (i N-z, j N-z) \end{gathered}$	$\left(\begin{array}{c} S_{4 i, 4 j-2}^{J} \\ ((i+1) N+\alpha, j N-z) \end{array}\right.$	$\left\|\begin{array}{cl} S_{4 i, 4 j-1}^{I} & : \\ ((i+1) N-\alpha, j N-z) \end{array}\right\|$	$\begin{gathered} S_{4 i, 4 j}^{J}: \\ (i N+z, j N-z) \end{gathered}$

Figure 8.3: Grid tiling reduction

k-Scattered Set (k-Scat Set)

Instance: A graph G and a number d.
Question: Are there k vertices with pairwise distances $\geq d$?
If $d=2$ then the k-Scat Set problem is just Ind. SET_{k}, which we already know is W [1]-hard (though we do not know if ETH yields an $f(k) n^{\Omega(k)}$ lower bound). However, Planar Ind. Set is FPT. What about Planar k-Scat Set? We state what is known:

Theorem 8.47.

1. There is a k-linear FPT reduction from Grid-LE to k-SCAT SET.
2. k-SCAT SET is W[1]-hard. (This follows from Part 1.)
3. Let f be any computable function. Assume ETH. k-SCAT SET requires $f(k) n^{\Omega(k)}$. (This follows from Part 1 and Exercise 8.57.)

8.13.3 The \boldsymbol{k}-Unit Disk Graphs Problem (UDG ${ }_{k}$)

```
k-Unit Disk Graph
Instance: A set of points P in the plane.
Question: Can you draw }k\mathrm{ unit disks centered on p}\inP\mathrm{ without the disks inter-
    secting?
```


Theorem 8.48.

1. There is a reduction from Grid-LE to $U D G_{k}$ such that an instance of Grid-LE with parameter k is mapped to an instance of $U D G_{k}$ with parameter k^{2}.
2. $U D G_{k}$ is W[1]-hard (this follows from Part 1).
3. If there is an $f(k) n^{o(\sqrt{k})}$ algorithm for $U D G_{k}$ then there is an $f\left(k^{2}\right) n^{o(k)}$ algorithm for GRID-LE (which is thought to be unlikely).

Proof sketch:

We show that Grid-LE is reducible to UDG_{k}. The parameter will go from k to k^{2}.

1. Input a $k \times k$ grid where each cell $S(i, j)$ has a subset of $\{1, \ldots, n\} \times\{1, \ldots, n\}$.
2. We create an instance of $\mathrm{UDG}_{k^{2}}$ as follows.
(a) For every $S_{i, j}$ take all the ordered pairs in $S_{i, j}$ and arrange them in a grid in the obvious way.
(b) Take each of these grids of points and arrange them into a $k \times k$ grid.
(c) Pick a distance between the grids-of-points carefully so that the construction works.

See Figure 8.4 for an example of the reduction.

Grid Tiling with \leq
 \rightarrow Unit-Disk Independent Set

$S[1,3]:$	$S[2,3]:$	$S[3,3]:$ $(1,1)$ $(2,5)$ $(3,3)$
$(3,2)$	$(5,4)$	
$(3,3)$	$(3,4)$	
$S[1,2]:$	$S[2,2]:$	$S[3,2]:$
$(5,1)$	$(3,1)$	$(1,1)$
$(1,4)$	$(2,2)$	$(2,3)$
$(5,3)$		
$S[1,1]:$	$S[2,1]:$	$S[3,1]:$
$(1,1)$	$(2,2)$	$(1,3)$
$(3,1)$	$(1,4)$	$(2,3)$
$(2,4)$		$(3,3)$

Cygan, Fomin, Kowalik, Lokshtanov, Marx, Pilipczuk, Pilipczuk, Saurabh 2015

Figure 8.4: An example of the reduction from Grid-LE to UDG_{k}.

8.14 Further Results

8.14.1 Another Look at Dom. Set

We have stated that Dom. Set is W[2]-complete and hence unlikely to be in FPT. However, using ETH and SETH, one can obtain sharper bounds on the parameterized complexity of Dom. Set.

Let $k \in \mathbb{N}$. Let Dom. SET_{k} be the problem of, given a graph G, is there a dominating set of size k. Clearly this problem is in time $O\left(n^{k+1}\right)$. Eisenbrand \& Grandoni [EG04] have obtained slightly better algorithms. We state two known lower bounds. They are probably folklore since our only source is a workshop on fine-grained complexity held by the Max Planck Institute in 2019 [Unk19].

Theorem 8.49.

1. Assume ETH. There exists $\delta>0$ such that, for large k, DOM. $S_{E T} T_{k}$ requires time $\Omega\left(n^{\delta k}\right)$.
2. Assume SETH. Let $k \geq 3$ and $\varepsilon>0$. Dom. SETk requires time $\Omega\left(n^{k-\varepsilon}\right)$.

Those same notes leave the following as an exercise:
Exercise 8.50. Assume ETH. Show that SUbSET Sum cannot be solved in time $2^{o(n)}$.

8.14.2 Restrictions on Graphs

Some graph problems are in FPT if the graphs are restricted. Courcelle [Cou90] and independently Borie et al. [BPT92] showed the following: Let \mathcal{P} be some graph property that is definable in Monadic Second Order Logic. Let $k \in \mathbb{N}$. There is a linear time algorithm for \mathcal{P} restricted to graphs of treewidth $\leq k$. (See Flum \& Grohe [FG06] for a complete treatment of Courcelle's theorem and its applications.) From this theorem the following problems are FPT with the parameter being the tree-width.

1. Given a boolean Circuit, is it satisfiable?
2. Given a graph G and a number k, is $G k$-colorable?
3. Given a graph G and a number k, does G give an Independent Set of size k ?
4. Given a graph G and a number k, is the crossing number of $G \leq k$? (This one has parameter $k+$ Treewidth.)

These results raised the question of whether bounding the clique width can also be used to put a problem into FPT.

Let f be any computable function. Let t bound the clique number. Fomin et al. [FGLS10] have shown that if you assume ETH then several graph problems restricted to graphs of clique width $\leq t$ cannot be solved in time $f(t) n^{o(t)}$.

8.14.3 Perfect Codes: A Problem With an Interesting History

```
Perfect Codes
Instance: A graph G}=(V,E)\mathrm{ and }k\in\mathbb{N}\mathrm{ .
Question: Is there a }\mp@subsup{V}{}{\prime}\subseteqV,|\mp@subsup{V}{}{\prime}|=k\mathrm{ , such that, each vertex v}\inV\mathrm{ , there is exactly
    one v
```

The problem Perfect Codes has an interesting history.

Theorem 8.51.

1. (Downey \& Fellows [DF99]) Ind. Set is reducible to Perfect Codes, hence Perfect Codes is W[1]-hard.
2. (Downey \& Fellows [DF99]) Perfect Codes $\in W[2]$.
3. (Cesati [Ces03]) Perfect Codes is reducible to Nondet TM Acceptance and hence Perfect Codes $\in W[1]$. Therefore Perfect Codes is W[1]-complete.

Downey \& Fellows conjectured that Perfect Codes is intermediary: in W[2] - W[1] but not W[2]-complete. Hence it was a surprise when Cesati showed Perfect Codes is W[1]-complete. It was interesting that Cesati showed Perfect Codes $\in \mathrm{W}[1]$ by a reduction.

We briefly discuss why the problem is called Perfect Code. If x, y are strings of the same length then $d(x, y)$ is the number of bits they differ on. Let $G_{n}=(V, E)$ be the graph with $V=\{0,1\}^{n}$ and $E=\{(x, y): d(x, y)=1\}$.

1. G_{3} has a perfect code of size 2 : Use the vertices $\{000,111\}$.
2. For all n such that $n+1$ is a power of $2, G_{n}$ has a perfect code of $\operatorname{size} \lg n+1$.
3. Perfect codes are useful for error-correcting codes.
4. The literature on error correcting code is vast.

8.14.4 Consequence of ETH for Parameterized Complexity

We show that, assuming ETH, we can obtain better lower bounds for both problems within FPT and outside of FPT.

ETH Implies Lower Bounds on Parameterized Problems

Recall from Theorem 8.1 that Vertex Cover is in time $O\left(k n+k^{2} 2^{k}\right)$. Can we lessen the dependence on k by getting, for example, a $O\left(2^{k^{0.9}} n^{3}\right)$ algorithm (this would be worse then $O\left(k n+k^{2} 2^{k}\right)$ when k is small but might be better when k is large). What about other parameterized problems? Cai \& Juedes [CJ03] showed that such an algorithm would imply that ETH is false:

Theorem 8.52. Assume ETH. Let $L \in \mathbb{N}$. Then Vertex Cover, Dom. Set, and Directed Ham Cycle cannot be solved in time $2^{o(k)} n^{L}$.

Proof:

We prove this for Vertex Cover. The rest are similar.
By Theorem 7.11, assuming ETH, Vertex Cover requires $2^{\Omega(n)}$ time. If Vertex Cover could be done in $2^{o(k)} n^{L}$ time then, since $k \leq n$, this would yield a $2^{o(n)} n^{L}$ algorithm for Vertex Cover. This violates the lower bound of $2^{\Omega(n)}$.

Exercise 8.53. Prove the rest of Theorem 8.52.
Exercise 8.54. Obtain results similar to Theorem 8.52 for Planar Vertex Cover, Planar Dom. Set, Planar Directed Ham Cycle.

We note upper bounds (i.e., algorithms) for Planar Dom. Set and Planar Vertex Cover and leave it to the reader to contrast them with the lower bounds from Exercise 8.54.

1. Alber et al. $\left[\mathrm{ABF}^{+} 02\right]$ show that Planar Dom. Set set can be solved in $2^{O(\sqrt{k})} n^{O(1)}$ time.
2. Demaine et al. [DFHT05] show that Planar k-Vertex Cover can be solved in $2^{O(\sqrt{k})} n^{O(1)}$ time.

There are other planar FPT problems for which, assuming ETH, we have matching upper and lower bounds.

ETH Implies $f(k) n^{\Omega(k)}$ Lower Bounds

Recall that, by Theorem 8.16, assuming FPT $\neq \mathrm{W}[1]$, Clique and Ind. Set are not FPT. More precisely, there is no function f such that Clique can be solved in time $f(k) n^{O(1)}$. What about (say) $f(k) n^{\sqrt{k}}$? What about other parameterized problems?

Theorem 8.55. Assume ETH. Let $f(k)$ be any computable function. Let $f(k)$ be a computable function. There is no algorithm for CLIQUE or Ind. SET that takes time $f(k) n^{o(k)}$ time.

Proof:

By Theorem 7.11, assuming ETH, 3COL requires $2^{\Omega(n)}$ time.
Assume Clique is solvable in $f(k) n^{o(k)}$ time. Then there exists a monotone increasing and unbounded s such that Clique is solvable in time $f(k) n^{k / s(k)}$. We give an algorithm for 3COL that first does a reduction from 3COL to Clique and then runs the Clique algorithm.

We can assume $f(k)$ is monotone increasing and unbounded. This will come up towards the end.

1. Input $G=(V, E)$, a graph. We will derive the value of k that we need later. We impose one condition now: k divides n for notational convenience.
2. Split V into k groups V_{1}, \ldots, V_{k} of roughly $\frac{n}{k}$ vertices each.
3. For each $1 \leq i \leq k$ find all valid 3-colorings of V_{i}. For each one we have a new vertex. There are at most $3^{n / k}$ vertices per i, so at most $k 3^{n / k}$ new vertices. These new vertices will be our vertex set V^{\prime}. We now analyze the time for this step. There are $k V_{i}$'s to check. For each one we look at the $3^{n / k}$ possible 3-colorings. We check each possible 3-coloring to see if it really is a 3-colorings which takes $(n / k)^{2}$. Hence the total time is

$$
k \times(n / k)^{2} \times 3^{n / k}=\frac{n}{k} \times 3^{n / k} \leq n 3^{n / k}
$$

4. If two vertices in V^{\prime} correspond to the same V_{i}, there is no edge between them.
5. For all $1 \leq i<j \leq \frac{n}{k}$, for all $x \in V_{i}, y \in V_{j}$, we do the following: If the coloring $x \cup y$ of $V_{i} \cup V_{j}$ is valid then put an edge between x and y, otherwise, do not. We analyze how long this step takes. There are $\binom{n / k}{2} \leq\left(n^{2} / 2 k^{2}\right)$ pairs (i, j). For each pair there are $3^{n / k} \times 3^{n / k}=3^{2 n / k}$ pairs (x, y). For each pair it takes $\binom{2 n / k}{2} \leq\left(4 n^{2} / k^{2}\right)$ time to check if $x \cup y$ is a valid coloring. Hence the total time for this step is

$$
\frac{n^{2}}{2 k^{2}} \times 3^{2 n / k} \times\left(4 n^{2} / k^{2}\right) \leq \frac{n^{4}}{k^{4}} 3^{2 n / k} \leq n^{4} 3^{2 n / k}
$$

6. Let E^{\prime} be the set of edges, so $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ is the new graph.
7. (This is not a step, it is a comment.)

So far the algorithm has taken time $O\left(n^{4} 3^{2 n / k}\right)$ and produced a graph on $\leq k 3^{n / k}$ vertices. It is easy to see that G has a 3 -coloring if and only if G^{\prime} has a k-clique.
8. Run the Clique algorithm on $\left(G^{\prime}, k\right)$. This takes time

$$
\leq f(k)\left(k 3^{n / k}\right)^{k / s(k)}=f(k) k^{k / s(k)} 3^{n / s(k)}
$$

If the algorithm returns YES then output YES. If the algorithm returns NO then output NO.
We analyze the run time and pick k. The runtime is

$$
n^{4} 3^{3 n / k}+f(k) k^{k / s(k)} 3^{n / s(k)}=n^{4} 2^{O(n / k)}+f(k)^{k / s(k)} 2^{O(n / s(k))} .
$$

Set $k(n)$ be the largest value of k such that $f(k) \leq n$ and $k^{k / s(k)} \leq n$. Since $f(k)$ and $s(k)$ are monotone increasing and unbounded, $k(n)$ is also monotone increasing and unbounded. Also note that $k(n)<n$ so it makes sense for its role in the algorithm. The running time of our 3-coloring algorithm is

$$
n^{4} 2^{O(n / k)}+f(k)^{k / s(k)} 2^{O(n / s(k))} \leq n^{3} 2^{O(n / k(n))}+n^{2} 2^{(n / s(k(n)))}=2^{o(n)}
$$

which contradicts the lower bound on 3COL that comes from ETH.

We can now use Clique and a certain kind of reduction to get, assuming ETH, $f(k) n^{\Omega(k)}$ lower bounds.

Definition 8.56. Let A and B be parameterized problems. A \boldsymbol{k}-linear FPT reduction from A to B is an FPT reduction such that when (x, k) is mapped to $\left(y, k^{\prime}\right), k^{\prime}=O(k)$.

Exercise 8.57. Assume ETH. Let f be a computable function.

1. Let A be a parameterized problem with parameter k. Assume that Clique is reducible to A with a k-linear reduction (so A is $\mathrm{W}[1]$-hard). Then A requires $f(k) n^{\Omega(k)}$ time.
2. Assume ETH. Let f be any computable function. Then the following problems have running times $\geq f(k) n^{\Omega(k)}:$ Multi Colored Clique, Multicolored Ind. Set, Dom. Set, Set Cover and Partial Vertex Cover.

Chapter 9

Basic Lower Bounds on Approximability via PCP and Gap Reductions

9.1 Introduction

In this chapter we will show that some problems are NP-hard to approximate.
When Cook and Levin showed SAT is NP-complete they could not take some known NPcomplete set A and show $A \leq_{p}$ SAT since there were not known NP-complete sets! SAT was the first one. We are initially in the same position with regard to hardness of approximation. To show a problem is hard to approximate we cannot use a reduction. We need a basic problem (actually several basic problems) analogous to SAT for NP-completeness, that we have reason to believe is hard to approximate.

Chapter Summary

1. We define approximation algorithms of a variety of types and give examples.
2. We define an appropriate type of reduction needed to prove that if f is hard to approximate then g is hard to approximate.
3. We describe the PCP machinery and state theorems about it (without proof).
4. We use the PCP machinery and the reductions from item 2 to show that several problems are are NP-hard to approximate. We also state (but do not prove) that a few other problems are NP-hard to approximate.

Convention 9.1. When working with a function problem we will use the notation $\operatorname{OPT}(x)$ for the optimal value. For example we will use $\operatorname{OPT}(x)$ instead of Vertex $\operatorname{Cover}(x)$. When we use OPT, the problem at hand is understood. If we are dealing with two different problems we may use subscripts like OPT Vertex $_{\text {Cover }}$.

We use TSP and MAx 3SAT (to be defined) as running examples. recall that TSP is the following:

- Input: a weighted graph G and a number k. The weights are nonnegative integers.
- Determine whether there is a Hamiltonian cycle of weight $\leq k$.

For most of this book we have looked at decision problems where every instance has a yes or no answer. For example, TSP is a YES-NO question.

In the real world TSP is not a decision problem; indeed, in the real world one wants to find the optimal (minimum weight) cycle. This is the function version of TSP. We touched on this distinction in Chapter 0 and concluded (correctly) that, with regard to polynomial time, the decision problem and the function problem are equivalent. But let's get back to the real world. One way to cope with a problem being NP-hard is to approximate it. This concept only makes sense if we are talking about a function, not a set. In this chapter we will look at functions that are naturally associated with NP-complete problems and show that they are NP-hard to approximate. In this chapter we will show how to use Gap Reductions to get lower bounds on approximations contingent on $\mathrm{P} \neq \mathrm{NP}$.

We now define Max 3SAT which will be one of our basic problems.

MAx 3SAT

Instance: A 3CNF formula φ.
Question: What is the max number of clauses that can be satisfied simultaneously?
(One might also ask for the assignment that achieves this max.)
Definition 9.2. An optimization problem consists of the following:

- The set of instances of the problem (e.g., the set of weighted graphs for TSP, the set of 3CNF formulas for Max 3SAT).
- For each instance: the set of possible solutions (e.g., the set of Hamiltonian cycles for TSP, the set of truth assignments for Max 3SAT).
- For each solution: a nonnegative cost or benefit (e.g., for TSP the cost is the sum of weights on the Hamiltonian Cycle, for MAx 3SAT the benefit is the number of clauses satisfied).
- An objective: either min or max (e.g., min cost of a Hamiltonian cycle for TSP, max the number of clauses that are satisfied for Max 3SAT).

The goal of an optimization problem is to find a solution which achieves the objective: either minimize a cost or maximize a benefit.

Now we can define an NP-optimization problem. The class of all NP-optimization problems is called NPO; it is the optimization analog of NP.

Definition 9.3. An NP-optimization problem is an optimization problem with the following additional requirements:

- All instances and solutions can be recognized in polynomial time (e.g., (1) TSP: you can tell whether a proposed cycle is Hamiltonian, (2) MAx 3SAT: you can tell whether a proposed string is a truth assignment of length n).
- All solutions are of length polynomial in the length of the instance which they solve (e.g., (1) TSP: a Hamiltonian cycle is clearly of length polynomial in the size of the graph-it's actually shorter, (2) Max 3SAT: An assignment is clearly of length polynomial in the size of the formula-it's actually shorter).
- The cost or benefit of a solution can be computed in polynomial time (e.g., (1) TSP: given a Hamiltonian cycle in a weighted graph, one can easily find the weight of the cycle, (2) given an assignment for a formula, one can easily find the number of clauses it satisfies).

We can convert any NPO problem into an analogous decision problem in NP. For a min problem we ask "Is OPT $(x) \leq q$?" and for a maximization problem we ask "Is OPT $(x) \geq q$?" The optimal solution can serve as a short easily verified certificate of a "yes" answer, and so these analogous decision problems are in NP.

This means that NPO is, in some sense, a generalization of NP problems.
Convention 9.4. For the rest of this chapter problem means NPO problem. When A and B are mentioned they are NPO problems. We will often say whether A is a min-problem or a maxproblem.

Note that when we speak of solving an NPO problem we only mean finding OPT (x) which is the cost or benefit of the optimal solution. So we are not quite in the real world: for us a solution to the TSP problem is just to say how much the min Ham cycle costs, not to find it. However, this will suit our purposes.

9.2 Approximation Algorithms

Let's say you are trying to find a polynomial-time algorithm that will return the cost of the optimal TSP solution. You do not succeed; however, you get a polynomial-time algorithm that returns a number that is at most twice the optimal. Is that good? Can you prove that no algorithm is better unless $\mathrm{P}=$ NP? Before asking these questions we need to define our terms.

Definition 9.5. In the two definitions below, Algorithm is a polynomial-time algorithm and $c \geq 1$ is a constant. (We will later generalize to the case where c is a function.)

- Let A be a min-problem. Algorithm is a c-approximation algorithm for A if, for all valid instances x,

$$
\operatorname{AlGORITHM}(x) \leq c \times \operatorname{OPT}(x) .
$$

- Let A be a max-problem. Algorithm is a c-approximation algorithm for A if, for all valid instances x,

$$
\operatorname{OPT}(x) \leq c \times \operatorname{AlGORITHM}(x) .
$$

Some caveats and conventions.

1. The definition of c-approximation for a min-problem makes sense. For example, if you have an algorithm for approximate Euclidean TSP (we do!) that returns a number that is $\leq \frac{3}{2}$ OPT, that is called a $\frac{3}{2}$-approximation algorithm.
2. The definition of c-approximation for a max-problem is awkward. For example, if you have an algorithm for approximate MAx 3SAT that returns a number that is $\geq \frac{7}{8}$ OPT (we do!), that is called an $\frac{8}{7}$-approximation algorithm. Really!
3. We personally do not like this definition. We will use it for min problems. For max problems we will either avoid it or make sure to remind the reader about what is going on.
4. Why is the definition the way it is? Because this way in both max and min cases we seek c-approximation algorithms where $c \geq 1$. We will later see that this makes the definition of Polynomial Time Approximation Schemes (PTAS) (to be defined later) smooth.

In some sense an approximation algorithm is doing pretty well if it is a c-approximation algorithm with some constant value c. But sometimes, we can do even better! There are cases where, for all $\varepsilon>0$, there is a $(1+\varepsilon)$-approximation.

Definition 9.6.

1. Let A be a min-problem. A polynomial time approximation scheme (PTAS) for A is an algorithm that takes as input $(x, \varepsilon)(x$ an instance of A and $\varepsilon>0)$ and outputs a solution that is $\leq(1+\varepsilon) \operatorname{OPT}(x)$. The only running time constraint is that if we fix ε, the PTAS must run in time polynomial in the size of the remaining input. Note that this allows very bad running times in terms of ε. For example, a PTAS can run in time $n^{1 / \varepsilon^{2}}$ because for any given value of ε this is a polynomial running time.
2. Let A be a max-problem. A polynomial time approximation scheme (PTAS) for A is an algorithm that takes as input $(x, \varepsilon)(x$ an instance of A and $\varepsilon>0)$ and outputs a solution that is $\geq(1-\varepsilon) \operatorname{OPT}(x)$. We have the same running time constraint as in part 1 .

We define several complexity classes:

Definition 9.7.

1. The class PTAS is the set of all problems for which a PTAS exists. We use the term PTAS for both the type of an approximation algorithm and the set of all problems that have that type of approximation algorithm.
2. Let A be a min-problem. $A \in \mathrm{APX}$ if there is a constant $c \geq 1$ and an algorithm M such that $M(x)$ is $\leq c \times \operatorname{OPT}(x)$. (This is just a c-approximation; however, we phrase it this way so that you will see the other classes are variants of it.)
3. Let A be a max-problem. $A \in \mathrm{APX}$ if there is a constant $c \geq 1$ and an algorithm M such that $M(x)$ is $\geq \frac{1}{c} \times \operatorname{OPT}(x)$.
4. Let A be a min-problem. $A \in \log -\mathrm{APX}$ if there is a constant $c>0$ and an algorithm M such that $M(x)$ is $\leq c \times \log |x| \times \operatorname{OPT}(x)$.
5. Let A be a max-problem. $A \in \log -A P X$ if there is a constant c (it does not need to be ≥ 1) and an algorithm M such that $M(x)$ is $\geq \frac{1}{c \log |x|} \times \operatorname{OPT}(x)$.
6. Let A be a min-problem. $A \in$ Poly-APX if there is a polynomial p and an algorithm M such that $M(x)$ is $\leq p(|x|) \times \operatorname{OPT}(x)$.
7. Let A be a max-problem. $A \in$ Poly-APX if there is a polynomial p and an algorithm M such that $M(x)$ is $\geq \frac{1}{p(|x|)} \times \operatorname{OPT}(x)$.

The following examples are known.
Example 9.8. All of our examples are variants of TSP.

1. The metric TSP problem is the TSP problem restricted to weighted graphs that are symmetric and satisfy the triangle inequality: $w(x, y)+w(y, z) \geq w(x, z)$. There is an algorithm discovered independently by Christofides [Chr22] (in 1976 unpublished, finally published in 2022 which is the reference) and Serdyukov [Ser78] (in 1978) that gives a $\frac{3}{2}$-approximation to the metric TSP problem. Hence the metric TSP problem is in APX. This algorithm is well known. It is called the Christofides-Serdyukov algorithm. .
2. Karlin, Klein, Oveis-Gharan [KKG21], in 2021, obtained the first improvement over the $\frac{3}{2}-$ approx. They showed that there is a $\left(\frac{3}{2}-\varepsilon\right)$-approximation to the metric TSP problem where $\varepsilon>10^{-36}$. This does not improve the class that metric TSP is in-it is still in APX-but it is interesting that one can do better than $\frac{3}{2}$ which was, until this result, a plausible limit on approximation.
3. The Euclidean TSP problem is the TSP problem when the graph is a set of points in the plane and the weights are the Euclidean distances. Arora [Aro98] and Mitchell [Mit99], in 1998, independently showed a PTAS for the Euclidean TSP problem. Both of their algorithms will, on input n points in the plane (which defines the weighted graph) and ε, produce a $(1+\varepsilon)$-approximation in time $O\left(n(\log n)^{O(1 / \varepsilon)}\right)$.
4. Arora and Mitchell actually have an algorithm that works on n points in \mathbb{R}^{d} that runs in time $O\left(n(\log n)^{O(\sqrt{d} / \varepsilon)^{d-1}}\right)$.

9.3 The Basic Hard-to-Approximate Problems

The following are basic hard-to-approximate problems. We include both the upper and the lower bounds. All of the lower bounds are under the assumption $P \neq N P$.

1. TSP \notin Poly-APX.
2. Clique \in Poly-APX - Log-APX.
3. Set Cover $\in \log -\mathrm{APX}-\mathrm{APX}$.
4. MAx 3SAT \in APX - PTAS.

From the results listed above we have the following.
Theorem 9.9. If $P \neq N P$ then

$$
P T A S \subset A P X \subset L o g-A P X \subset \text { Poly-APX }
$$

We will discuss all four of the results in the order given above. The lower bound on approximating TSP is elementary and we can present it in its entirety. The lower bound on approximating Clique and MAx 3SAT use the PCP machinery and hence we will have a section on PCP. The lower bound on approximating SET Cover uses a different machinery which is a close cousin to the PCP machinery; however, we will discuss it briefly.

9.4 Lower Bounds on Approximating TSP

Recall that, by Example 9.8, the metric TSP problem (where $w(a, b)+w(b, c) \geq w(a, c))$ is in APX. What about TSP problems without that condition? We show that if TSP \in Poly-APX, then $\mathrm{P}=\mathrm{NP}$. Let $\mathrm{OPT}(H)$ be the cost of the min Hamiltonian cycle in weighted graph H. Informally, we will map instances G of Ham Cycle to instances G^{\prime} of TSP such that:

If $G \in$ Нам Cycle then $\operatorname{OPT}\left(G^{\prime}\right)$ is small.
If $G \notin$ Ham Cycle then $\operatorname{OPT}\left(G^{\prime}\right)$ is large.
We will then use the alleged approximation algorithm for TSP to determine which is the case. This is called a Gap Reduction because of the large gap between the costs of the optimal routes.

Theorem 9.10. If $T S P \in$ Poly-APX then $P=N P$.

Proof:

We assume that TSP \in Poly-APX and show that Ham Cycle \in P. Since Ham Cycle is NPcomplete, this will show $P=N P$.

To avoid notational clutter we call the algorithm for TSP \in Poly-APX the approx algorithm. Let $p(n)$ be such that the algorithm returns a number $\leq p(n) \mathrm{OPT}(G)$.

Let $c(n)$ be a polynomial to be named later. As part of our reduction we will map instances G of Ham Cycle to instances G^{\prime} of TSP such that:

If $G \in$ Ham Cycle then $\operatorname{OPT}\left(G^{\prime}\right)=n$.
If $G \notin$ Ham Cycle then $\operatorname{OPT}\left(G^{\prime}\right) \geq c(n)$.
Here is an algorithm for Ham Cycle.

1. Input $G=(V, E)$, an unweighted graph.
2. Create an instance G^{\prime} of TSP, using the same vertex set as G used, as follows: (1) if $e \notin E$ then give e weight $c(n)$, (2) if $e \in E$ then give e weight 1 . Note that G^{\prime} is a complete weighted graph.
3. (This is a comment, not part of the algorithm.)
(a) If $G \in$ Haм Cycle then $\operatorname{OPT}\left(G^{\prime}\right) \leq n$ since you can just use the Hamiltonian cycle.
(b) If $G \notin \operatorname{Ham} \operatorname{Cycle}$ then $\operatorname{OPT}\left(G^{\prime}\right) \geq c(n)$ since any cycle in G^{\prime} will have to use at least one edge of cost $c(n)$ (actually OPT $\left(G^{\prime}\right) \geq c(n)+n-1$ but this is not needed).
4. Run the approx algorithm on G^{\prime}.
5. (This is a comment, not part of the algorithm.)
(a) If $G \in \operatorname{HAM}$ Cycle then the approx alg run on G^{\prime} returns a route of size $\leq n p(n)$.
(b) If $G \notin$ HAM Cycle then the approx alg run on G^{\prime} returns a route of size $\geq c(n)$.

To ensure these cases do not overlap we pick $c(n)>n p(n)$.
6. If the approx alg outputs a number $\leq n p(n)$ then output YES. If the approx alg outputs a number $>c(n)$ then output NO. By the commentary in the algorithm, no other case will occur.

The key to the proof of Theorem 9.10 was creating an instance of TSP that either had a very small or very large solution, called a gap. This is a paradigm for most lower bounds on approximation.

9.5 The Gap Lemmas

In this section we prove two easy lemmas that show how to use a reduction that causes a gap (like the one in Theorem 9.10) to obtain a lower bound on approximation algorithms. This first lemma is for max-problems, and the second one is for min-problems. The proofs are similar, hence the proof of the second one is omitted.

Convention 9.11. We will often use the notation $|y|$. This is the size of y; however, we will use size in a different way for different inputs.

1. If y is a string then $|y|$ is the length of y.
2. If y is a graph then $|y|$ is the number of vertices.
3. If y is a $3 C N F$ formula then $|y|$ might be either the number of variables or the number of clauses depending on our application.

Definition 9.12. Let g be a max-problem (e.g., Clique). Let $a(n)$ and $b(n)$ be functions from \mathbb{N} to \mathbb{N} such that $\frac{b(n)}{a(n)}<1$. Then $\operatorname{Gap}(g, a(n), b(n))$ is the following problem.
$\operatorname{GAP}(g, a(n), b(n))$
Instance: y for which you are promised that either $g(y) \geq a(|y|)$ or $g(y) \leq b(|y|)$. Question: Is $g(y) \geq a(|y|)$?

Lemma 9.13. Let A be an NP-hard set. Let g be a max-problem. Let $a(n)$ and $b(n)$ be functions from \mathbb{N} to \mathbb{N} such that (1) $\frac{b(n)}{a(n)}<1$, and (2) b is computable in time polynomial in n. Assume there exists a polynomial time reduction that maps x to y such that the following occurs:

- If $x \in A$ then $g(y) \geq a(|y|)$.
- If $x \notin A$ then $g(y) \leq b(|y|)$.

Then:

1. $\operatorname{GAP}(g, a(n), b(n))$ is NP-hard (this follows from the premise).
2. If there is an approximation algorithm for g that, on input y, returns a number $>\frac{b(|y|)}{a(|y|)} g(y)$, then $\mathrm{P}=\mathrm{NP}$.

Proof:

We just prove part 2.
We use the reduction and the approximation algorithm to obtain $A \in \mathrm{P}$. Since A is NP-hard we obtain $\mathrm{P}=\mathrm{NP}$.
Algorithm for A

1. Input x.
2. Run the reduction on x to get y.
3. Run the approximation algorithm on y.
4. (This is a comment and not part of the algorithm.)
$x \in A \rightarrow g(y) \geq a(|y|) \rightarrow$ approx on y returns $>\frac{b(|y|)}{a(|y|)} a(|y|)=b(|y|)$.
$x \notin A \rightarrow g(y) \leq b(|y|) \rightarrow$ approx on y returns $\leq b(|y|)$.
5. If the approx returns a number $>b(|y|)$ then output YES. Otherwise output NO. (This is the step where we need $b(|y|)$ to be computable in time polynomial in $|y|$.)

We now look at min-problems.
We use the same name, $\operatorname{GAP}(g, a(n), b(n))$ for the following problem.
Definition 9.14. Let g be a min-problem (e.g., TSP). Let $a(n)$ and $b(n)$ be functions from \mathbb{N} to \mathbb{N} such that $\frac{b(n)}{a(n)}>1$. Then $\operatorname{Gap}(g, a(n), b(n))$ is the following problem.

We use the same notation $\operatorname{GAP}(g, a(n), b(n))$ for min-problems as we did for max-problems. When we use these lemmas the meaning will be clear from context.
$\operatorname{GAP}(g, a(n), b(n))$
Instance: y for which you are promised that either $g(y) \leq a(|y|)$ or $g(y) \geq b(|y|)$.
Question: Is $g(y) \leq a(|y|)$?

We now state a lemma that is useful for obtaining lower bounds on approximation minproblems. The proof is similar to that of Lemma 9.13 and hence is omitted.

Lemma 9.15. Let A be an NP-complete set. Let g be a min-problem. Let $a(n)$ and $b(n)$ be functions from \mathbb{N} to \mathbb{N} such that (1) $\frac{b(n)}{a(n)}>1$, and (2) b is computable in time polynomial in n. Assume there exists a polynomial time reduction that maps x to y such that the following occurs:

- If $x \in A$ then $g(y) \leq a(|y|)$.
- If $x \notin A$ then $g(y) \geq b(|y|)$.

Then:

1. $\operatorname{GAP}(g, a(n), b(n))$ is NP-hard (this follows from the premise).
2. If there is an approximation algorithm for g that, on input y, returns a number $<\frac{b(|y|)}{a(|y|)} g(y)$, then $P=N P$.

Definition 9.16. We will refer to reductions like the ones in Lemma 9.13 and 9.15 as $\boldsymbol{G a p} \boldsymbol{R e}$ ductions with ratio $\frac{b(n)}{a(n)}$.

9.6 The PCP Machinery

In this section we discuss a characterization of NP in terms of Probabilistically Checkable Proofs. This characterization has a hard (and long) proof that we will omit. However, once we have the characterization we will use it to construct gap reductions which will show some approximation problems are NP-hard.

Recall the following notation and definition.
Notation 9.17. Let $\exists^{p} y$ mean there exists y such that $|y|$ is polynomial in $|x|$, where x is understood. Let $\forall^{p} y$ mean for all y such that $|y|$ is polynomial in $|x|$, where x is understood.

Definition 9.18. $A \in \mathrm{NP}$ if there exists a polynomial predicate B such that

$$
A=\left\{x: \exists^{p} y: B(x, y)\right\} .
$$

We want to rewrite this and modify it.

Definition 9.19.

1. An Oracle Turing Machine-bit access (henceforth OTM-BA) is an oracle Turing machine where (1) the oracle is a string of bits, and (2) the requests for the bits is made by writing down the address of the bit. By convention, if the string is s long and a query is made for bit $t>s$ then the answer is NO.
2. We denote an oracle Turing machine by $M^{(0)}$. If $M^{()}$is an oracle Turing machine and y is the string being used for the oracle, and x is an input, we denote the computation of $M^{()}$ on x with oracle y by $M^{y}(x)$.
3. A Polynomial OTM-BA (POTM-BA) is an OTM-BA that runs in polynomial time. Note that a POTM-BA can use an oracle string of length $2^{\text {poly }}$ since it can write down that it wants bit position (say) $2^{n^{2}}$ with n^{2} bits.
4. We give two equivalent definitions of a Randomized POTM-BA (RPOTM-BA). One is intuitive and the other is better for proofs.
(a) A Randomized POTM-BA (RPOTM-BA) is a POTM-BA that is allowed to flip coins. So there will be times where, rather than do STEP A it will do STEP A with probability (say) $1 / 3$ and STEP B with probability $2 / 3$. Hence we cannot say The machine accepts x using oracle bit string y but we can say The machine will accept x using oracle bit string y with probability ≥ 0.65.
(b) Note that for a RPOTM-BA computation many coins are flipped and are used. We can instead think of the string of coin flips as being part of the input, and then asking what fraction of the inputs accept. Formally, a Randomized POTM-BA (RPOTM-BA) is a POTM-BA that has 2 inputs x, τ. We will be concerned with the fraction of τ 's $(|\tau|$ will be a function of $|x|$) for which $M^{y}(x, \tau)$ accepts. We will refer to this as the probability that x with oracle bit string y is accepted since we think in terms of the string τ being chosen at random. We will refer to τ as a string of coin flips.

The following is an alternative definition of NP.
Definition 9.20. $A \in N P$ if there exists a POTM-BA $M^{()}$such that:
$x \in A \Rightarrow \exists^{p} y: M^{y}(x)=1$
$x \notin A \Rightarrow \forall^{\ominus} y: M^{y}(x) \neq 1$
If $x \in A$ then we think of y as being the EVIDENCE that $x \in A$. This evidence is short (only $p(|x|)$ long $)$ and checkable in polynomial time. Note that the computation of $M^{y}(x)$ may certainly use all of the bits of y. What if we (1) restrict the number of bits of the oracle that the computation can look at, and (2) use an RPOTM-BA?

Definition 9.21. Let $q(n)$ and $r(n)$ be monotone increasing functions from \mathbb{N} to \mathbb{N}. An $\boldsymbol{r}(\boldsymbol{n})$ random $q(n)$-query RPOTM-BA $M^{()}$is a RPOTM-BA where, for all y and for all x of length n, $M^{y}(x)$ flips $r(n)$ coins and makes $q(n)$ queries.

Definition 9.22. Let $r(n)$ and $q(n)$ be monotone increasing functions from \mathbb{N} to \mathbb{N} and $\varepsilon(n)$ be a monotone decreasing function from \mathbb{N} to $[0,1) . A \in \operatorname{PCP}(r(n), q(n), \varepsilon(n))$ if there exists an $r(n)$-random, $q(n)$-query RPOTM-BA $M^{()}$such that, for all n, for all $x \in\{0,1\}^{n}$, the following holds.

1. If $x \in A$ then there exists y such that, for all τ with $|\tau|=r(n), M^{y}(x, \tau)$ accepts. In other words, the probability of acceptance is 1 .
2. If $x \notin A$ then for all y at most $\varepsilon(n)$ of the τ 's with $|\tau|=r(n)$ make $M^{y}(x, \tau)$ accept. In other words, the probability of acceptance is $\leq \varepsilon(n)$.

We are only going to be concerned with $r(n)=O(\log n)$ and $q(n)=O(1)$ or $O(\log n)$. We will see below that we can assume $|y|=2^{q(n)+r(n)}$, which is polynomial in n.

Note: The queries are made adaptively. This means that the second question asked might depend on the answer to the first. Hence if $M^{y}(x, \tau)$ asks $q(n)$ questions then the total number of bit positions of the oracle string that are relevant for a fixed (x, τ) is $2^{q(n)}-1$. Since there are $2^{r(n)}$ values of τ there are a total of $2^{q(n)+r(n)}-1 \leq 2^{q(n)+r(n)}$ bit positions of the oracle string that are relevant for fixed x. Hence we can take $|y|=2^{q(n)+r(n)}$.

Example 9.23.

1. $\operatorname{SAT} \in \operatorname{PCP}(0, n, 0)$. The y value is the satisfying assignment. $M^{()}$makes all n queries and does not use random bits.
2. If φ is a formula let C be the number of clauses in it. 3SAT $\in \operatorname{PCP}\left(\lg (C), 3, \frac{C-1}{C}\right)$. The y value is the satisfying assignment. M picks a random clause and queries the 3 truth assignments. If they satisfy the clause, output YES, else NO. If $\varphi \in 3$ SAT then the algorithm will return YES. If $\varphi \notin$ 3SAT then the worst case is if y satisfies all but one of the clauses, hence the probability of error is $\leq \frac{C-1}{C}$.
3. Let $L \in \mathbb{N}$. 3SAT $\in \operatorname{PCP}\left(L \lg (C)+O(1), 3 L, \frac{C-L}{C}\right)$. Iterate the proof in part $2 L$ times.

Arora et. al [ALM $\left.{ }^{+} 98\right]$, building on the work of Arora et. al [AS98], proved the following theorem. This theorem is the cornerstone of lower bounds for approximations and is often called the PCP theorem .

We omit the proof which is difficult.

Theorem 9.24.

1. $S A T \in P C P\left(O(\log n), O(1), \frac{1}{2}\right)$.
2. For all constants $0<\varepsilon<1, S A T \in P C P(O(\log n), O(1), \varepsilon)$. (This is easily obtained by iterating the protocol from Part 1.)
3. SAT $\in P C P\left(O\left(\log ^{2} n\right), O(\log n), \frac{1}{n}\right)$. (This is easily obtained by iterating the protocol from Part 1.)

The result SAT $\in \operatorname{PCP}\left(O\left(\log ^{2} n\right), O(\log n), \frac{1}{n}\right)$ is not good enough for proving problems hard to approximate. Ajtai-Komlós-Szemerédi [AKS87] and Impagliazzo \& Zuckerman [IZ89] improved it by using a technique to reuse random bits. The technique involves doing a random walk on an expander graph. The next theorem is not in their papers; however, one can obtain it from their papers. See V. Vazirani [Vaz01] (Theorem 29.18).

Theorem 9.25.

1. $S A T \in P C P\left(O(\log n), O(\log n), \frac{1}{n}\right)$.
2. If $A \in N P$ then there exists $c, d \in \mathbb{N}$ such that $A \in P C P\left(c \log n, d \log n, \frac{1}{n}\right)$. (This follows from Part 1.)

9.7 Clique is Hard to Approximate

Arora et. al [$\mathrm{ALM}^{+} 98$], building on the work of Feige et. al [FGL+96], proved that Clique is hard to approximate. We will recognize the proof as a gap reduction.

Notation 9.26. If G is a graph then $\operatorname{OPT}(G)$ is the size of the largest clique in G.
We state both the upper and lower bound in this proof; however, we only prove the lower bound.

Note that approximating Clique is trivially in Poly-APX (just output N, the number of vertices). The following theorem improved on this trivial algorithm; however, does not put Cligue in a better approximation class. We will see later that, assuming $P \neq N P$, approximating clique cannot be put into a better approximation class.

In the following theorem, the size of a graph is the number of vertices. We use N for the number of vertices since n will be the length of a string in an NP-set A.

Theorem 9.27.

1. (Feige [Fei04]) There is an algorithm that, on input graph G with N vertices, outputs a clique of size

$$
\Omega\left(\frac{\log ^{3} N}{N(\log \log N)^{2}}\right) O P T(G)
$$

2. Let A be an $N P$-complete problem. Let c, d be such that $A \in P C P\left(c \lg n, d \lg n, \frac{1}{n}\right)(s u c h ~ a c, d$ exist by Theorem 9.25). There is a reduction that maps $x \in \Sigma^{*}(|x|=n)$ to a graph G on $N=n^{c+d}$ vertices such that:

- If $x \in A$ then $O P T(G) \geq n^{c}=N^{c /(c+d)}$.
- If $x \notin A$ then $O P T(G) \leq n^{c-1}=N^{(c-1) /(c+d)}$.

3. Gap(CliQue, $\left.N^{c /(c+d)}, N^{(c-1) /(c+d)}\right)$ is N P-hard. (This follows from Part 2 and Lemma 9.13.)
4. If there is an approximation algorithm for Clique that, on input G, where G has N vertices, returns a number $>\frac{1}{N^{1 /(c+d)}} O P T(G)$, then $P=N P$. (This follows from Part 2 and Lemma 9.13.)
5. Assuming $P \neq$ NP, CLIQUE \in Poly-APX - Log-APX. (This follows from parts 1,4.)

Proof:

We just prove part 2.
Let A, c, d be as in the statement of the theorem. To avoid notational clutter we say "run the PCP on (x, τ) " rather than give the RPOTM-BA for A a name.

1. Input x of length n.
2. Form a graph $G=(V, E)$ as follows:
(a) $V=\{0,1\}^{c \lg n+d \lg n}$. Note that there are $N=n^{c+d}$ vertices.
(b) This step will help us determine the edges. For each vertex write it as $\tau \sigma$ where $|\tau|=$ $c \lg n$ and $|\sigma|=d \lg n$. Run the PCP on (x, τ) and answer the i th query made with the i th bit of σ. Keep track of which queries were made, what the answers were, and if the computation accepted.
(c) We now determine the edges. Let $\tau \sigma$ and $\tau^{\prime} \sigma^{\prime}$ be two vertices. We know both the queries and the answers made when running $\operatorname{PCP}(x, \tau)$ using σ for the answers, and running $\operatorname{PCP}\left(x, \tau^{\prime}\right)$ using σ^{\prime} for the answers. Connect the two vertices $\tau \sigma$ and $\tau^{\prime} \sigma^{\prime}$ if (1) both represent computations that accept, (2) $\tau \neq \tau^{\prime}$, and (3) the answers to queries do not contradict.
3. Output the graph.

Note the following:

1. If $x \in A$ then there exists a consistent way to answer the bit-queries such that, for all $\tau \in\{0,1\}^{c \lg n}$, the PCP on (x, τ) accepts. Hence OPT $(G) \geq 2^{c \lg n}=n^{c}=N^{c /(c+d)}$.
2. If $x \notin A$ then any consistent way to answer the bit-queries will make $\leq \frac{1}{n}$ of the $\tau \in$ $\{0,1\}^{c \lg n}$ accept. Hence OPT $(G) \leq n^{c-1}=N^{(c-1) /(c+d)}$.

Note: Theorem 9.27 showed that, for $\delta=\frac{1}{c+d}$, if there is an algorithm that returns a number $>\frac{1}{n^{\delta}} \mathrm{OPT}(G)$ then $\mathrm{P}=\mathrm{NP}$. Better results are known:

1. Hastad [Has99] showed that, for all $0 \leq \delta<1$, if there is an algorithm that returns a number $\geq \frac{1}{n^{\delta}} \mathrm{OPT}(G)$ then $\mathrm{ZPP}=\mathrm{NP}$.
2. Zuckerman [Zuc07] showed that, for all $0 \leq \delta<1$, if there is an algorithm that returns a number $\geq \frac{1}{n^{\delta}} \mathrm{OPT}(G)$ then $\mathrm{P}=\mathrm{NP}$.

9.8 Set Cover is Hard to Approximate

The definition of Set Cover is in Section 8.8.2.
Notation 9.28. An algorithm approximates Set Cover within a factor of $f(n)$ if it outputs a number that is $\leq f(n)$ OPT.

The following are known.

Theorem 9.29.

1. Chvatal [Chv79] showed that a simple greedy algorithm approximates SET COVER within a factor of $\ln (n)$.
2. Slavik [Sla97] gave a slight improvement by replacing the $\ln n$ with $\ln n-\ln (\ln n)-O(1)$.
3. Lund \& Yannakakis [LY94] showed that, for any $0<c<1 / 4$, if SET Cover can be approximated within a factor of $c \lg n$ then NP $\subseteq D T I M E\left(n^{\text {polylog(n) }}\right)$.
4. Dinur \& Steurer [DS13] showed that if there exists $\varepsilon>0$ such that SET COVER can be approximated within a factor of $(1-\varepsilon) \ln n$ then $P=N P$.
5. There were many intermediary results between Lund \& Yannakakis [LY94] and Dinur \& Steurer [DS13]. Melder [Mel21] presents a guide to the papers needed to obtain the result and how they fit together. This guide is summarized in in Figure 9.1.

Note: How does m, the number of sets, impact these results? The lower bound proofs apply for m very small, like $n^{0.0001}$. Hence, when we later do reductions of Set Cover to other problems we can assume m is small.

The lower bound papers do not use PCP's. They instead use a close cousin: 2-prover-1-round interactive proof systems.

For the next exercise we will consider the following problem which can be seen as the dual of Set Cover.

Max Coverage
Instance: n, Sets $S_{1}, \ldots, S_{m} \subseteq\{1, \ldots, n\}$, and k.
Question: What is the largest size of a set $X \subseteq\{1, \ldots, n\}$ such that there exists a set of $k S_{i}$'s that contain the elements of X ?

Exercise 9.30. Let $\varepsilon>0$. Show that if there is an approximation algorithm for Max Coverage which returns $\left(1-\frac{1}{e}+\varepsilon\right)$ OPT then $\mathrm{P}=\mathrm{NP}$.
Hint: Use Theorem 9.29.4 and a gap reduction.

Figure 9.1: The history of Set Cover lower bounds.

9.9 Max 3SAT is Hard to Approximate

Arora et. al $\left[\mathrm{ALM}^{+} 98\right]$ proved that MAx 3SAT is hard to approximate. We will recognize the proof as a gap reduction.

Notation 9.31. If φ is a 3 CNF formula (so every clause has ≤ 3 literals) then $\operatorname{OPT}(\varphi)$ is the max number of clauses that can be satisfied simultaneously.

We state both the upper and lower bound in this proof. We prove one of the upper bounds; however, our main interest is in the lower bound.

Notation 9.32. Let $q \in \mathbb{N}$. Then $C(q)$ is the maximum number of clauses in a 3CNF formula on 2^{q} variables. Note that $C(q)=O\left(2^{3 q}\right)$. Since q is constant, $C(q)$ is constant.

In the following theorem, the size of a 3 CNF formula is the number of clauses.

Theorem 9.33.

1. Restrict MAX 3SAT to formulas that have exactly three literals per clause. There is an algorithm that, given such a φ, returns a number that is $\geq 0.8750 P T(\varphi)$.
2. Karloff \& Zwick [KZ97] have a randomized polynomial time algorithm for MAX 3SAT (noteclauses can have 1, 2, or 3 literals) that, on input φ, does the following: (1) if $\varphi \in$ SAT returns an assignment that satisfies $\geq 0.875 \operatorname{OPT}(\varphi)$ of the clauses, (2) if $\varphi \notin$ SAT then there is good evidence that the algorithm still returns an assignment that satisfies $\geq 0.875 O P T(\varphi)$ clauses.
3. Let A be NP-complete. Let $c, q \in \mathbb{N}$ such that $A \in P C P(c \lg n, q, 0.25)$ (such a c, q exist by Theorem 9.24). There is a reduction that maps $x \in \Sigma^{*}$ to a $3 C N F$ formula φ such that:
(a) If $x \in A$ then $\operatorname{OPT}(\varphi)=|\varphi| .(\varphi \in 3 S A T$ so all $|\varphi|$ clauses are satisfied. $)$
(b) If $x \notin A$ then $\operatorname{OPT}(\varphi) \leq\left(1-\frac{3}{4 C(q)}\right)|\varphi|$.
(c) The output φ has exactly 3 literals per clause.
4. $\operatorname{GAP}\left(\operatorname{MAX} 3 S A T, m,\left(1-\frac{3}{4 C(q)}\right) m\right)$ is NP-hard (where m is the number of clauses). This holds even if φ is restricted to having exactly 3 literals per clause. (This follows from Part 3 and Lemma 9.13.)
5. If there is an approximation algorithm for MAX 3SAT that, on input φ, returns a number $>\left(1-\frac{3}{4 C(q)}\right) O P T(\varphi)$ then $P=N P$. (This follows from Part 3 and Lemma 9.13.)
6. Assuming $P \neq N P$, Max $3 S A T \in A P X-P T A S$. (The problem that separates them is MAX 3SAT restricted to formulas that have exactly 3 literals per clause. This follows from Parts 1 and 5.)

Proof sketch:

We just prove parts 1,3.

1) We first give a randomized algorithm: Assign each variable to true or false at random. The probability of a particular clause being satisfied is $\frac{7}{8}=0.875$, so by linearity of expectation we expect $\frac{7}{8}$ of the clauses to be satisfied. This gives a randomized algorithm that outputs a number \geq
$0.875 \mathrm{OPT}(\varphi)$. This algorithm can be derandomized using the method of conditional probabilities. Details can be found in either V. Vazirani's book [Vaz01] or Shmoys-Williamson's book [WS11].
2) Let A, c, q be as in the statement of the theorem. To avoid notational clutter we say "run the PCP on (x, τ) " rather than give the RPOTM-BA for A a name.
1. Input x.
2. Form a 3CNF formula ψ as follows:
(a) The PCP for A can only make $2^{q+c \lg n}=2^{q} n^{c}$ possible bit-queries. There are $2^{q} n^{d}$ variables, one for each possible bit-query.
(b) For every $\tau \in\{0,1\}^{\operatorname{clg} n}$ do the following. For every $\sigma \in\{0,1\}^{q}$ run the $\operatorname{PCP}(x, \tau)$ using σ for the query answers. Keep track of which ones accepted and which ones rejected. From this information form a formula on $\leq 2^{q}$ variables that is true if and only if the PCP accepts with those answers (using τ for the coin flips). Constructing the formula takes polynomial time since q (and hence 2^{q}) is constant. Convert this formula to 3 CNF (this easily takes polynomial time). Call the result ψ_{τ}. Note that ψ_{τ} has between 1 and $C(q)$ clauses.
(c) ψ is the AND of the n^{c} formulas from the last step. Note that ψ is in 3CNF form.

Note the following.

1. Assume $x \in A$. Then there exists a consistent way to answer the bit-queries such that, for all $\tau \in\{0,1\}^{c \lg n}$, the PCP on (x, τ) accepts. Hence every ψ_{τ} can be satisfied simultaneously. Therefore the fraction of clauses of ψ that can be satisfied is 1 . Hence $\operatorname{OPT}(\varphi)=|\varphi|$.
2. Assume $x \notin A$. Then every consistent way to answer the bit-queries will make $\leq \frac{1}{4}$ of the $\tau \in\{0,1\}^{c \lg n}$ accept. We need to estimate the fraction of clauses of ψ that are satisfied. This fraction is maximized when the following occurs: (1) all n^{c} of the ψ_{τ} have $C(q)$ clauses, (2) there is an assignment that satisfies all $C(q)$ clauses in $1 / 4$ of the ψ_{τ}, and $C(q)-1$ clauses in $3 / 4$ of the ψ_{τ}. Hence the fraction of clauses satisfied is

$$
\frac{\left(n^{c} / 4\right) C(q)+\left(3 n^{c} / 4\right)(C(q)-1)}{n^{c} C(q)}=\frac{n^{c} C(q)-\left(3 n^{c} / 4\right)}{n^{c} C(q)}=1-\frac{3}{4 C(q)}
$$

Hence $\operatorname{OPT}(\varphi) \leq\left(1-\frac{3}{4 C(q)}\right)|\varphi|$.

Theorem 9.33 shows that if there is an algorithm that returns a number $>\left(1-\frac{3}{4 C(q)}\right) \mathrm{OPT}(\varphi)$ then $P=N P$. This is sufficient to show MAx 3SAT \notin PTAS but still leaves open the question of whether the best known approximation, $0.875 \mathrm{OPT}(\varphi)$ is optimal. It is. Hastad [Has01] proved the following:

Theorem 9.34.

1. Let $0<\varepsilon<1$. Let our formulas have $4 m$ clauses. Then

$$
\operatorname{GAP}(\operatorname{MAX} 3 S A T, 4(1-\varepsilon) m, 3.5(1+\varepsilon) m)
$$

is NP-hard.
2. Let $0<\varepsilon<1$. Let our formulas have m clauses. Then

$$
\operatorname{GAP}(\operatorname{MAX} 3 S A T,(1-\varepsilon) m, 0.875(1+\varepsilon) m)
$$

is NP-hard. (This follows from Part 1.) This result holds when MAX 3SAT is restricted to having exactly 3 literals per clause. Hence this result is a lower bound that matches the upper bound in Theorem 9.33.1.
3. Let $0<\delta<1$. If there is an approximation algorithm for MAX 3SAT that, on input φ, returns a number $>(0.875+\delta) O P T(\varphi)$ then $P=N P$. (This follows from Part 2.)

In Section 9.10 we will use Theorem 9.34 to obtain lower bounds on how well one can approximate Vertex Cover. In Chapter 10 we will use Theorem 9.34 to obtain many lower bounds on approximation.

9.10 Vertex Cover is Hard to Approximate

We show a lower bound on how well Vertex Cover can be approximated by using a reduction from the GAP version of MAx 3SAT that was discussed in Theorem 9.34 to a GAP version of Vertex Cover.

Theorem 9.35. We consider Vertex Cover. There is an algorithm that will, given a graph G, output a number that is $\leq 2 O P T(G)$.

Proof sketch:

Here is the algorithm.

1. Input $G=(V, E)$.
2. Let $M=\emptyset$. Add edges to M so that no two edges in M share a vertex, until you can add no more. This gives a maximal matching.
3. Output U, the set of endpoints of the edges in M.
U is a vertex cover since, if $e=(a, b)$ has neither endpoint in U then M was not maximal as it could have added e.

We leave it to the reader to show that $\mathrm{OPT} \geq|M| \geq \frac{|U|}{2}$.

The following theorem seems to be new; however, it is weaker than the best known results. We prove a lower bound on approximating Vertex Cover, however we give enough information in the proof so that the reader can obtain lower bounds on approximating Ind. Set and Clique.

Theorem 9.36. We are considering the problem Vertex Cover. Let $\delta>0$. If there is an algorithm that, on input a graph G, returns a number $\leq(\alpha-\delta) O P T(G)$ where $\alpha=1.107$, then $P=N P$.

Proof sketch:

We assume that there is an algorithm that, given a graph G, returns a number $\leq(\alpha-$ $\delta) \operatorname{OPT}_{\text {Vertex Cover }}(G)$. To avoid notational clutter we will call it the algorithm. We will prove this with α and only at the end see what α has to be to make the proof work.

Let ε be a parameter to be named later. It will depend on δ and α. By Theorem 9.34

$$
\operatorname{GAP}(\operatorname{MAx} 3 S A T,(1-\varepsilon) m, 0.875(1+\varepsilon) m)
$$

is NP-hard. We present a polynomial-time algorithm for this GAP problem that uses the approximation algorithm for Vertex Cover.

We will use the fact that, if G has n vertices, then $\operatorname{OPT}_{\text {Ind. Set }}(G)=n-\operatorname{OPT}_{\text {Vertex Cover }}(G)$.

1. Input $\varphi=C_{1} \wedge \cdots \wedge C_{m}$, a formula in 3 CNF where every clause has exactly 3 literals. We are promised that either
(1) $\operatorname{OPT}_{\text {MAX } 3 \operatorname{SAT}}(\varphi) \geq(1-\varepsilon) m$, or
(2) $\operatorname{OPT}_{\text {MAx 3SAT }}(\varphi) \leq(0.875+\varepsilon) m$.
2. Create a graph G as follows.
(a) For each C_{i} we have a vertex for each literal. Hence G has $3 m$ vertices.
(b) Put an edge between every pair of vertices in the same C_{i}. Put an edge between vertices from different C_{i} 's if they contradict each other.
3. (This is commentary, not part of the algorithm). The reader should be able to work out that If $\operatorname{OPT}_{\text {MAX } 3 \text { SAT }}(\varphi) \geq(1-\varepsilon) m$ then $\operatorname{OPT}_{\text {VERTEX COVER }}(G)=\leq 3 m-(1-\varepsilon) m=(2+\varepsilon) m$ If $\operatorname{OPT}_{\text {MAX } 3 \text { SAT }}(\varphi) \leq(0.875+\varepsilon) m$ then $\operatorname{OPT}_{\text {Vertex }} \operatorname{Cover}(G) \geq(2.125-\varepsilon) m$
4. Run the algorithm on G to produce number z.
5. (This is commentary, not part of the algorithm).

Note the following two cases.
(1) $\operatorname{OPT}_{\text {Max } 3 \text { Sat }}(\varphi) \geq(1-\varepsilon) m$ so $\operatorname{OPT}_{\text {Vertex }} \operatorname{Cover}(G) \leq(2+\varepsilon) m$. Hence $z \leq(\alpha-\delta)(2+\varepsilon) m$.
(2) $\operatorname{OPT}_{\mathrm{Max} 3 \mathrm{SAT}}(\varphi) \leq(0.875+\varepsilon) m$ so $\mathrm{OPT}_{\mathrm{Vertex} \operatorname{Cover}}(G) \geq(2.125-\varepsilon) m$. Hence $z \geq$ $(2.125-\varepsilon) m$.
To make these two cases disjoint we need

$$
\begin{gathered}
(\alpha-\delta)(2+\varepsilon)<(2.124-\varepsilon) \\
\alpha-\delta<\frac{2.214-\varepsilon}{2+\varepsilon}
\end{gathered}
$$

We want to make α as large as possible so take $\alpha=\frac{2.214}{2}=1.107$. Given δ we can then pick ε such that the inequality above holds.
6. If $z \leq(\alpha-\delta)(2+\varepsilon) m$ then output $\operatorname{OPT}(\varphi) \geq(1-\varepsilon) m$.

If $z \geq(2.125-\varepsilon)$ then output $\operatorname{OPT}(\varphi) \leq(0.875+\varepsilon) m$.

Exercise 9.37. In the proofs of Theorems 9.27 and 9.33 we used the Gap lemmas (Lemmas 9.13,9.15) which have as a premise a reduction from an $N P$-hard set A to a GAP problem. In the proof of Theorem 9.36 we directly reduced a GAP problem to a GAP problem. Devise and prove Gap Lemmas that use a reduction from a GAP problem to a GAP problem.

Are better lower bounds for approximating Vertex Cover known? Yes. We state two results.
Theorem 9.38. Let $\delta>0$.

1. (Hastad [Has01]) If there is an algorithm that, on input a graph G, returns a number \leq $(1.166 \ldots-\delta) O P T(G)$, then $P=N P$ (the number is actually $\frac{7}{6}$).
2. (Dinur \& Safra [DS05]) If there is an algorithm that, on input a graph G, returns a number $\leq(1.3606 \ldots-\delta) O P T(G)$, then $P=N P$ (the number is actually $10 \sqrt{5}-21$).
3. The 2-to-2 Unique Games Conjecture was proven in a sequence of papers [KMS17, KMS18, $\left.D K K^{+} 18 a, D K K^{+} 18 b\right]$. See [Kho19] for an overview and how the conjecture implies the following. If there is an algorithm that, on input a graph G, returns a number $\leq(1.414 \ldots-\delta)$ then $P=N P$ (the number is actually $\sqrt{2}$).

Are better lower bounds for approximating Vertex Cover known? There are no NP-hardness results known. However, in Chapter 11 we will state the Unique Games Conjecture from which several lower bounds can be proven, including a lower bound of $2-\delta$ for approximating Vertex Cover.

9.11 Projects

The lower bounds in this chapter used the PCP machinery as a black box. The lower bounds on Set Cover used other hard theorems as a black box. This chapter could have been titled

Hardness Results on Approximation Made Easy By Leaving Out the Hard Parts
One can lean into this mentality and have more write-ups along those lines.

Project 9.39.

1. Take the theorems in Note 9.7 and write them up leaving out the hard parts.
2. Take Theorem 9.34 and write it up leaving out the hard parts.

Or one might try to get easier proofs.
Project 9.40. Obtain easier proofs of lower bounds on approximation by either finding a direct proof that avoids the PCP machinery, or by making the PCP machinery easier.

Chapter 10

Inapproximability

10.1 Introduction

In Chapter 9 we stated the following:
Theorem 10.1. Assuming $P \neq N P$:

1. TSP \notin Poly-APX.
2. Clique \in Poly-APX - Log-APX.
3. Set Cover $\in \log -A P X-A P X$.
4. MAX $3 S A T \in A P X-P T A S$.

In this chapter we will use these results to show problems are hard to approximate.

Chapter Summary

1. Assume $P \neq N P$. We use reductions from Max 3 SAT to show that several problems are not in PTAS.
2. Assume $P \neq$ NP. We use reductions from SET COVER to show that several problems are not in $A P X$.
3. We briefly discuss Log-APX and Poly-APX; however, there are very few results about them.
4. We briefly discuss the class NPO which captures some other aspects of approximation.

Convention 10.2. For the rest of this chapter, "problem" means NPO problem. When A and B are mentioned they are NPO problems. We will often say whether A is a min problem or a max problem.

Notation 10.3. Recall that if A is an NPO then the cost (if it's a min problem) or benefit (if it's a max problem) of a solution can be computed in polynomial time. If the problem is understood, x is an instance, and y is a solution, then benefit (x, y) is the benefit and $\operatorname{cost}(x, y)$ is the cost. For example, if the problem is Cligue then the instance is a graph G, the solution is a clique C, and benefit (G, C) is the size of C.

Everything in sections $10.2,10.3,10.4$, and 10.5 is by Papadimitriou \& Yannakakis [PY91] with a caveat. They had a very different outlook since Theorem 9.33 was not known when they wrote their paper. For that reason they could not have proven a statement like

$$
\text { If VERTEX Cover with degree } \leq 4 \text { has a PTAS then } P=N P \text {. }
$$

However, they had the reductions in place so that once approximating MAx 3SAT was shown to be NP-hard, that kind of result followed.

10.2 Lower Bounds on Approximability

Papadimitriou \& Yannakakis [PY91] proved the following.
Theorem 10.4. If MAX $3 S A T \in P T A S$ then every problem in APX has a PTAS.
Note that MAx 3SAT \in APX. Papadimitriou \& Yannakakis called problems like MAx 3SAT APX-complete (we define this later). They then showed many problems were APX-complete.

We contrast what they could conclude with what we can conclude. Let X be a problem in APX that we wish to show is likely not in PTAS.

1. They showed that there is an approximation preserving reduction (to be defined) from Max 3SAT to X. Hence, if X has a PTAS then PTAS $=A P X$. Therefore X is unlikely to have a PTAS.
2. We use the same reductions they did; however, armed with Theorem 9.33, we can say if X has a PTAS then $P=N P$.

We will use their reductions; however, we will not need the notion of APX-complete since we have Theorem 9.33 . We may still use the terminology for convenience.

We define the appropriate reductions, which are more complicated than the reduction \leq_{p}.
Definition 10.5. Let A and B be 2 optimization problems. An approximation preserving reduction (APR) from A to B is a pair of polynomial-time functions (f, g) such that the following holds:

- If x is an instance of A then $f(x)$ is an instance of B.
- If y is a solution for $f(x)$ then $g(x, y)$ is a solution for x. We will later define types of reductions where a good solution for B maps to a good solution for A, for some notion of "good". Since we are only interested in good (whatever that might mean) solutions we may restrict g to solutions y that do not have an obvious improvement. For example, if the problem is MAxSAT (maximize the number of clauses satisfied), we may assume that any variable that appears without negations is set to true.
- We usually do not use the notation " f and g ". Instead (1) x will be an instance of A, x^{\prime} will be the instance of B that x maps to $\left(f(x)=x^{\prime}\right)$, and (2) y^{\prime} will be the solution to x^{\prime}, and y will be the solution of x that y^{\prime} maps to $\left(g\left(y^{\prime}\right)=y\right)$.
- Note that we have not specified how this reduction preserves approximation. And we won't. The name Approximation Preserving is not quite right. We will define reductions that begin "Blah is an approximation preserving reduction that also has property Blah Blah".

The idea here is that f transforms instances of A into instances of B while g transforms solutions for B instances into (in some sense equally good) solutions for the A instance.

Let's refine the above idea further:

Definition 10.6.

1. A PTAS reduction is an approximability preserving reduction satisfying the following additional constraint:
for any $\varepsilon>0$, there is a $\delta=\delta(\varepsilon)>0$ such that, if y^{\prime} is a $(1+\delta(\varepsilon))$-approximation to B, then y is a $(1+\varepsilon)$-approximation to A. Note that here we allow the f and g functions to depend on ε. We will assume that the function δ is monotone increasing and goes to infinity.
2. A strict reduction is an APX reduction where $\delta(\varepsilon)=\varepsilon$. This is a very strong concept of reduction.

Definition 10.7.

1. An $A P X$ reduction is a PTAS-reduction for which the δ function is linear in ε. This is a convenient reduction to use because if $B \in O(f)$-APX, then $A \in O(f)$-APX.

Papadimitriou and Yannakakis defined APX-hard and APX-complete. We will give a different definition which is equivalent and makes more sense given that we have Theorem 9.33.

Their definition:

Definition 10.8.

1. A problem B is $\boldsymbol{A P X}$-hard if, for all $A \in \mathrm{APX}$, there is an APX-reduction from A to B.
2. A problem B is $\boldsymbol{A P X}$-complete if B is APX-hard and $B \in A P X$.

Our definition:

Definition 10.9.

1. A problem B is $\mathbf{A P X}$-hard if there is an APX-reduction from Max 3SAT to B.
2. A problem B is $\boldsymbol{A P X}$-complete if B is APX-hard and $B \in \mathrm{APX}$.

Henceforth we use our definition of APX-complete.
Note: The equivalence of these 2 definitions is not obvious. It depends on the theorem (due to Papadimitriou and Yannakakis) that MAX 3SAT is APX-complete using Definition 10.8. We will not prove their theorem, nor do we need the equivalence of the two definitions of APX-hard and APX-complete.

The following follows from Theorem 9.33 and our definition of APX-complete.

Theorem 10.10. If B is $A P X$-complete then:

1. $B \in A P X$.
2. If $B \in P T A S$ then $P=N P$.

Exercise 10.11. Assume there is a PTAS reduction from A to B.

1. Prove that if $B \in$ PTAS then $A \in$ PTAS. We will use the contrapositive form: if $A \notin \mathrm{PTAS}$ then $B \notin$ PTAS.
2. Prove that if $B \in \mathrm{APX}$ then $A \in \mathrm{APX}$. We will use the contrapositive form: if $A \notin \mathrm{APX}$ then $B \notin \mathrm{APX}$.
3. Assume A is reducible to B with a strict reduction. Also assume that A and B are both MAX-problems (a similar theorem holds if they are Min-problems). Let $\varepsilon>0$. Prove that if B has a $(1+\varepsilon)$-approximation then A has a $(1+\varepsilon)$-approximation. We will use the contrapositive form: If A does not have a $(1+\varepsilon)$-approximation then B does not have a $(1+\varepsilon)$-approximation.

PTAS reductions are all a bit awkward to work with directly because all of the approximability results use a multiplicative factor. In practice, people use L-reductions.

The reader is advised to look at Convention 9.1 again for the use of the notation OPT.
Definition 10.12. An L-reduction from A to B is an approximation preserving reduction which satisfies the following 2 properties:

- $\mathrm{OPT}_{B}\left(x^{\prime}\right)=O\left(\mathrm{OPT}_{A}(x)\right)$.
- If A is a min problem then

$$
\left|\operatorname{cost}_{A}(y)-\mathrm{OPT}_{A}(x)\right|=O\left(\left|\operatorname{cost}_{B}\left(y^{\prime}\right)-\mathrm{OPT}_{B}\left(x^{\prime}\right)\right|\right)
$$

- If A is a max problem then

$$
\left|\operatorname{benefit}_{A}(y)-\mathrm{OPT}_{A}(x)\right|=O\left(\left|\operatorname{benefit}_{B}\left(y^{\prime}\right)-\mathrm{OPT}_{B}\left(x^{\prime}\right)\right|\right) .
$$

We denote this reduction by $A \leq_{L} B$. (The L stands for "Linear".)
L reductions are stronger than APX reductions (as we will show) so the existence of an L reduction implies the existence of an APX reduction which implies the existence of a PTAS reduction. Note that L reductions are not stronger than strict reductions.

Theorem 10.13. If $A \leq_{L} B$ then that same reduction is an $A P X$-reduction.
Proof:
Let's prove that this is an APX reduction. We will do this in the minimization case.
$\mathrm{OPT}_{B}\left(x^{\prime}\right)=O\left(\mathrm{OPT}_{A}(x)\right)$ so there exists a constant $\alpha>0$ such that

$$
\mathrm{OPT}_{B}\left(x^{\prime}\right) \leq \alpha \mathrm{OPT}_{A}(x)
$$

$\left|\operatorname{cost}_{A}(y)-\mathrm{OPT}_{A}(x)\right|=O\left(\left|\operatorname{cost}_{B}\left(y^{\prime}\right)-\mathrm{OPT}_{B}\left(x^{\prime}\right)\right|\right)$, so because this is a minimization problem, there exists a positive constant β such that

$$
\operatorname{cost}_{A}(y)-\mathrm{OPT}_{A}(x) \leq \beta\left(\operatorname{cost}_{B}\left(y^{\prime}\right)-\mathrm{OPT}_{B}\left(x^{\prime}\right)\right)
$$

To show that the L-reduction is an APX-reduction we need to show that there is a constant γ such that if

$$
\operatorname{cost}_{B}\left(x^{\prime}\right) \leq(1+\gamma \varepsilon) \mathrm{OPT}_{B}\left(x^{\prime}\right)
$$

then

$$
\operatorname{cost}_{A}(x) \leq(1+\varepsilon) \mathrm{OPT}_{A}(x)
$$

We will derive γ. Let $\delta=\gamma \varepsilon$.
Assume that $\operatorname{cost}_{B}\left(y^{\prime}\right) \leq(1+\delta) \mathrm{OPT}_{B}\left(x^{\prime}\right)$. We want to obtain

$$
\operatorname{cost}_{A}(y) \leq(1+\varepsilon) \mathrm{OPT}_{A}(x)
$$

We know that

$$
\operatorname{cost}_{A}(y) \leq \mathrm{OPT}_{A}(x)+\beta \operatorname{cost}_{B}\left(y^{\prime}\right)-\beta \mathrm{OPT}_{B}\left(x^{\prime}\right)
$$

We factor out $\mathrm{OPT}_{A}(x)$ to get

$$
\operatorname{cost}_{A}(y) \leq \mathrm{OPT}_{A}(x)\left(1+\frac{\beta \operatorname{cost}_{B}\left(y^{\prime}\right)}{\mathrm{OPT}_{A}(x)}-\frac{\beta \mathrm{OPT}_{B}\left(x^{\prime}\right)}{\mathrm{OPT}_{A}(x)}\right)
$$

Since

$$
\frac{1}{\mathrm{OPT}_{A}(x)} \leq \frac{\alpha}{\mathrm{OPT}_{B}\left(x^{\prime}\right)}
$$

we have

$$
\operatorname{cost}_{A}(y) \leq \operatorname{OPT}_{A}(x)\left(1+\frac{\alpha \beta \operatorname{cost}_{B}\left(y^{\prime}\right)}{\mathrm{OPT}_{B}\left(x^{\prime}\right)}-\frac{\alpha \beta \mathrm{OPT}_{B}\left(x^{\prime}\right)}{\mathrm{OPT}_{B}\left(x^{\prime}\right)}\right)
$$

Hence

$$
\operatorname{cost}_{A}(y) \leq \operatorname{OPT}_{A}(x)\left(1+\frac{\alpha \beta \operatorname{cost}_{B}\left(y^{\prime}\right)}{\operatorname{OPT}_{B}\left(x^{\prime}\right)}-\alpha \beta\right)
$$

Since $\operatorname{cost}_{B}\left(y^{\prime}\right) \leq(1+\delta) \operatorname{OPT}_{B}\left(x^{\prime}\right)$, we have $\frac{\operatorname{cost}_{B}\left(y^{\prime}\right)}{\operatorname{OPT}_{B}\left(x^{\prime}\right)} \leq 1+\delta$, so

$$
\operatorname{cost}_{A}(y) \leq O P T_{A}(x)(1+\alpha \beta(1+\delta)-\alpha \beta)=\operatorname{OPT}_{A}(x)(1+\alpha \beta \delta)
$$

Hence

$$
\operatorname{cost}_{A}(y) \leq \mathrm{OPT}_{A}(x)(1+\alpha \beta \gamma \varepsilon)
$$

It suffices to take $\gamma=\frac{1}{\alpha \beta}$.

Exercise 10.14.

1. Show that if $A \leq_{L} B$ and $B \leq_{L} C$ then $A \leq_{L} C$.
2. Show that if $A \leq_{L} B$ with a strict reduction and $B \leq_{L} C$ with a strict reduction, then $A \leq_{L} C$ with a strict reduction.

10.3 Max 3SAT and Its Variants

The results in this section are essentially due to Papadimitriou \& Yannakakis [PY91]. We define several SAT problems. We include MAX 3SAT since the other SAT problems are variant of it.

MAx 3SAT
Instance: A formula φ where every clause has ≤ 3 literals.
Output: The max number of clauses that can be satisfied by an assignment.

MAx 3SAT- a

Instance: A formula φ where every clause has ≤ 3 literals and every variable occurs $\leq a$ times.
Output: The max number of clauses that can be satisfied by an assignment.
Note: This problem is not interesting in its own right; however, it will be used to show several problems on graphs of bounded degree are hard to approximate.

MAx 2SAT

Instance: A formula φ where every clause has ≤ 2 literals
Output: The max number of clauses that can be satisfied by an assignment.

MAX NAE-3SAT

Instance: A formula φ where every clause has ≤ 3 literals.
Output: The max number of clauses that can be satisfied by an assignment with the extra condition that no clause has all of its literals true.
Note: NAE stands for Not-All-Equal.
Note: This problem is not interesting in its own right; however, it will be used to show Max Cut is hard to approximate.

We will need the following exercise.
Exercise 10.15. Let φ be a formula with C clauses where every clause has ≤ 3 literals. Prove that the max number of clauses that can be satisfied is $\geq \Omega(C)$ (and hence clearly $\Theta(C)$).
Hint: Use Theorem 9.33.1.

10.4 Reductions from Max 3SAT and Its Variants

We first show a reduction from Max 3SAT to Max 3SAT-3 which is not a PTAS reduction to motivate that we need a more sophisticated reduction.

1. Input $\varphi\left(x_{1}, \ldots, x_{n}\right)$. Assume φ has m clauses.
2. For each variable x that occurs ≥ 4 times do the following:
(a) Let k be the number of times x occurs. Introduce new variables z_{1}, \ldots, z_{k}.
(b) Replace the k occurrences of x with z_{1}, \ldots, z_{k}.
(c) Add the clauses $\left(z_{1} \rightarrow z_{2}\right),\left(z_{2} \rightarrow z_{3}\right), \ldots,\left(z_{L-1} \rightarrow z_{k}\right),\left(z_{k} \rightarrow z_{1}\right)$. These clauses are an attempt to force all of the z_{i} to have the same truth value. If this was a decisionproblem reduction then the attempt would succeed. (Formally we would use $z_{1} \vee \neg z_{2}$ for $z_{1} \rightarrow z_{2}$.)

Let φ^{\prime} be the new formula.

Clearly every variable occurs ≤ 3 times. Clearly $\varphi \in$ 3SAT if and only if $\varphi^{\prime} \in$ 3SAT. But we need more. We need to be able to take an assignment that satisfies many clauses of φ^{\prime} and map it to an assignment that satisfies many clauses of φ.

We give an example to show why the reduction does not work.

$$
\varphi(x)=(x \vee x \vee x) \wedge \cdots \wedge(x \vee x \vee x) \wedge \cdots \wedge(\neg x \vee \neg x \vee \neg x) \wedge \cdots \wedge(\neg x \vee \neg x \vee \neg x)
$$

where there are $m(x \vee x \vee x)$ clauses and $m(\neg x \vee \neg x \vee \neg x)$ clauses. Note that the MAx 3SAT value is m.
φ^{\prime} will be

If we set $z_{1}, \ldots, z_{3 m}$ to TRUE and $z_{3 m+1}, \ldots, z_{6 m}$ to FALSE then we satisfy every single clause except $z_{3 m} \rightarrow z_{3 m+1}$. That's $2 m-1$ clauses. Hence φ^{\prime} has a satisfying assignment that satisfies $\frac{2 m-1}{2 m}$ of its clauses. The max fraction of clauses that can be satisfied by the original φ is $\frac{1}{2}$. Thats a big difference. More to the point, there is no useful way to take this assignment for φ^{\prime} and map it to an assignment for φ that satisfies many clauses. Hence if we want to reduce MAx 3SAT to MAx 3SAT-3 we will need to use a more intricate reduction.

In the failed reduction we used a cycle to connect the different variables that are supposed to all have the same truth value. In the correct reduction we will use a more complicated graph.

Recall that the degree of a graph is the maximum degree of the vertices.
Definition 10.16. Let $d \in \mathbb{N}$. A \boldsymbol{d}-expander graph is a graph $G=(V, E)$ where (1) every vertex has degree d and (2) for every partition $V=V_{1} \cup V_{2}$ the number of edges from vertices in V_{1} to vertices in V_{2} is $\geq \min \left(\left|V_{1}\right|,\left|V_{2}\right|\right)$.

Note: There are many different notions of expander graph that are not equivalent. Hence you may come across a different definition in the literature. They all involve graphs which somehow combine high connectivity with a small number of edges. We will only use the definition above.

The following is well known, and also in the paper by Papadimitriou \& Yannakakis [PY91, Page 432].

Exercise 10.17. Prove that, for all $k \equiv 0(\bmod 2)$, there exists a 3 -expander graph on k vertices.

Theorem 10.18.

1. MAX $3 S A T \leq_{L}$ MAX $3 S A T-7$.
2. Max 3 SAT- $7 \leq_{L}$ Max 3 SAT-3.
3. MAX $3 S A T \leq_{L}$ MAX 3SAT-3 (this follows from the parts 1 and 2, and Exercise 10.14).
4. Assume $P \neq$ NP. Let $a \geq 3$. Then MAX $3 S A T-a \notin$ PTAS (this follows from part 3 and Theorem 9.33.1).
5. MAX 3SAT-3 is APX-complete (this follows from part 4 and Theorem 9.33.1).

Proof sketch:

1) Here is the reduction:
1. Input $\varphi\left(x_{1}, \ldots, x_{n}\right)$. We will assume every variable occurs an even number of times. The modifications needed if a variable occurs an odd number of times are left to the reader.
2. For each variable x that occurs ≥ 8 times do the following:
(a) Let k be the number of times x occurs. Introduce new variables z_{1}, \ldots, z_{k}.
(b) Replace the k occurrences of x with z_{1}, \ldots, z_{k}.
(c) Let G be a 3-expander graph on k vertices $\{1, \ldots, k\}$ (such exists by Exercise 10.17). For every edge $\{i, j\}$ add the clauses $\left(z_{i} \rightarrow z_{j}\right)$ and $\left(z_{j} \rightarrow z_{i}\right)$. (Formally we would use $z_{i} \vee \neg z_{j}$ for $z_{i} \rightarrow z_{j}$.) Note that z_{i} will occur 7 times in φ^{\prime} : (1) once in the place it replaces x in the original formula, (2) 3 times in clauses of the form $z_{i} \vee \neg z_{j}$, (3) 3 times in clauses of the form $z_{j} \vee \neg z_{i}$. The last 2 come from G having degree 3 .

Let the new formula be φ^{\prime}.
How many times does a variable z occur in φ^{\prime} ? If z occurs $k \leq 7$ times in φ then it will occur $k \leq 7$ times in φ^{\prime}. If z occurred ≥ 8 times in φ then it will occur 7 times in φ^{\prime} as noted above.

We show how to go from an assignment for φ^{\prime} to an assignment for φ. Let \vec{b}^{\prime} be an assignment for φ^{\prime}. Let x be a variable in φ that occurred ≥ 8 times in φ. We associated with x a set of variables that we want to all be assigned the same truth value. Let $Z_{\text {true }}$ be the subset of those variables that are assigned true, and $Z_{\text {false }}$ be the subset of those variables that are assigned false. We will show that more clauses of φ^{\prime} can be satisfied by assigning all of them the same truth value. Recall that we have many clauses relating the variables associated with x via an expander graph.

Assume $\left|Z_{\text {TRUE }}\right|>\left|Z_{\text {FALSE }}\right|$ (the other case is similar). The expander graph has $\geq\left|Z_{\text {TRUE }}\right|$ edges from $Z_{\text {true }}$ to $Z_{\text {false }}$. For every edge (i, j) where $i \in Z_{\text {true }}$ and $j \in Z_{\text {false }}$, there are $t w o$ clauses, $z_{i} \rightarrow z_{j}$ and $z_{j} \rightarrow z_{i}$. Hence there are $\geq 2\left|Z_{\text {TRUE }}\right|$ clauses that connect a variable from $Z_{\text {TRUE }}$ to a variable from $Z_{\text {FALSE }}$. If we change the assignment of everything in $Z_{\text {FALSE }}$ to TRUE then we make $\geq 2\left|Z_{\text {true }}\right|$ clauses true. How many clauses are now false? Each variable in $Z_{\text {true }}$ appeared at most once in the non-expander-part of the formula. Hence $\leq\left|Z_{\text {TRUE }}\right|$ of the clauses are now false. So the net gain is $\geq\left|Z_{\text {true }}\right|>0$. Recall that we began with a variable x in φ which was associated with $Z_{\text {FALSE }} \cup Z_{\text {TRUE }}$ with $\left|Z_{\text {TRUE }}\right|>\left|Z_{\text {FALSE }}\right|$. We now know that to maximize the number of clauses satisfied, $Z_{\text {FALSE }}=\emptyset$. Hence all of the variables associated with x are assigned the same value. This is the reason we use expander graphs rather than cycles!

We recap and get back to our issue. We can assume that \vec{b}^{\prime} assigns variables as we intended. Hence it is easy to map to \vec{b} which only assigns the original variables of φ in the obvious way. We now show that we have an L-reduction.

The expander graph for x_{i} has k_{i} vertices and $3 k_{i} / 2$ edges. Each edge corresponds to 2 clauses that will both be set to true. Hence

$$
\operatorname{benefit}\left(\varphi^{\prime}, \vec{b}^{\prime}\right)=\operatorname{benefit}(\varphi, \vec{b})+3 \sum_{i=1}^{n} k_{i} \text {. }
$$

Hence

$$
\operatorname{OPT}\left(\varphi^{\prime}\right)=\operatorname{OPT}(\varphi)+3 \sum_{i=1}^{n} k_{i} .
$$

If we subtract we get

$$
\left|\mathrm{OPT}\left(\varphi^{\prime}\right)-\operatorname{benefit}\left(\varphi^{\prime}, \vec{b}^{\prime}\right)\right|=|\mathrm{OPT}(\varphi)-\operatorname{benefit}(\varphi, \vec{b})|
$$

Hence we have the second condition for being an L-reduction. Note that φ^{\prime} has $m+O\left(\sum_{i=1}^{n} k_{i}\right)=$ $O(m)$ clauses and φ has $O(m)$ clauses. Hence, by Exercise 10.15, $\mathrm{OPT}(\varphi)=O\left(\mathrm{OPT}\left(\varphi^{\prime}\right)\right)$.
2) Given a formula φ where each clause has ≤ 3 literals, and each variable occurs ≤ 7 times, φ^{\prime} is formed by using the cycle-construction presented earlier in this section (the construction that did not work). Details are left to the reader.

Exercise 10.19. Complete the proof of Theorem 10.18.2.
Tovey [Tov84] proved a related result though we will not need it or prove it:
Theorem 10.20. Let MAXE3SATE5 be the function that takes a formula where (1) every clause has exactly 3 literals, and (2) every variable occurs exactly 5 times, and returns (as usual) the assignment that maximizes the number of clauses satisfied. Then Max $3 S A T \leq_{L}$ MAxE3SATE5.

10.5 Formulas and Graphs and Formulas and Graphs

In this section we start with MAx 3SAT, which we already know has no PTAS (from Theorem 9.33) and form a chain of reductions through several graph and formula problems. It is of interest that we start with a formula problem, then get some graph problems, then get back to formulas, then graphs again.

Definition 10.21.

1. Ind. Set-B- a is the function that, given a graph G with degree $\leq a$, returns the size of the maximum independent set of G.
2. Vertex Cover-B- a is the function that, given a graph G with degree $\leq a$, returns the size of the minimum vertex cover of G.
3. Dом. Set-B- a is the function that, given a graph G with degree $\leq a$, returns the size of the minimum dominating set of G.

Theorem 10.22. Within this theorem a statement of the form $X \notin P T A S$ is contingent on $P \neq N P$.

1. Max $3 S A T-3 \leq_{L}$ Ind. Set-B-4 (the reduction is strict).
2. For all $\Delta \geq 4$, Ind. Set-B- Δ is APX-complete. This follows from Part 1 and the result of Halldórsson-Radhakrishnan [HR97] that InD. SET-B- Δ has a $\frac{\Delta+2}{3}$-approximation via a greedy algorithm. (Recall that this means there is an algorithm that returns an independent set of size $\geq \frac{3}{\Delta+2} O P T$.)
3. Ind. Set-B-4 \leq_{L} Vertex Cover-B-4 (the reduction is strict).
4. For all $\Delta \geq 4$, Vertex Cover-B- Δ and Vertex Cover are both APX-complete. This follows from Part 3 and the 2-approximation for Vertex Cover (unbounded degree) that we showed in Theorem 9.35.
5. Vertex Cover-B-4 \leq_{L} Dom. Set-B-4 (the reduction is strict).
6. For all $\Delta \geq 4$, Dом. Set-B- \triangle is APX-complete. This follows from Part 5 and the folklore result that Dom. Set-B- Δ has an $O(\log \Delta)$-approximation by a greedy algorithm.
7. Ind. Set-B-4 \leq_{L} Max $2 S A T$.
8. Max 2SAT is APX-complete. This follows from Part 7 and a simple approximation algorithm for MAX 2SAT similar to the proof of Theorem 9.33.1.
9. Max $2 S A T \leq_{L}$ MAX NAE-3SAT (this reduction is strict).
10. MAX NAE-3SAT $\in A P X-P T A S$. The lower bound follows from Part 9. We leave as an exercise to show that MAX NAE-3SAT $\in A P X$.
11. Max NAE-3SAT \leq_{L} Max Cut. (Max Cut was defined in Section 2.10.)
12. Max Cut $\in A P X$ - PTAS. Part 11 shows the lower bound. There is a simple randomized algorithm that returns a cut that is $\geq 0.5 O P T$: for each vertex v flip a fair coin to decide which half of the partition the vertex v goes into. By the method of conditional probabilities the algorithm can be derandomized.

Proof:

1) We give the reduction from Max 3SAT-3 to Ind. Set-B-4.
1. Input a formula φ where every clause has ≤ 3 literals and every variable appears ≤ 3 times.
2. We construct a graph G.
(a) For every occurrence of a literal there is a vertex.
(b) For every clause of the form $\left(L_{1} \vee L_{2} \vee L_{3}\right)$ where the L_{i} 's are literals, put in edges between each pair of L_{i} 's. For every clause of the form $\left(L_{1} \vee L_{2}\right)$ where the L_{i} 's are literals, put in edges between L_{1} and L_{2}.
(c) For all variables x, if x is in one clause and \bar{x} is in another clause, put an edge between them.

See Figure 10.1
Let v be a vertex. It corresponds to variable x in clause C. There will be 2 edges from v to the other vertices in clause C. There will be ≤ 2 edges to other clauses since they go to vertices associated with occurrences of $\neg x$, and there are at most 2 of those. Hence the degree of v is ≤ 4. The same reasoning holds when v is associated with $\neg x$.

We leave it to the reader to prove this is a strict reduction.

Figure 10.1: L-Reduction of Max 3SAT-3 to Ind. Set-B-4.
3) If $G=(V, E)$ is a graph and U is an independent set, then $V-U$ is a vertex cover. Hence to show Ind. Set-B-4 \leq_{L} Vertex Cover-B-4 do the following: (1) just map G to G, and (2) map a vertex cover for G to its complement to get an independent set for G. The proof that this is a strict L-reduction is trivial.
5) Vertex Cover-B-4 \leq_{L} Dom. Set-B-4 by the following reduction: map a graph G to the graph obtained by, for every edge (u, v), adding a vertex x that has an edge to u and to v. No other edges use x. We map a dominating set of G^{\prime} to a vertex cover of G as follows:

1. Input G^{\prime} and a dominating set D^{\prime} for G^{\prime}.
2. If one of the new vertices x, adjacent to both u, v, is in D then either (1) one of u, v is in D so x can be removed, or (2) neither of u, v is in D, so remove x and add (say) u.
3. The new set (which might not be a dominating set for G^{\prime}) is a vertex cover U for G, so output it.

See Figure 10.2
Clearly benefit $(D)=\operatorname{benefit}(U)$, so $\operatorname{OPT}(D)=\operatorname{OPT}(U)$. So we have a strict reduction.

Figure 10.2: L-Reduction of Vertex Cover-B-4 to Dom. Set-B-4.
7) Ind. Set-B-4 \leq_{L} Max 2 SAT by the following reduction from graphs to formulas.

1. Input $G=(V, E)$, a graph of degree ≤ 4.
2. Form a formula φ as follows:
(a) For every vertex v we have clause $\{v\}$.
(b) For every edge (u, v) we have clause $\{\bar{u} \vee \bar{v}\}$.
(See Figure 10.3)

Figure 10.3: L-Reduction of Ind. Set-B-4 to Max 2SAT.

We show how to map an assignment for φ to an independent set of G. Recall from the definition of reduction that we need only consider assignments that cannot be improved in an obvious way.

If the assignment makes some 2-clause $\bar{u} \vee \bar{v}$ false, then change the assignment to make u false. The number of clauses satisfied will not decrease. Hence we will only consider assignments where all of the 2-clauses are satisfied. Given such an assignment, we map it to the set of vertices associated with variables that are set to true. Because of the change we made to the assignment, this will correspond to an independent set.

We now show that this is an L-reduction. Any assignment for φ can be improved (or at least not made worse) by the procedure described above: make every clause ($\bar{u} \vee \bar{u}$) True. The remaining 1-clauses that are set to TRUE must correspond to a maximum independent set in G. Hence we can start with an assignment \vec{b} for φ that makes every 2 -clause true. Map it to the set of vertices U corresponding to the 1-clauses being true. Clearly those vertices form an independent set. Hence benefit $(\vec{b})=$ benefit $(U)+|E|$. Hence the second condition for being an L-reduction is satisfied.

Since G has degree $\leq 4,|E|=O(|V|)$ and $\operatorname{OPT}(G)=\Theta(|V|)$ (by a greedy algorithm). Since φ has $|V|$ 1-clauses, $\operatorname{OPT}(\varphi)=\Theta(|V|)$. Since $\operatorname{OPT}(G)$ and $\operatorname{OPT}(\varphi)$ are both $\Theta(|V|)$, the first condition of being an L-reduction, $\operatorname{OPT}(\varphi)=O(\operatorname{OPT}(G))$, is satisfied.
9) MAx 2 SAT \leq_{L} MAx NAE-3SAT by the following reduction from formulas to formulas.

1. Input φ, a formula where every clause has ≤ 2 literals.
2. Let z be a new variable.
3. We form a formula φ^{\prime} by adding $\vee z$ to all 2-clauses, and $\vee z \vee z$ to all 1-clauses.

Let \vec{b}^{\prime} be an assignment for φ^{\prime} where m of the clauses are satisfied but no clause has all 3 literals set the same. If z is set to true then the m satisfied clauses all have at least one literal set to false. Hence if we flip the truth value of all the variables (note z is now false) we still get an assignment where there are m clauses set to true, and none of them have all literals set the same. We need only consider such assignments.

Since z is set to false, the assignment, not including z, is an assignment for φ that makes m clauses TrUE. Hence benefit $\left(\varphi^{\prime}, \vec{b}^{\prime}\right)=\operatorname{benefit}(\varphi, \vec{b})$, so we have a strict reduction.
11) MAx NAE-3SAT \leq_{L} MAX Cut by the following reduction from formulas to graphs.

1. Input φ, a formula in 3 CNF form. It has n variables $x_{1}, \ldots, x_{n} . x_{i}$ appears k_{i} times.
2. We form the graph G as follows (G will actually be a multigraph).
(a) For every variable x, let both x and \bar{x} be vertices, and put k edges between them where k is the number of occurrences of x (see Figure 10.4, left side).
(b) For every 3-clause $L_{1} \vee L_{2} \vee L_{3}$ put edges between L_{1}, L_{2}, and L_{1}, L_{3}, and L_{2}, L_{3}. Similar for 2-clauses (see Figure 10.4, right side). For 1-clauses no edges are added.

Max Cut

[Papadimitriou \& Yannakakis 1991]

Figure 10.4: L-Reduction of MAx NAE-3SAT to MAx Cut.
We need to show how to map a partition of vertices $\left(V_{1}, V_{2}\right)$ to an assignment \vec{b}. It is easy to see the only partitions worth considering have, for every variable x, x and $\neg x$ in different parts. Hence we can map (V_{1}, V_{2}) to the assignment that sets every literal in V_{1} to True. (We could have used V_{2} but it won't matter which since Max NAE-3SAT treats trueand false equally.)

We leave it to the reader to finish this proof by comparing $\operatorname{OPT}(G)$ to $\operatorname{OPT}(\varphi)$.

More is known about Max Cut.
Note: We assume $P \neq N P$ in this note.

1. Alimonti \& Kann [AK00] showed that Vertex Cover-B-3, Ind. Set-B-3, and Dom. Set-B-3 have no PTAS.
2. Hastad [Has01, Theorem 8.2] and Trevisan et al. [TSSW00, Theorem 4.4] showed that Max Cut does not have a $\left(\frac{17}{16}+\varepsilon\right)$-approximation (meaning that there is no algorithm that returns $\geq\left(\frac{16}{17}+\varepsilon\right)$ OPT). In Chapter 11 we will revisit Max Cut assuming the Unique Game Conjecture.

Note: Berman \& Karpinski [BK99] have obtained the following concrete numbers:

1. Vertex Cover-B-3 has no poly time $\left(\frac{145}{144}-\varepsilon\right)$-approximation.
2. Vertex Cover-B-4 has no poly time $\left(\frac{79}{78}-\varepsilon\right)$-approximation.
3. Vertex Cover-B-5 has no poly time $\left(\frac{74}{73}-\varepsilon\right)$-approximation.
4. Ind. Set-B-3 has no poly time $\left(\frac{140}{139}-\varepsilon\right)$-approximation.
5. Ind. Set-B-4 has no poly time $\left(\frac{74}{73}-\varepsilon\right)$-approximation.
6. Ind. Set-B-5 has no poly time $\left(\frac{68}{67}-\varepsilon\right)$-approximation.

Here are open problems:

Open Problem 10.23.

1. Obtain concrete lower bounds for Ind. Set-B-6, Ind. Set-B-7, etc.
2. Close the gap between the lower bounds presented in Note 10.5 and the upper bounds discussed in Theorem 10.22.
3. Obtain concrete lower bounds for Dом. Set-B-3, Dом. Set-B-4, etc.

For the next exercise we will consider the following variant of Set Cover.
Unique Set Cover
Instance: n and sets $S_{1}, \ldots, S_{m} \subseteq\{1, \ldots, n\}$.
Output: The smallest size of a subset of S_{i} 's that covers all of the elements in $\{1, \ldots, n\}$ with every element of $\{1, \ldots, n\}$ in exactly one of the chosen S_{i} 's.

Exercise 10.24.

1. Show that Max Cut \leq_{L} Unique Set Cover. What can you conclude from this in terms of approximations for Unique Set Cover?
2. Show that the problem of just finding a feasible solution for Unique Set Cover is NP-hard. What can you conclude from this in terms of approximations for Unique Set Cover?

10.6 Edge Matching Approximation

We define a function version of Edge Matching.

```
Edge Matching (EM)
Instance: A set of unit squares with the edges colored, and a target rectangle RECT.
Question: How many squares can you pack into the rectangle such that all tiles
    sharing an edge have matching colors?
Note: The colors are unary numbers.
```

Our goal is to show that EM is APX-complete. We will use the following problem.

Max Ind Set on 3-regular, 3-edge colorable graphs

Instance: A 3-regular graph and a 3-coloring of the edges (no 2 incident edges are the same color).
Question: What is the largest independent set?
By Vizing's theorem [Viz64] a graph of degree Δ is $\Delta+1$-edge colorable. Hence the edgechromatic number is either Δ or $\Delta+1$. Cai \& Ellis [CE91] showed that determining the edgechromatic number of a 3-regular graph is NP-complete. Hence the Max Ind Set on 3-regular, 3-EDGE COLORABLE GRAPHS problem comes with a lot of information. As such the following result of Chlebik \& Chlebikova [CC03] is surprising:

Theorem 10.25. The Max Ind Set on 3-regular, 3-edge colorable graphs problem is APXcomplete.

We omit the proof.
We need one more problem, a variant of 3-dimensional matching which we discussed in Section 6.3.2.

The intuition is that some alien species has 3 sexes and we are trying to arrange $n 3$-personmarriages.

3D-MAtching-2
Instance: Disjoint sets A, B, C with $|A|=|B|=|C|=n$, and $M \subseteq A \times B \times C$ such that every element of $A \cup B \cup C$ appears exactly twice in M (hence the 2 in 3D-Matching-2).
Question: What is an $M^{\prime} \subseteq M$ such that (a) all the triples in M^{\prime} are disjoint (no polygamy) and (b) every element of $A \cup B \cup C$ is in some triple of M^{\prime} (no unmarried people). In the function version of this problem we are trying to maximize the size of M^{\prime} that satisfies (a) and (b).

Theorem 10.26. There is a strict reduction from Max Ind Set on 3-regular, 3-edge colorable graphs to 3D-MATChing-2.

Proof sketch:
Let $G=(V, E)$ be a 3-regular graph. We are also given a 3-edge coloring of it with colors 1,2,3. Let:

1. A be the set of edges colored 1 .
2. B be the set of edges colored 2 .
3. C be the set of edges colored 3 .

For every $v \in V$ we put the triple of edges incident to it into M.
We leave it to the reader to both finish the proof and show that the reduction goes backwards, so we have a strict reduction in both directions.

Exercise 10.27. Finish the proof of Theorem 10.26.
We now get to our actual goal which is edge matching.
The first part of the next theorem is easy. The second part is due to Antoniadis \& Lingas [AL10].

Theorem 10.28.

1. $E M \in A P X$. In particular there is an algorithm that returns $\geq \frac{1}{8} O P T$.
2. EM is APX-complete.

Proof sketch:

1) Here is the approximation algorithm: find the maximum number of pairs of tiles that share an edge. We leave it to the reader to show the number of tiles this algorithm returns is $\geq \frac{1}{8}$ OPT.
2) We show the gadgets needed for the reduction EM \leq_{L} 3D-MATching-2.

Edge Matching Puzzles

[Antoniadis \& Lingas 2010]

]
Figure 10.5: Gadgets for EM \leq_{L} 3D-MATChing-2.

Figure 10.5 shows gadgets for a picked triple and unpicked triple in an edge matching puzzle. The row of u 's on the bottom is intended to match up against an un-pictured boundary structure
in a way that forces the placing of the bottom row (in the sense that placing the bottom row in the intended way can only improve the number of matches).

Note that the tile marked with 2 dollar signs, a and a^{\prime} is unique to the letter a, which only allows us to pick one triple containing a. We also need structures that enable us to dump the 'picked' top row if we do not pick the triple, or the 'unpicked' top row if we do pick the triple. The dump structures are listed, together with a full listing of tiles per 3DM element. We omit them here for brevity.

Exercise 10.29. Complete the proof of Theorem 10.28.
What if the rectangle is $1 \times n$? Bosboom et al. $\left[\mathrm{BDD}^{+} 17\right]$ showed the following:
Theorem 10.30. For the problem of packing an $n \times 1$ rectangle:

1. There is an algorithm that packs $\geq \frac{1}{2} O P T$.
2. If there is an algorithm that packs $\geq \frac{33519359}{33519360}$ OPT then $P=N P$ (the faction is ~ 0.9999999702).

Proof sketch:

The problem they reduce to is the following gap version of Ham Cycle which was already known to be hard:

Given a graph G that you are promised either has a cycle on $n-1$ disjoint edges (so a Hamiltonian Cycle) or the max number of edges in a vertex-disjoint union of paths is at most $0.999999284(n-1)$ edges.

Open Problem 10.31. The problem is packing an $n \times 1$ rectangle. Prove or disprove the following: For all ε if there is an algorithm that packs $\geq(1-\varepsilon)$ OPT then $P \neq N P$.

10.7 Other Complexity Classes for Approximations

APX-completeness is not the be-all and end-all of complexity in approximations. There are other classes both above it and below it in complexity.

10.7.1 Log-APX-Completeness

Everything in this section is due to Escoffier \& Paschos [EP06].
Combining Exercise 10.14 and 9.29 .4 we easily have the following.
Theorem 10.32. Let A_{1}, \ldots, A_{m} be such that $\operatorname{Set~Cover~} \leq_{L} A_{1} \leq_{L} \cdots \leq_{L} A_{m}$. Assume $P \neq N P$. There is a c such that A_{m} does not have a $c \ln n$-approximation.

Chlebík and Chlebíková [CC08] showed the following.

Theorem 10.33.

1. There is $a(\ln \Delta+2)$-approximation for Dom. $S_{E T}$ where Δ is the maximum degree.
2. There is a $(\ln n+2)$-approximation for Dom. SET (no bound on the degree).
3. Assume $P \neq N P$. For all $c<1$ there is no $c \ln (\Delta)$-approximation for Dom. SET restricted to graphs of degree $\leq \Delta$.
4. Assume $P \neq N P$. For all $c<1$ there is no $c \ln (n)$-approximation for DOM. SET (no bound on the degree).

Proof sketch:

1,2) A greedy algorithm where you always take the vertex of max degree works for both Parts 1 and 2.

3,4) We prove Part 4. Part 3 is similar.
We show Set Cover \leq_{L} Dom. Set.

1. Input n and $S_{1}, \ldots, S_{m} \subseteq\{1, \ldots, n\}$. Let $U=\{1, \ldots, n\}$.
2. Form a graph $G=(V, E)$ as follows:
(a) There is a vertex for every element of $\{1, \ldots, n\}$ and for every S_{i}. Hence there are $n+m$ vertices. We call the vertices associated with $\{1, \ldots, n\}$ the U-vertices, and the vertices associated with the S_{1}, \ldots, S_{m}, the S-vertices.
(b) All vertices representing the S_{i} are connected. This forms a clique of size n.
(c) For all $i \in\{1, \ldots, n\}$ and all $j \in\{1, \ldots, m\}$ connect i to j if $i \in S_{j}$.
(d) Note that $\Delta \leq n$.

Let D be a dominating set. If there are any U-vertices in D then they can be replaced by the S-vertex they connect to. Hence we can assume that every dominating set consists only of S-vertices.

We map a dominating set to the S-sets that its S-vertices correspond to. The size of the dominating set is exactly the size of a covering. Hence this is a strict reduction.

Exercise 10.34. Show that Dom. $\operatorname{Set} \leq_{L}$ Set Cover.

We now show another inapproximability result. The $\mathbf{1 5}$ puzzle [Wika] is a classic puzzle from the 1870 's. It can be generalized to the $n^{2}-1$ puzzle. Ratner \& Warmuth [RW90] showed that solving the $n^{2}-1$ puzzle is NP-hard. It is not known if the function version (trying to minimize the number of moves) is in APX.

Călinescu et al. [CDP08] worked on Motion Planning which is a generalization of the $n^{2}-1$ puzzle:

Motion Planning
Instance: A graph $G=(V, E)$ with the vertex set split into 2 (possibly overlapping) sets V_{1}, V_{2} of the same size. The elements of V_{1} are called tokens and each one has a robot on it. The elements of V_{2} are called targets.
Output: A move is when a robot goes on a path with no other robots on it. Note that a robot may go quite far in one move. We want a final configuration where all the robots are on the vertices in V_{2} (only one robot can fit on a vertex). Output the minimum number of moves needed to do this?

Theorem 10.35. Set Cover \leq_{L} Motion Planning. Hence there exists a constant c such that, assuming $P \neq N P$, Motion Planning is not $c \ln n$-approximable.

Proof:

We give a reduction Set Cover \leq_{L} Motion Planning.

1. Input is an n and $S_{1}, \ldots, S_{m} \subseteq\{1, \ldots, n\}$.
2. Form a graph (shown in Figure 10.6) with:
(a) C is the set of m vertices, one for each S_{j}.
(b) B is the set of n vertices, one for each element of $\{1, \ldots, n\}$. Put an edge between elements of B and C if the element associated with B is in the set associated with C.
(c) A is a set of m vertices that form a line graph. The rightmost element of A has edges to all vertices in B.
3. Robots are put on the elements of $A \cup B$ and the target is $B \cup C$.

The optimal solution takes a number of moves equal to $|A|$ plus the size of a minimal set cover. This is because we need one move to fill every location in C, which requires exactly $|A|$ moves. Furthermore, we need one move to cover every location vacated by a robot in B. But the number of robots in B that must move is exactly the size of the minimum set cover.

Thus, the conditions of the L-reduction are satisfied, and this problem is NP-complete. If 2 robots are not allowed to occupy the same vertex at once, Figure 10.7 shows a small modification that can be used to get around this problem. The optimal solution in this case is $|A|$ plus twice the size of a minimal set cover.

Token Reconfiguration

[Calìnescu, Dumitrescu, Pach 2006]
target, no token

Figure 10.6: L-Reduction of Set Cover to Motion Planning.

Token Reconfiguration

[Calinescu, Dumitrescu, Pach 2006]
target, no token

OPT $=|A|+2 \cdot$ Set Cover
C

Figure 10.7: L-Reduction of Set Cover to Motion Planning modified.

Node-Weighted Steiner Tree (NWST)
Instance: A graph $G=(V, E)$ with weights on its nodes, a set $T \subseteq V$ marked as terminal, and a node $r \in V$.
Output: A set of vertices S such that (1) the graph induced by $T \cup S$ connects all the terminal nodes to r and (2) S has the minimum sum of weights of vertices of any set that satisfies (1).

Figure 10.8: APX-Reduction of SET Cover to NWST.

Theorem 10.36.

1. There is an $O(\log n)$-approximation for NWST. This was proven by Moss \& Ranbani [MR07]. We omit the proof.
2. There is an L-reduction from Set Cover to Node-Weighted Steiner Tree. Hence there is a constant c such that, assuming $P \neq N P$, there is no $c \ln n$-approx for NWST. (This follows from the reduction and Theorem 9.29.4).

Proof:

We give the reduction:

1. Input an instance of Set Cover: n and $S_{1}, \ldots, S_{m} \subseteq\{1, \ldots, n\}$.
2. Construct a graph as follows:
(a) For every $i \in\{1, \ldots, n\}$ there is a node of weight 0 . These are the terminal nodes. For every set S_{j} there is a node of weight 1.
(b) There is a node r that has an edge to each S_{j}.
(c) If $i \in S_{j}$ then there is an edge between i and S_{j}.

See Figure 10.8 for an example.
It is easy to see that there is a cost d solution to Node-Weighted Steiner Tree if and only if there is a set cover of size d.

Note: One can define the Edge Weighted Steiner tree (EWST) problem. It is NP-complete. Bykra et al. [BGRS13] showed there is a 1.39-approximation for EWST. Hence, assuming $P \neq N P$, there is no reduction of Set Cover to EWST.

Group Steiner Tree (GST)
Instance: A graph $G=(V, E)$ with weights on its edges, sets $V_{1}, \ldots, V_{k} \subseteq V$, and a node $r \in V$.
Output: A set of nodes S of such that (1) the graph induced by S connects some vertex of each V_{i} and (2) the graph induced by S has the minimum weights of the edges among all S that satisfy (1).
NOTE: The graph induced will be a tree.

Theorem 10.37.

1. The Group Steiner Tree problem has (1) a randomized polynomial-time algorithm that gives an $O\left(\left(\log ^{2} n \log \log n \log k\right)\right.$-approximation for general graphs, and (2) an $O(\log n \log \log k)$ approximation for trees. These were obtained by Garg et al. [GKR00]. We omit the proofs.
2. Set Cover \leq_{L} Group Steiner Tree. We can restrict Group Steiner Tree to trees where every edge has weight 0 or 1 . This reduction is exact.
3. If there is $a(1-o(1)) \ln n$-approx for Group Steiner Tree then $P=N P$. (This follows from Part 1,2 and Theorem 9.29.4).

Proof:

We prove part 2 by giving the reduction.

1. Input an instance of Set Cover: n and $S_{1}, \ldots, S_{m} \subseteq\{1, \ldots, n\}$.
2. Construct a graph as follows:
(a) The root is r. It has children S_{1}, \ldots, S_{m}. The weights of the edges from r to each S_{j} are 1.
(b) Each S_{j} has children labeled with the elements of S_{j}. These will be the leaves. (So you will have several leaves with the same label). The edges from the i to S_{j} have weight 0.
(c) For $1 \leq i \leq n, V_{i}$ is the set of all leaves labelled i.

We leave it to the reader to show this is an L-reduction.
We do an example. Let $n=8$ and
$S_{1}=\{1,3,8\}$.
$S_{2}=\{1,2,3,4\}$.
$S_{3}=\{5,6,8\}$.
$S_{4}=\{2,7\}$.
The resulting graph is in Figure 10.9. The weights on the edges are as follows (1) all of the edges from r to an S_{i} have weight 1, (2) all of the edges from S_{i} to one of its children have weight 0 .

Figure 10.9: L-Reduction of SET COVER to GST.

10.7.2 Poly-APX-Complete

Bazgan et al. [BEP05] defined Poly-APX which is a framework for saying that problems cannot be approximated any better than within a polynomial factor. Two problems in this class (each of which can easily be reduced to the other) are finding the largest clique and the largest independent set. There are very few other problems in this class.

10.7.3 EXPTIME-APX-Complete

Escoffier \& Paschos [EP06] defined EXPTIME-APX which is a framework for saying that problems cannot be approximated any better than within an exponential factor. EXPTIME-APX-complete problems occur when there are numbers in the problem that can have large size, increasing the difficulty of approximation. The most well-known problem in this class is the non-metric traveling salesman problem, where edges can be exponential in the size of the input. We do not know of any other natural problems that are in this class. There are very few other problems in this class.

10.7.4 NPO-Complete

Crescenzi et al. [CKST99] defined the class NPO and NPO-complete to capture other aspects of approximation (and lack thereof). Examples of problems that are NPO-complete:

- Max-Weighted-SAT Given a CNF formula φ find a satisfying assignment that maximizes the sum of the weights of the variables set to true. That sum is the output.
- Min-Weighted-SAT Given a CNF formula φ find a satisfying assignment that minimize the sum of the weights of the variables set to true. That sum is the output.
- Both the min and max version of 0-1 Programming.

Jonsson [Jon98] defined the class NPOPB and NPOPB-complete. This class contains solutions that are recognizable in polynomial time, whose costs are also computable in polynomial time. (The PB in the title stands for "polynomially bounded".)

However, computing even a valid solution is NP-complete. The distinction between NPOPBcomplete and NPO-complete is similar to that of between Poly-APX-complete and EXPTIME-APX-complete respectively; it's usually due to the presence of large numbers.

NPOPB-complete problems are difficult to approximate polynomially even when the solutions are trivial. Examples of problems in this class include:

- minimum independent dominating set
- shortest Turing-machine computation
- longest induced path
- longest path with "forbidden pairs" (pairs of vertices such that the path cannot cross both)

10.8 Further Results

10.8.1 Maximum Feasible Linear System (Max FLS)

Maximum Feasible Linear System (Max FLS)
Instance: A system of linear equations with coefficient in $\mathbb{Z}: A \cdot \vec{x}=\vec{b}$.
Output: A maximum sized subset of the equations that has a solution over \mathbb{Q}.
MAx FLS look easy since, given matrix A and vector \vec{b} one can, in polynomial time, do the following (by Gaussian elimination):

- Determine whether there is a solution, and if so then find one, and if not then produce a certificate of infeasibility.
- If there is no solution then find an \vec{x} such that $A \vec{x}$ is close to \vec{b}. More precisely \vec{x} is such that, $A \vec{x}-\vec{b}$ has the least mean squared error.

Nevertheless, Amaldi \& Kann [AK95] showed the following:

- The natural decision formulation of Max FLS is NP-hard.
- Many variants and restrictions of Max FLS are NP-hard.
- Assume $P \neq$ NP. Many variants of MAx FLS are hard to approximate. The hardness varies with the variant. Some are in APX but not PTAS, and some are harder to approximate than that.

10.8.2 Shortest Vector Problem and Its Variants

We defined lattices, norms, and Shortest Vector Problem in Section 7.7.1. We recall the definition of Shortest Vector Problem for the readers convenience.

In the next problem let $p \in[1, \infty]$.
Shortest Vector $\operatorname{Problem}_{p}\left(\mathrm{SVP}_{p}\right)$ and the Approximate Versions
Instance: A lattice \mathcal{L} specified by a basis.
Output: A shortest vector in that basis using the p-norm. (For definition of p-norm see Section 7.7.1.)
Output: Let $f(n)$ be a function (think of it as increasing). A vector that is $\leq f(n) \operatorname{SVP}_{p}(L)$. (Such a vector is called an $\boldsymbol{f}(\boldsymbol{n})$-approximation for $\boldsymbol{S V P} \boldsymbol{P}_{\boldsymbol{p}}$.)
Note: Approximate Shortest Vector Problem is an important problem for cryptography. Many crypto systems are based on factoring or discrete log being hard; however, both of these problems can be solved quickly using a quantum computer. To prepare for the day when quantum computers (or perhaps some other method) can factor or solve discrete log quickly, people have devised crypto systems based on approximate Shortest Vector Problem. It is believed that approximate Shortest Vector Problem cannot be solved by a quantum computer.
Lenstra et al. [LLL82] (see Regev \& Kaplan [RK04, Remark 8]) showed that there is a $(4 / 3)^{n}$ approximation to SVP_{2}. They used it to obtain an algorithm to factor polynomials. Schnorr [Sch87] improved this to a $2^{n(\log \log n)^{2} / \log n}$-approximation. Combining this with results by Ajtai et al. [AKS01] leads to a $2^{n(\log \log n) / \log n}$-approximation (See Corollary 15 of $[$ AKS01] and plug in $k=O(\log n)$.) Theorem 10.38 gives a lower bounds on approximation. Unfortunately the upper and lower bounds are far apart.
H. Bennett [Ben23] has a survey that covers both the fine-grained complexity of Shortest Vector Problem (e.g., uses assumptions like ETH) and the computational complexity of Shortest Vector Problem (e.g., uses assumptions like $P \neq N P$). We state some of the lower bounds and also refer the reader to the survey or the papers cited for earlier results on this topic.

Theorem 10.38.

1. (Boas [vEB81]) $S V P_{\infty}$ is $N P$-hard.
2. (Ajtai [Ajt98]) SVP P_{2} is $N P$-hard under randomized reductions.
3. (Regev \& Rosen [RR06]. $S V P_{1}$ is $N P$-hard under randomized reductions.
4. (Micciancio [Mic00]. Let $p \in[1, \infty) \cup\{\infty\}$ and $\varepsilon>0$. $\left(2^{p / 2}-\varepsilon\right)$-approximating $S V P_{p}$ is $N P$-hard under randomized reductions.
5. (Khot [Kho05]) Assume $N P \nsubseteq R P$. Let $p \in(1, \infty)$. There is no poly-time algorithm for constant factor approximate $S V P_{p}$.
6. (Regev \& Rosen [RR06]) Assume NP $\nsubseteq R P$. There is no poly-time algorithm for constant factor approximate $S V P_{1}$.
7. (Haviv \& Regev [HR12] Assume NP $\nsubseteq R \operatorname{TIME}\left(2^{\text {polylog(n) }}\right)$. Let $p \in[1, \infty)$. Let $\varepsilon>0$. There is no poly-time algorithm for $2^{(\log n)^{1-\varepsilon}}$-factor approximation for $S V P_{p}$.
8. (Micciancio [Mic12]) This paper presented new proofs of the results of Khot [Kho05] and Haviv \& Regev [HR12] that, while still using random reductions, seem more likely to be able to be derandomized. If the reductions can be derandomized then (1) Khot's result can be improved to use the hardness assumption $P \neq N P$, and (2) Haviv \& Regev's result can be improved to use the hardness assumption NP $\nsubseteq D \operatorname{TIME}\left(2^{\text {polylog(n) }}\right)$.
9. (H. Bennett \& Peikert [BP22]) Let $p \in[1, \infty)$. SVP P_{p} is NP-hard under randomized reductions. This proof has some aspects to it that make derandomizing it plausible. If this is shown then the hardness assumption of $N P \nsubseteq R P$ can be changed to $P \neq N P$.

10.8.3 Online Nearest Neighbor

A useful problem in data structures is to store a set of points A (in some space) so that, given a point x (not in A), you can determine the point in A that is closest to x. You may be allowed to preprocess the points.

Online Nearest Neighbor (OnNN_{p} and γ-OnNN $)_{p}$):
Instance: (To Preprocess) A set of points A in \mathbb{R}^{d}. We will assume there are n points.
Instance: A query point x.
Output: $\left(\mathrm{ONNN}_{p}\right)$ A point $y \in A$ that is closest to x in the p-norm.
Output: $\left(\gamma-\mathrm{OnNN}_{p}\right.$ where $\left.\gamma>1\right)$ We will call the distance to the closest point OPT.
A point $y \in A$ such that $\|x-y\|_{p} \leq \gamma \mathrm{OPT}$. (We will also allow distances other than p-norms such as edit distance and Hamming distance.)

1. If you do no preprocessing and, given x, compute its distance to every point in A, this takes $O(n)$ time (assuming that computing a distance takes $O(1)$ time). This is considered a lot of time for data structures since (1) n is large and (2) computing a distance is costly even if it $O(1)$.
2. Assume you knew ahead of time the set of query points. You could, in the preprocessing stage, determine for each query point which point of A it is closest to. This would yield query time $O(1)$ but (1) a lot of time for preprocessing, and (2) a lot of space for the data structure.

Is there a way to get both quick preprocessing and quick query times? What if you settle for an approximation? Assuming SETH there are lower bounds on the tradeoff.

Theorem 10.39.

1. (Rubinstein [Rub18]) Let $p \in\{1,2\}$ Assume SETH. Let $\delta, c>0$. There exists $\varepsilon=\varepsilon(\delta, c)$ such that no algorithm for $O N N N_{p}$ has (1) preprocessing time $O\left(n^{c}\right)$, (2) query time $O\left(n^{1-\delta}\right)$ and solves $(1+\varepsilon)-O N N N_{p}$. (The result also holds for edit-distance and Hamming-distance.)
2. (Ko \& Song [KS20]) Assume SETH. Let $\delta, c>0$. There exists $\varepsilon \in\{0,1$) such that no algorithm for $O N N N_{p}$ has (1) preprocessing time polynomial in n, (2) query time $O\left(n^{1-\delta}\right)$ and solves $(1+\varepsilon)-O N N N_{p}$.

10.8.4 APX-Intermediate Problems

Let A be a min problem such that there exists an algorithm that returns a number $\leq O P T_{A}(x)+1$. This is in APX but seems better than that, so perhaps not APX-complete.

We present two problems with the following properties: (1) there is a better-than-APX approximation algorithm, as above, (2) there is currently no PTAS for them, (3) if the problem is APX-complete then the polynomial hierarchy collapses.

For both problems the third point is due to Crescenzi et al. [CKST99], and for the first point we will provide a reference.

Bin Packing

Instance: A finite set of positive rationals U.
Output: The minimum number of bins needed to partition U into sets whose sum is ≤ 1 ?
Note: Rothvoß [Rot13a] showed there is an OPT $+O(\log (\mathrm{OPT}) \log \log (\mathrm{OPT})-$ approximation.

Edge Chromatic Number
 Instance: A graph G.

Output: The minimum number of colors needed to color the edges so that no two incident edges are the same color.
Note: By Vizing's theorem [Viz64] a graph with maximum degree Δ has a $\Delta+1$ edge coloring. Hence the we can always get an answer $\leq \mathrm{OPT}(G)+1$. (Misra \& Gries [MG92] obtained a constructive proof of Vizing's Theorem that yields a polynomial-time algorithm that finds the $\Delta+1$-coloring. This is not needed for our purpose of just finding the edge-chromatic number.)

Chapter 11

Unique Games Conjecture

11.1 Introduction

As the title indicates, this is a chapter on The Unique Games Conjecture. This is a deep field of study that interacts with many branches of mathematics. Hence we will only be able to scratch the surface.

Chapter Summary

1. We motivate and state the unique games conjecture.
2. We state consequence of the unique games conjecture. These consequences are mostly lower bounds on approximation that are better than those obtained by assuming $P \neq N P$.
3. We discuss results obtained because of the study of the uniQue games conjecture. These mostly have to do with limits on particular types of algorithms.
4. We discuss both reasons to believe, and reasons to not believe, the unique games conjecture.

11.2 Our Failure to Obtain Matching Upper and Lower Bounds on Approximation

In Chapters 9 and 10 we stated (and in some cases proved) upper and lower bounds on many approximation problems. The lower bounds assumed the usual hardness assumption $P \neq N P$ and used the PCP machinery, or reductions. We recall two sets of results.

Max 3SAT Let OPT be the max number of clauses that can be satisfied. We list upper and lower bounds on approximating MAx 3SAT.

1. (Folklore) There is a polynomial-time algorithm that will, given a 3CNF formula φ, find an assignment that will satisfy $\frac{7}{8} \mathrm{OPT}(\varphi)$. We presented this in Theorem 9.33. The proof was easy.
2. (Arora et al. $\left[\mathrm{ALM}^{+} 98\right]$) Assume $P \neq \mathrm{NP}$. There exists $\varepsilon>0$ such that there is no polynomialtime algorithm that will, given a 3CNF formula φ, find an assignment that satisfies (1-
$\varepsilon) \operatorname{OPT}(\varphi)$ clauses. We presented this in Theorem 9.33. It was easy an easy proof given the PCP theorem (Theorem 9.24).
3. (Hastad [Has01]) Assume $\mathrm{P} \neq \mathrm{NP}$. Let $\delta>0$. There is no polynomial-time algorithm that will, given a 3 CNF formula φ, find an assignment that satisfies $\left(\frac{7}{8}+\delta\right) \mathrm{OPT}(\varphi)$ clauses. We stated this as Theorem 9.34 but did not prove it. The proof is difficult and requires (a) a different kind of proof system which we will discuss in Section 11.3 and (b) hard math as evidenced by the terms "Fourier Transforms" and "Long Codes".

To summarize: Assuming $P \neq N P$, the upper and lower bounds on approximating Max 3SAT match.

Vertex Cover Let OPT be the min size of a vertex cover. We list upper and lower bounds on approximating Vertex Cover.

1. (Theorem 9.35) There is a polynomial-time algorithm that will, given a graph G, find a vertex cover of size $\leq 2 \mathrm{OPT}(G)$.
2. The 2-to-2 Unique Games Conjecture (this is complicated-we won't be defining it) was proven in a sequence of papers [KMS17, KMS18, DKK ${ }^{+} 18 \mathrm{a}, \mathrm{DKK}^{+}$18b]. See [Kho19] for an overview and how the conjecture implies the following: If there is an algorithm that, on input a graph G, returns a number $\leq(1.414 \ldots-\delta)$ then $\mathrm{P}=\mathrm{NP}$ (the number is actually $\sqrt{2}$).

To summarize: Even assuming $P \neq N P$, and using hard math, the upper and lower bounds on approximating Vertex Cover do not match.
Upshot Assume $P \neq$ NP. For MAx 3SAT we obtain matching bounds for approximation; however for Vertex Cover we can only obtain non-matching bounds.

So back to Vertex Cover. The bounds do not match. So ... now what do we do?

- Try to get a better approximation algorithm for Vertex Cover. The result that gives $\leq 2 \mathrm{OPT}(G)$ is very old, and there have been no improvements on it. So this is unlikely. The consensus of the theory community is that $\leq 2 \mathrm{OPT}(G)$ is the best polynomial-time approximation possible.
- Try to use even harder math or more finely tuned prover-systems to get better lower bounds. Khot [Kho10] gives reasons why this may not be possible.

So now what do we do? In Section 11.3 we will describe a game that was used to obtain better lower bounds than PCP for many problems; however, most of those lower bounds did not match the upper bounds. Then, in Section 11.4, we will tweak that game to come up with another one that seems NP-hard. The assumption that it is NP-hard will be dubbed

The Unique Games Conjecture.

From that conjecture one can obtain (1) matching upper and lower bounds for approximating Vertex Cover and several other problems for which assuming $P \neq N P$ did not seem to suffice,
(2) better lower bounds for some problems than can be obtained from assuming $P \neq N P$, and (3) better lower bounds for some problems if you assume variants of the Unique Games conjecture.

Warning: Math games are not fun games. See two blogs of Gasarch [Gas09a, Gas09b] for more on this.

Most of this chapter will be about the Unique Games Conjecture and what it implies for lower bounds on approximation. However, we will also discuss a surprising application it has to integrality gaps.

11.3 The 2-Prover-1-Round Game

Arora et al. [ABSS97] defined the following problem as a tool to prove better lower bounds on approximation.

```
Label Cover (Approximate Label Cover)
Instance:
```

1. A bipartite graph (V, W, E). (For approximate version there is also an input $0<\delta<1$.)
2. $a, b \in \mathbb{N}$ with $a \geq b$. (Note that the only restriction on a, b is $a \geq b$. This is one of the things we will tweak.)
3. For each edge $e \in E$ a surjection $f_{e}:[a] \rightarrow[b]$. (Note that the only restriction on f_{e} is that it be surjective. This is one of the things we will tweak.)

Question: Is there a way to label every $v \in V$ with an element $\ell(v) \in[a]$, and every $w \in W$ with an element $\ell(w) \in[b]$, such that, for every $e=(v, w), f_{e}(\ell(v))=$ $\ell(w)$? (For the approximate version we want to know whether we can satisfy the fraction δ of the constraints.) Such a labeling is called a label covering.
Note: This problem is also called a " 2 -Prover-1-Round Game". We will see why in Definition 11.2.

Exercise 11.1. Show that Label Cover is NP-complete.
We now reinterpret the problem as a game where 2 provers are trying to convince 1 verifier that a graph has a label covering.

Definition 11.2. The 2-prover-1-round game goes as follows. The board consists of the following:

1. A bipartite graph (V, W, E).
2. $a, b \in \mathbb{N}$ with $a \geq b$.
3. For each edge $e \in E$ a surjection $f_{e}:[a] \rightarrow[b]$.

The players are (1) the verifier, and (2) a pair of provers P_{1}, P_{2}. The game is played as follows

- The Verifier randomly picks a $(u, w) \in E$ and sends u to P_{1} and w to $P_{2} . P_{1}$ and P_{2} cannot communicate.
- P_{1} outputs an $\ell(u) \in[a], P_{2}$ outputs a $\ell(w) \in[b]$.
- If $f_{e}(\ell(u))=\ell(w)$ then the provers win. If not then the verifier wins.

Clearly if there is a label covering then the provers can win. Also note that if δ of the edges can be satisfied then there is a strategy for the provers to win δ of the time.

You can view the game as the provers wanting to convince the verifier that there is a label covering. The more rounds of the game they play the harder it will be to fool the verifier. How fast does the error decrease? Raz [Raz98] showed that the error decreases exponentially. This is a very hard and deep theorem that is the key to many other results. It is called Raz's parallel repetition theorem. The following can be proven from the PCP theorem (Theorem 9.24) and Raz's parallel repetition theorem.

Definition 11.3. Let U be an instance of the label cover problem. If δ is the largest fraction of edges that can be satisfied then $\operatorname{OPT}(U)=\delta$.

Theorem 11.4. Let $0<\delta<1$. Then there exists a constant C such that the following happens: Restrict the inputs U to label cover where $a=\Theta\left((1 / \delta)^{C}\right)$. It is $N P$-hard to distinguish between the following cases:

- $O P T(U)=1$ (so there is a label covering)
- $O P T(U) \leq \delta$ (so there is no way to cover more than δ of the edges)

Intuitively it is hard to distinguish the cases where there is a label covering from the case where its hard to even approximate a label covering.

This theorem was a key ingredient in getting lower bounds for approximation by Bellare et al. [BGS98] (Max 3SAT, Max Cut, Vertex Cover, Clique, Chromatic Number), Dinur et al. [DGKR05] (Hypergraph Vertex Cover), Dinur \& Safra [DS02] (Vertex Cover), Khot [Kho19] (Vertex Cover), Dinur \& Steurer [DS13] (Set Cover), Guruswami et al. [GHS02] (c-coloring a 2colorable 4-uniform hypergraph), Hastad [Has99] (Clique), Hastad [Has01] (Max 3SAT, Vertex Cover), Khanna et al. [KLS00], (4-coloring 3-colorable graphs), Khot [Kho01] (Chromatic Number, Clique) and others. These results offer some good news and some bad news:

- Good News. In all cases the lower bounds obtained involved concrete numbers (e.g., Vertex Cover cannot be approximated any better than 1.41OPT(G)), in contrast to proofs where the constant was buried in the details of the PCP theorem (e.g. Theorems 9.27 and 9.33).
- Bad News. In most cases these improved lower bounds still were not tight. (Exceptions: Dinur \& Steurer's lower bound on set cover is tight, and Hastad's lower bound on Max 3SAT is tight.)
- Worse News. Khot [Kho10] gives reasons why the lower bounds obtained by using Theorem 11.4 cannot be improved.

So again... what do we do? We will tweak the definition of 2-Prover-1-Round Games in the next section.

11.4 The Unique Games Conjecture

We define a tweak on the Label Cover problem.

```
Unique Label Cover
Instance:
```

1. A bipartite graph (V, W, E). (For approximate version also $0<\delta<1$.)
2. $a \in \mathbb{N}$ (this is one of the tweaks-for Label Cover we needed $a, b \in \mathbb{N}$).
3. For each edge $e \in E$ a bijection $f_{e}:[a] \rightarrow[a]$. (This is one of the tweaks-for Label Cover was a surjection from [a] to [b].)

Question: (This is the same as Label Cover.) Is there a way to label every $v \in V$ with an element $\ell(v) \in[a]$, and every $w \in W$ with an element $\ell(w) \in[b]$, such that, for every $e=(v, w), f_{e}(\ell(v))=\ell(w)$? (For the approximate version we want to know whether we can satisfy the fraction δ of the constraints.) Such a labeling is called a label covering.
Note: This problem is also called a unique 2-prover-1-round game. We will see why in Definition 11.5.

Definition 11.5. We define the unique 2-prover-1-round game. The board consists of the following:

1. A bipartite graph (V, W, E).
2. $a \in \mathbb{N}$.
3. For each edge $e \in E$ a bijection $f_{e}:[a] \rightarrow[a]$.

The players are (1) the verifier, and (2) a pair of provers P_{1}, P_{2}. The game is played as follows

- The Verifier randomly picks a $(u, w) \in E$ and sends u to P_{1} and w to $P_{2} . P_{1}$ and P_{2} cannot communicate.
- P_{1} outputs an $\ell(u) \in[a], P_{2}$ outputs an $\ell(w) \in[a]$.
- If $f_{e}(\ell(u))=\ell(w)$ then the provers win. If not then the verifier wins.

Clearly if there is a label covering then the provers can win. Also note that if δ of the edges can be satisfied then there is a strategy for the provers to win δ of the time.

You can view the game as the provers wanting to convince the verifier that there is a label covering.

Definition 11.6. Let U be an instance of the unique 2-Prover 1-Round Game. If δ is the largest fraction of edges that can be satisfied then $\operatorname{OPT}(U)=\delta$.

The following exercise may surprise you.
Exercise 11.7. Let $0<\delta<1$. The following two cases can be distinguished in polynomial time:

- $\operatorname{OPT}(U)=1$ (so there is a label covering)
- $\operatorname{OPT}(U) \leq \delta$ (so there is no way to cover more than δ of the edges)

The only possible way to get a hard problem out of Unique Games is to allow 2-sided error. Unique Game Conjecture(UGC)

Conjecture 11.8. Let $0<\varepsilon, \delta<1$. Then there exists a constant C such that the following happens. Restrict the inputs U to instances where $a=C$. It is NP-hard to distinguish between the following cases:

- $\operatorname{OPT}(U) \geq 1-\varepsilon$ (so there is a fairly good approximate label covering)
- $O P T(U) \leq \delta$ ((so there is no way to cover more than δ of the edges)

In the next section we will list many consequences of the Unique Games Conjecture.

11.5 Assuming UGC...

In this section we list consequences of the Unique Games Conjecture for lower bounds on approximation. In each subsection we define the problems in our list that have not been defined elsewhere in this book. We sometimes even define a problem that we have defined earlier since we need to say something about it that was not mentioned earlier.

The tables in this chapter abbreviate Approximation Factor by AF, and Folklore by FL.
The following notation comes up in several definitions.
Definition 11.9. Let $G=(V, E)$ be a graph. Let $V_{1}, V_{2} \subseteq V$. Then $E\left(V_{1}, V_{2}\right)$ is the set of edges that have one endpoint in V_{1} and the other in V_{2}.

We divide the problems we look at into three categories. All three categories (1) have to do with lower bounds on approximation, and (2) yields better lower bounds when using unique GAMES CONJECTURE as a hardness assumption than just assuming $P \neq N P$.

The three categories are as follows:

- Problems where unique games conjecture yields matching upper and lower bounds on approximations.
- Problems where unique games conjecture yields better lower bounds than assuming $P \neq$ NP; however, the upper and lower bounds still do not match.
- Problems where hardness assumption extensions of unigue games conjecture yields better lower bounds than hardness assumption $P \neq$ NP. We denote these extensions unique GAMES CONJECTURE+.

In the tables below we allow randomized algorithms, with high probability of success, in the column Best Approx.

Note: In the next three sections we will use Definition 9.5 of α-approximation. Reread that definition and the paragraph that follows it to see why the standard notation is awkward.

11.5.1 Problems Where UGC Implies Optimal Lower Bounds

Vertex Cover on k-Hypergraphs
Instance: k-Hypergraph $G=(V, E)$. Note that $E \subseteq\binom{V}{k}$.
Output: The size of the smallest set $V^{\prime} \subseteq V$ such that every edge $E=\left\{v_{1}, \ldots, v_{k}\right\}$ has some element of V^{\prime} in it.

Max Cut

Instance: A graph $G=(V, E)$.
Output: The largest value $\left|E\left(V_{1}, V_{2}\right)\right|$ can have where $\left(V_{1}, V_{2}\right)$ ranges over all partitions of V.
Note: Goemans \& Williamson [GW95] have a randomized polynomial-time algorithm for MAX CUT that returns a value $\geq \beta$ OPT where

$$
\beta=\min _{0 \leq \theta \leq \pi} \frac{2}{\pi} \frac{\theta}{1-\cos \theta} \sim 0.87856 .
$$

Let $\alpha_{M C}=\frac{1}{\beta}$. Using Definition 9.5, $\alpha_{M C}$ is the approximation ratio.

MAx 2SAT

Instance: A 2CNF formula $\varphi=C_{1} \wedge \cdots \wedge C_{k}$.
Output: The largest fraction of clauses that an assignment can satisfy.
Note: Lewin et al. [LLZ02] have a randomized polynomial-time algorithm for Max 2SAT that returns a value $\geq \beta$ OPT where β is hard to describe but is around 0.94 . Let $\alpha_{L L Z}=\frac{1}{\beta}$. Using Definition 9.5, $\alpha_{L L Z}$ is the approximation ratio.

Max Acyclic Subgraph (MAS)
Instance: A directed graph $G=(V, E)$.
Output: The size of the largest acyclic subgraph.

Problem	Best Approx	UGC	$\mathrm{P} \neq \mathrm{NP}$
Vertex Cover	2	$2-\varepsilon[K R 08, \mathrm{BK} 09]$	$1.414-\delta$
Vertex Cover on		$k-\varepsilon[\mathrm{KR} 08, \mathrm{BK} 10]$	See Theorem 9.38.3 for refs. $k-1-\varepsilon \text { [DGKR05] }$
k-uniform hypergraphs ($k \geq 3$)			
Max Cut	$\alpha_{M C}$ [GW95]	$\begin{aligned} & \alpha_{M C}-\varepsilon[\mathrm{KKMO} 07] \\ & {[\mathrm{OW} 08, \mathrm{KO} 09]} \end{aligned}$	17/16- ε [Has01]
Max 2SAT	$\alpha_{L L Z}$ [LLZ02]	$\alpha_{L L Z}-\varepsilon$ [Aus07]	APX-hard [PY91]
MAS	2 [New00]	$2-\varepsilon\left[\mathrm{GHM}^{+} 11\right]$	$66 / 65-\varepsilon$ [New00]

11.5.2 Problems Where UGC Implies Good but Not-Optimal Lower Bounds

Feedback Arc Set
Instance: A directed graph $G=(V, E)$.
Output: The size of the smallest set of edges that contains at least one edge from every directed cycle.

Definition 11.10. Let $G=(V, E)$ be a graph and $V^{\prime} \subseteq V$. The sparsity of V^{\prime}, denoted $S\left(V^{\prime}\right)$, is

$$
\frac{\left|E\left(V^{\prime}, V-V^{\prime}\right)\right|}{\min \left\{\left|V^{\prime}\right|,\left|V-V^{\prime}\right|\right\}}
$$

Sparsest cut (SC). Also called Min cut.

Instance: A graph $G=(V, E)$.
Output: The minimum possible sparsity of a set of vertices of G.

Min-2SAT-Deletion

Instance: A 2CNF formula $\varphi=C_{1} \wedge \cdots \wedge C_{k}$ where no clause is of the form $\bar{x} \vee \bar{y}$.
Output: The max number of clauses that can be satisfied. (We give results for this version.)
Note: An equivalent formulation, which is where the name comes from, is as follows: Given a 2 CNF formula φ (no restrictions) what is the min number of clauses that need to be deleted from φ such that the remaining formula is satisfiable? It is equivalent in that the answer to one of them is k minus the answer to the other one.

MinUncut

Instance: A Graph $G=(V, E)$.
Output: A set $V^{\prime} \subseteq V$ that minimizes $\left|E\left(V^{\prime}, V^{\prime}\right)\right|+\left|E\left(V-V^{\prime}, V-V^{\prime}\right)\right|$.

Problem	Best App	UGC	$\mathrm{P} \neq \mathrm{NP}$
Fback Arc Set	$O(\log n \log \log n)$ [Sey95]	$\omega(1)\left[\mathrm{GHM}^{+} 11\right]$	1.36 (Red from VC)
	[ENSS98]		
Sparsest cut	$O(\sqrt{\log n})[\text { ALN05 }]$ [ARV09]	$\omega(1)\left[\mathrm{CKK}^{+} 06\right]$	NONE
Min-2SAT-Del	$O(\sqrt{\log n})$ [ACMM05]	$\omega(1)$ [Kho02]	APX-hard (FL)
		$\omega(1)\left[\mathrm{CKK}^{+} 06\right]$	
MinUncut	$O(\sqrt{\log n})$ [ACMM05]	ω (1) [Kho02]	APX-complete (FL)

11.5.3 Problems Where UGC is Used to Obtain Lower Bounds

We present several problems where, by assuming an extension of unique games conjecture, better lower bounds on approximation can be found. For details on those extensions see the survey by Khot [Kho10].

Coloring a k-colorable Graph

Instance: A graph G that you are promised is k-colorable.
Output: A k^{\prime} coloring of G where k^{\prime} is as small as possible.
Note: We will abuse terminology in the table below by calling a lower bound on k^{\prime} the Approx Factor. As with the usual approx factors, these are obtained using assumptions such at $P \neq$ NP or unique games conjecture. Here is an example: If I say

$$
\text { Assuming } P \neq \text { NP the approx factor for coloring 3-colorable graphs is } 4 \text {. }
$$

that means that

If every 3-colorable graph could be 4-colored in polynomial time then $P=N P$.

Scheduling with Precedence Constraints

Instance: An acyclic graph G of jobs. The idea is that if there is an edge (i, j) then job i must be completed before job j. Each job has associated with it a processing time p_{i} and a weight w_{i}. The weight indicates how important it is to get this job done earlier.
Output: A linear ordering of the jobs. This ordering will also give a set of completion times. Let the i th job have completion time c_{i}. Minimize $\sum_{i=1}^{n} c_{i} w_{i}$.

Problem	Best App	UGC+	$\mathrm{P} \neq \mathrm{NP}$
Coloring 3-COL graph	$N^{0.211}$ [AC06]	$\omega(1)$ [DMR09]	4 [KLS00]
Coloring $2 d$-COL GRAPH	$N^{1-\frac{3}{2 d+1}}$ [KMS98]	$\omega(1)$ [DMR09]	$\begin{aligned} & 2 d+2\left\lfloor\frac{2 d}{3}\right\rfloor-1 \\ & {[\mathrm{KLSO0}]} \\ & d^{\Omega(\log d)}[\mathrm{Kho} 01] \end{aligned}$
Sch with Prec. Const.	2 (FL)	2ε [BK09]	NONE

11.6 UGC Implies Integrality Bounds

Usually we aim for theorems like
Assuming $P \neq N P$. There is no $\varepsilon>0$ and polynomial-time approximation algorithm for Set Cover that returns $(1-\varepsilon)(\ln n)$ OPT.

Note that this is a statement about all polynomial-time algorithms.
There are times when you have a particular polynomial-time approximation algorithm and want to know the limits of how well it can do. In this section we look at algorithms based on relaxation methods and formulate the question of finding limits on how well they can do. We present the following without proof.

1. A relaxed linear programming approach to approximate Set Cover, and the limit to how good it can do. This example has nothing to do with the unique games conjecture; however, it is a good example of integrality gaps.
2. A relaxed Semi Definite Programming approach to approximate Max Cut, and the limit to how good it can do. This is particularly interesting since the limit to how well this particular
algorithm can do is exactly the limit you get by assuming uniQue games conjecture. Hence the Semi Definite Programming algorithm may be optimal.
3. A relaxed Semi Definite Programming approach to approximate Sparsest Cut, and the limit to how good it can do. This is fascinating since (a) the Unique Games Conjecture inspired the proof (actually more than inspired); however, the proof stands without assumption, and (b) the proof involved a lot of hard math, particular geometric embeddings.

11.6.1 Linear Programming and Set Cover

We give an example of how 0-1 programming can be relaxed to linear programming, and then used to approximate Set Cover.

Linear Programming and 0-1 Programming
Instance: An Integer matrix A and integer vectors \vec{b} and \vec{c}.
Output: The max value $\vec{c} \cdot \vec{x}$ can have relative to the constraint $A \vec{x} \leq \vec{b}$. The Linear Programming problem restricts $x_{i} \in \mathbb{Q}$. The $0-1$ Programming problem restricts $x_{i} \in\{0,1\}$.
Note: We use LP and ZOP to denote an instance of Linear Programming and 0-1 Programming.
The Linear Programming problem is in P, whereas the 0-1 Programming problem is NPhard.

One way to deal with NP-hard problems is to do the following:

1. Formulate them as a ZOP.
2. Relax this to an LP. problem.
3. Solve this LP.
4. Use the answer to get an approximation for the original 0-1 Programming problem (thats the clever part).

We give an example that seems to be folklore; however, Trevisan [Tre11] has a writeup.

Algorithm to approximate Set Cover

1. Input n and $S_{1}, \ldots, S_{m} \subseteq\{1, \ldots, n\}$. We denote the instance of Set Cover X.
2. Formulate the following 0-1 Programming which we denote $\operatorname{ZOP}(X)$.

- The variables are x_{1}, \ldots, x_{m}. The idea is that $x_{i}=1$ means S_{i} is chosen and $x_{i}=0$ means S_{i} is not chosen. Since this is 0-1 programming, $x_{1}, \ldots, x_{m} \in\{0,1\}$.
- Constraints. For $j \in\{1, \ldots, n\}$ we need that at least one of the S_{i} 's that has j is chosen. Hence we have the constraint:

$$
\forall j \in\{1, \ldots, n\}: \sum_{j \in S_{i}} x_{i} \geq 1 .
$$

- Objective function: we want to minimize

$$
x_{1}+\cdots+x_{m}
$$

Note that the ZOP (X) solves Set Cover exactly.
3. Relax $\operatorname{ZOP}(X)$ to an LP, denoted $\operatorname{LP}(X)$. The only difference is that $x_{i} \in[0,1]$ instead of $x_{i} \in\{0,1\}$.
4. Solve $\operatorname{LP}(X)$ to obtain $x_{1}^{*}, \ldots, x_{n}^{*} \in[0,1]$ (the x_{i}^{*} will be rational by a well known theorem about linear programming).
5. Set x_{i} to 1 with probability x_{i}^{*}.

Trevisan's writeup shows that, with probability ≥ 0.45, the algorithm returns a set cover that is $\leq 2(\ln n+6)$ OPT.

To prove the analysis of the algorithm is roughly tight we would need an instance X of Set Cover which the algorithm above returns a set cover that is $\geq \ln (n)$.

Definition 11.11. The integrality gap for the above algorithm is

$$
\alpha=\inf _{X} \frac{\mathrm{LP}(X)}{\operatorname{ZOP}(X)}=\frac{\mathrm{LP}(X)}{\operatorname{OPT}(X)}
$$

(We use inf instead of min since it may be a limit.)

It is easy to see that the algorithm cannot do any better than $\leq \alpha \mathrm{OPT}(X)$.
Lovász [Lov75] showed that the integrality gap is H_{n}, the nth harmonic number, which is $\ln n$ in the limit. Hence the Linear Programming approach cannot do any better than the simple greedy algorithm of Chvatal [Chv79]. This is worth knowing!

Takeaway: If we find the integrality gap α then it is evidence that the algorithm cannot give an approximation that is any better than α. This shows a limitation on a particular algorithm; however, it is not a hardness result.

11.6.2 Semi Definite Programming and Max Cut

```
Semi Definite Programming (SDP)
Instance:
```

- Integers $\left\{c_{i, j}: 1 \leq i, j \leq n\right\}$.
- Integers $\left\{a_{i, j, k}: 1 \leq i, j \leq n, 1 \leq k \leq m\right\}$.

Output: Vectors $x^{1}, \ldots, x^{n} \in \mathbb{R}^{n}$ such that

$$
\sum_{1 \leq i, j \leq n} c_{i, j}\left(x^{i} \cdot x^{j}\right)
$$

is minimized.

- Subject to

$$
(\forall k)\left[\sum_{1 \leq i, j \leq n} a_{i, j, k}\left(x^{i} \cdot x^{j}\right) \leq b_{k}\right] .
$$

We will consider Semi Definite Programming to be in polynomial time, though there are some issues about approximation and the reals (that we will not consider).

Goemans \& Williamson obtained an approximation algorithm for Max Cut using an SDP. The rest of this section is about their work.

They first formulate MAx CuT as an optimization problem (this type of optimization problem does not have a nice name like 0-1 Programming, however, it is NP-complete). They then formulate an SDP which is similar to the optimization problem, and use it to get an approximation.

Algorithm to approximate Max Cut

1. Input Graph $G=(V, E)$. Let $V=\{1, \ldots, n\}$.
2. Formulate the following problem, denoted $M C(G)$.

- The variables are x_{1}, \ldots, x_{n}. The idea is that $x_{i}=1$ means i is chosen to be in the cut, and $x_{i}=-1$ means i is not chosen to be in the cut.
- Constraints. For $1 \leq i \leq n, x_{i} \in\{-1,1\}$.
- Objective function: we want to maximize:
$\frac{1}{2} \sum_{(i, j) \in E}\left(1-x_{i} x_{j}\right)$.
Note that the $M C(G)$ solves Max Cut exactly.

3. The analogous Semi Definite Programming (called a relaxation in the literature) is as follows.

- The variables are vectors x_{1}, \ldots, x_{n} in \mathbb{R}^{n}.
- Constraints: For $1 \leq i \leq n,\left\|x_{i}\right\|=1$.
- Objective: Maximize

$$
\frac{1}{|E|} \sum_{(i, j) \in E} \frac{1-x_{i} x_{j}}{2}
$$

We call this $\operatorname{SDP}(G)$.
4. Solve $\operatorname{SDP}(G)$ to obtain $\vec{x}_{1}, \ldots, \vec{x}_{n}$. (The entries might be irrational. There are ways to deal with this; however, we omit this discussion.)
5. Pick a random vector r on the unit sphere.
6. Let $V=V_{1} \cup V_{2}$ where $V_{1}=\left\{i: x_{i} \cdot r \geq 0\right\}$ (This is called randomized rounding in the literature.)

Definition 11.12. The integrality gap for the above algorithm is

$$
\alpha=\sup _{G} \frac{\operatorname{SDP}(X)}{\operatorname{OPT}(X)} .
$$

(We use sup instead of max since it may be a limit.)
Note that this approach to Max Cut cannot do any better then $\alpha \operatorname{OPT}(G)$.
Goemans and Williamson [GW95] showed that α is the $\alpha_{M C}$ we defined in Section 11.5.1. Hence their algorithm cannot do better than $\alpha_{M X} \mathrm{OPT}(G)$. This constant became more interesting when from unique games conjecture one obtains $\alpha_{M C}$ for the lower bound on how well any algorithm can do.

11.6.3 Semi Definite Programming and Sparsest Cut

Leighton \& Rao [LR99] used a relaxation of an LP to obtain an $O(\log n)$-approximation for Sparsest Cut. They also showed that the integrality gap was $\Omega(\log n)$ so the bound was tight. Note again that this is just for their LP. Aumann \& Rabani [AR98] and Linial et al. [LLR95] independently used a geometric theorem of Bourgain [Bou85] to obtain another approach to a relaxation of an LP for Sparsest Cut. This LP is looking for a metric with certain properties. They also obtained matching upper and lower bounds of $\Theta(\log n)$.

Even though no better algorithms came out of using Linear Programming to look for metrics, this was a breakthrough since it introduced deep geometrical theorems to the field. Goemans [Goe97] and Linial [Lin02] made a conjecture that metrics exist which would imply an O (1)-approximation for Sparsest Cut (so Sparsest Cut would be in APX).

Arora et al. [ARV09] used a relaxation of a Semi Definite Programming to obtain an $O(\sqrt{\log n})$ approximation for Sparsest Cut. So that is progress! But then Khot \& Vishnoi [KV15] showed that the integrality gap for any SDP that is based on geometry (and that is probably any SDP) has integrality gap $\omega(1)$. This proof was inspired (actually more than inspired) by the uniQue games conjecture; however, the result is absolute and needs no assumption. Realize that this just rules out SDP approaches. While we believe that unique games conjecture is true and therefore Sparsest Cut is not in APX, this has not been proven.

11.7 Is UGC True?

We are not going to answer the question "Is unique games conjecture True?" since neither we, nor anyone else, knows. That's why its a conjecture. However, we will give some arguments for it, together with counters to those arguments.

1. There is a Semi Definite Programming approach to solving The Unique Games Problem. Khot \& Vishnoi have shown, by integrality gap methods, that this approach will not get the The Unique Game Problem in polynomial time. Yeah. But is there some other algorithmic paradigm that has not been ruled out? There is! Lasserre [Las01a, Las01b] devised a way to iterate Semi Definite Programming programs to obtain better approximations (also see Rothvob's notes [Rot13b] and the paper of Karlin et al. [KMN11]). Khot et al. [KPS10] have shown results that indicate (though do not prove) that Lasserre's approach with a constant number of rounds cannot solve The Unique Games Problem. This still leaves open the possibility of a non-constant number of rounds. What makes the Lasserre method so hopeful (or non-hopeful if you think UGC is true) is that it has not been ruled out by integrality gaps or other paradigms.
2. Arora et al. [ABS15] have a subexponential algorithm for the problem. This tends to indicate that unique games conjecture is false. However, we note that there are some NPcomplete problems with subexponential time algorithms, though they are contrived and involve padding the input.
3. Braverman et al. [BKM21] have devised The Rich 2-to-1 Game Conjecture and showed that it is equivalent to the Unique Game Conjecture. The Rich 2-to-1 Game Conjecture may be easier to prove.
4. (This is what we consider the most compelling reason.) UGC has great explanatory power. Take Vertex Cover as an example. It seemed like it was very hard to get a $(2-\varepsilon)$ OPT approximation for Vertex Cover. And the community believed that it was impossible. But we couldn't prove it. AH- but with unique games conjecture we can! Vertex Cover is not an isolated example. The table in Section 11.5 give many cases where we get either matching bounds or better bounds. Counterargument: We may one day prove all of these better lower bounds from $P \neq N P$. That is possible and has not been ruled out.

11.8 Open Problems

Open Problem 11.13.

1. Prove or disprove unique games conjecture.
2. For the tables in Section 11.5 for which we do not have matching bounds, close the gap. This may be done by either better approximation algorithms or better reductions.
3. There may come a time when we think, for lower bounds on approximation, that UNIQUE GAMES conjecture has gone as far as it can go (we may already be there with $P \neq N P$). When this happens, find a new conjecture that is reasonable and whose assumption will help close the gaps.

Part II

Above NP

Chapter 12

Counting Problems

12.1 Introduction

Recall that $\varphi \in$ SAT if there exists at least one satisfying assignment for φ. For SAT all we care about is the distinction between 0 and ≥ 1 satisfying assignments. What if we want to know how many satisfying assignments there are? This problem is clearly at least as hard as SAT but is it harder? (Spoiler Alert: Probably Yes.) Valiant [Val79c, Val79a, Val79b] defined the class of functions that capture this notion.

Chapter Summary

1. We define the complexity class $\# P$ which is the set of functions that count the number of solutions to an NP problem. We also define an appropriate notion of reduction and completeness. We give reasons why problems that are \#P-complete are likely much harder than NP-complete problems (see Theorem 12.2).
2. We show that many problems are \#P-complete.
3. We present the hard result that PERM is \#P-complete and use that to prove more problems $\# P$-complete.
4. We will also look at two other topics about number-of-solutions: (1) Another Solution: If you have, say, one satisfying assignment, will it help you find another?, and (2) Fewest Clues: What is the least number of (say) assignments to variables do you need so that the remaining formula has only one satisfying assignment?

12.2 \#SAT and \#P

Definition 12.1.

1. \#SAT is the following function: on input a boolean formula φ, output the number of satisfying assignments.
2. Let $A \in \mathrm{NP}$. Hence there exist a polynomial p and a set $B \in \mathrm{P}$ such that

$$
A=\{x: \exists y:|y|=p(|x|) \wedge(x, y) \in B\} .
$$

$\# A$ is the function that, on input x, outputs the number of y of length $p(|x|)$ such that $(x, y) \in B$.
3. \#P is the set of all functions of the form $\# A$ where $A \in \mathrm{NP}$.

Note: The above definition of $\# A$ is ambiguous as written. There may be many different p, B for a set $A \in \mathrm{NP}$. Here is an example:

$$
\text { SAT }=\left\{\varphi\left(x_{1}, \ldots, x_{n}\right): \exists x=y z:|y|=|z|=n \wedge \varphi(y)=\text { TRUE } \wedge z \text { is a square }\right\} .
$$

Using this definition of $\operatorname{SAT}, \# \operatorname{SAT}\left(\varphi\left(x_{1}, \ldots, x_{n}\right)\right)$ would be

$$
\text { (Number of Satisfying Assignments) } \times(\text { Number of squares of length } n) \text {. }
$$

This is clearly not what we want. We will ignore this issue and assume that the B, p used to define A are natural. For example, \#3COL is the number of 3-colorings of a graph, \#HAM Cycle is the number of Hamiltonian cycles in a graph, etc.

Is \#SAT much harder than SAT? Likely yes. Toda [Tod91] showed the following.
Theorem 12.2. If A is in the polynomial hierarchy (so $A \in \Sigma_{i}$ or $A \in \Pi_{i}$) then A is reducible to \#3SAT. Hence, if \#3SAT is in FP, then every set in the polynomial hierarchy is in P. The reduction may use many evaluations of \#3SAT.

Valiant's motivation for studying counting problems was to show that computing the permanent of matrix is likely hard. We elaborate on this in Section 12.10. Another motivation for studying counting problems comes from puzzle design. We often want to know when there is a unique solution for a puzzle. Hence we want to know when the number of solutions to an NP problem is 1 .

12.3 Reductions and Completeness

The statement $A \leq_{p} B$ can be viewed as saying that we can solve the question $x \in A$ by making one query to B, and the answer to the query is the answer. We define reductions that allow many calls and can use the information any way you want. Formally this would require the definition of an oracle Turing machine. We are not going to define the concept formally. All you need to know is that an oracle Turing machine $M^{()}$can make queries to whatever is in those parentheses (a set or a function). In the calculation of $M^{g}(x)$, if the machine wants to know $g(y)$ it only has to write down y on a special tape.

Definition 12.3. Let f, g be functions.

1. $f \leq_{p, o} g$ if there is an oracle Turing machine $M^{()}$such that $f(x)=M^{g}(x)$ and the calculation of $M^{g}(x)$ takes polynomial time.
2. g is \#P-hard
if, for all $f \in \# \mathrm{P}, f \leq_{p, o} g$.
3. g is \#P-complete if $g \in \# \mathrm{P}$ and g is \#P-hard.

We will often want to show that, for some set $A \in \mathrm{NP}, \# A$ is \#P-complete. We will do this by presenting a certain type of reduction from A to B. We define two such reductions.

Definition 12.4. Let A, B be sets in NP. A parsimonious reduction from A to B is a reduction f such that the following hold.

1. $x \in A$ if and only if $f(x) \in B$.
2. The number of solutions for $x \in A$ (e.g., the number of satisfying assignments) equals the number of solutions for $f(x) \in B$ (e.g., the number of cliques of size k).

The next terminology is due to Erik Demaine, though the idea of consistent expansion of the number of solutions is used in the original \#P papers (e.g., [Val79a]).

Definition 12.5. Let A, B be sets in NP. A c-monious reduction from A to B is a reduction f such that there exists a constant a such that the following hold.

1. $x \in A$ if and only if $f(x) \in B$.
2. The number of solutions for $x \in A$ (e.g., the number of satisfying assignments) equals a times the number of solutions for $f(x) \in B$ (e.g., 12 times the number of cliques of size k).

Exercise 12.6.

1. Show that \#SAT is \#P-complete.

Hint: Modify the proof of the Cook-Levin theorem.
2. Show that if there is a parsimonious or c-monious reduction from SAT to A then $\# A$ is \#P-hard.
3. Show that if $\# A$ is $\# \mathrm{P}$-complete and $\# A \in \mathrm{FP}$ then $\# \mathrm{P}=\mathrm{FP}$.

12.4 Another Solution Problems (ASP-A)

We will now look at the Another Solution Problems. The reductions used are parsimonious and also have one more condition. Hence, later in this chapter, when we prove a problem is \#P-hard we will also note if it is ASP-hard.

Ueda \& Nagao [UN] defined ASP- A and the appropriate reductions for them; however, we follow the treatment of Yato \& Seta [YS03].

Definition 12.7. Let $A \in \mathrm{NP}$. Hence there exist a polynomial p and a set $B \in \mathrm{P}$ such that

$$
A=\{x: \exists y:|y|=p(|x|) \wedge(x, y) \in B\} .
$$

Then ASP- A is the following problem: Given x and given a y with $|y|=p(|x|)$ and $B(x, y)$, determine whether another solution exists (ASP stands for Another Solution Problem). Note that you need not find that other solution.

Note: Yato \& Seta [YS03] defined a generalization of ASP- A called k-ASP- A : given k solutions to A, find one more.

This concept is useful in puzzle design since we want to be able to show that there is a unique solution.

There are cases where A is hard but ASP- A is easy. ASP-3COL is easily seen to be in P : given a 3-coloring of a G, just permute the colors to get another 3-coloring of G.

Open Problem 12.8. Is the following problem NP-complete: Given a graph G and a 3-coloring ρ, find another 3 -coloring that is not a permutation of ρ.

We look at a more interesting example.
Let Cubic Ham Cycle be Ham Cycle restricted to cubic graphs (this is known to be NPcomplete). Then we will see that ASP-Cubic Ham Cycle $\in P$.

1. Tutte [Tut46] proved that any cubic graph has an even number of Hamiltonian cycles. Hence if a cubic graph G has a Hamiltonian cycle then it has another one. The proof was nonconstructive and hence did not yield an algorithm to actually find the second Hamiltonian cycle. (Tutte credits Smith with an earlier and different proof of the theorem).
2. Thomason [Tho78] came up with an algorithm that will, given a graph G and a Hamiltonian cycle H, output another Hamiltonian cycle. He did not analyze it.
3. Krawczyk [Kra99] showed that Thomason's algorithm, in the worst case, takes exponential time.

Since we only want to know whether there is another Hamiltonian cycle, and do not need to find it, we have the following theorem.

Theorem 12.9.

1. ASP-3COL is trivially in P since we can permute the colors. Note that we don't just know there is another solution, we can actually find it.
2. Let Cubic Ham Cycle be the problem of finding a Hamiltonian cycle in a cubic graph. By the statements above ASP-Cubic Ham Cycle $\in P$ trivially since the answer is always yes.

The question arises: Given a cubic graph and a Hamiltonian cycle in it, how hard is it to find another one. We will consider this later. Spoiler alert: Its hard.

Let $A, B \in \mathrm{NP}$. We define a reduction so that if A reduces to B and ASP- $A \notin \mathrm{P}$ then ASP- $B \notin \mathrm{P}$.
Definition 12.10. Let $A, B \in N P$.

1. A is ASP reducible to B if there is a parsimonious reduction from A to B with the additional property that there is a polynomial-time bijection from solutions to an instance of B to solutions to an instance of A. (This bijection is an algorithmic form of parsimony; in particular, it implies parsimony.)
2. B is $\boldsymbol{A S P}$-complete if, for every $A \in N P, A$ is ASP reducible to B. (We do not have a notion of ASP-hardness since these notions only make sense if $B \in \mathrm{NP}$.)

Exercise 12.11. Prove that, if A is ASP reducible to B, then the following hold:

- ASP- $B \in \mathrm{P} \Longrightarrow$ ASP $-A \in \mathrm{P}$.
- ASP- A is NP-hard \Longrightarrow ASP-B is NP-hard.
- A is ASP-complete and $B \in \mathrm{NP} \Longrightarrow B$ is ASP-complete.

Exercise 12.12. Prove that, if A is ASP-complete, then k-ASP- A is NP-hard for any $k \geq 1$. You can assume that SAT is ASP-complete [YS03].

Exercise 12.13. Fillmat is a logic puzzle published by Nikoli [Nik08, Nik]. (Nikoli is a publisher of puzzles that are culture-independent.) It was shown to be both NP-complete and ASP-complete by Uejima and Suzuki [US15]. Read their paper and either try to prove their theorems or read how they did and put it in your own words.

12.5 Thoughts on "For which $A \in N P$ is \#A \#P-Complete?"

Valiant [Val79b] showed that for many $A \in N P$, there is a parsimonious reduction from SAT to A, and hence $\# A$ is $\# \mathrm{P}$-complete. We will present some of those proofs, as well as other proofs that problems are \#P-complete or \#P-hard.

Empirically it seems that, for every natural problem A that is NP-complete, \#A is \#P-complete. This is not a theorem, and it probably cannot be a theorem since it is hard to define "natural". Are there sets $A \in \mathrm{P}$ for which $\# A$ is $\# \mathrm{P}$-complete? Yes. We state four of them.

Theorem 12.14.

1. Brightwell \& Winkler [BW05] showed that counting the number of Eulerian Cycles in a graph is \#P-complete. Note that detecting whether a graph has an Euler cycle is in P.
2. Jerrum [fer94] showed that counting the number of labeled trees in a graph is \#P-complete. Note that detecting a graph has a tree for a subgraph is trivial, the answer is always yes.
3. Valiant [Val79b] showed that counting the number of bipartite matching is \#P-complete. We will see this as an easy corollary of PERM being \#P-complete. Note that finding a matching in a bipartite graph (even a general graph) is in P. Vadhan [Vad01] showed that this problem is still \#P-complete when G is restricted to bipartite graphs (1) with degree 4, (2) planar of degree 6, or (3) k-regular for any $k \geq 5$. That paper has many other problems in P whose counting version is $\# P$-complete.
4. Valiant [Val79b] showed that counting the number of Satisfying assignments in a monotone 2 -SAT formula is $\# P$-complete. Note that the problem of determining whether a monotone 2SAT formula is satisfied is trivial, the answer is always yes. Provan and Ball [PB83] extended this result.

Exercise 12.15.

1. Find several sets $A \in N P$ that are also in P such that $\# A$ is in polynomial time.
2. (Vague Open Problem) Find a difference between the problems you found in Part 1 and the problems from Theorem 12.14

12.6 For Many $A \in N P, \# A$ is \#P-Complete

We show many functions in \#P are \#P-complete using parsimonious reductions.

12.6.1 \#3SAT, \#Clique, and \#3SAT-3

Theorem 12.16.

1. \#SAT is \#P-complete. This is Exercise 12.6, hence we omit the proof.
2. There is a parsimonious reduction from SAT to 3SAT. Hence \#3SAT is \#P-complete.
3. There is a parsimonious reduction from 3SAT to 3SAT-3. Hence \#3SAT-3 is \#P-complete.
4. There is a parsimonious reduction from 3SAT to Clique. Hence \#Clique is \#P-complete.
5. All of the above reductions are ASP.

Proof:

2) Here is the parsimonious reduction:
1. Input $\varphi=C_{1} \wedge \cdots \wedge C_{k}$ where each C_{i} is an OR of literals.
2. Introduce three new variables x, y, z and the clauses

$$
\begin{aligned}
& (x \vee y \vee \neg z) \wedge(x \vee \neg y \vee z) \wedge(x \vee \neg y \vee \neg z) \wedge \\
& (\neg x \vee y \vee z) \wedge(\neg x \vee y \vee \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee \neg y \vee \neg z)
\end{aligned}
$$

Hence in any satisfying assignment x, y, z are all set to false.
3. For all C_{i} that are 1-clauses, $C_{i}=w$, replace it with $w \vee x \vee y$.
4. For all C_{i} that are 2-clauses, $C_{i}=w_{1} \vee w_{2}$, replace it with $w_{1} \vee w_{2} \vee x$.
5. For all C_{i} that are 3-clauses, no change needed.
6. We now talk about C_{i} that have ≥ 4 literals. We do an example of what to do with a 5 -clause. From our example the general case will be clear.
Let the clause be $L_{1} \vee L_{2} \vee L_{3} \vee L_{4} \vee L_{5}$.
Note that all the $L^{\prime} s$ are literals, so they can be variables or their negations. Introduce a new variables W. Consider

$$
\left(L_{1} \vee L_{2} \vee W\right) \wedge\left(\neg L_{1} \vee L_{2} \vee W\right) \wedge\left(L_{1} \vee \neg L_{2} \vee W\right) \wedge\left(\neg L_{1} \vee \neg L_{2} \vee \neg W\right) \wedge
$$

$$
\left(\neg W \vee L_{3} \vee L_{4} \vee L_{5}\right)
$$

If $W=$ FALSE then we get all solutions where $\left(L_{1}, L_{2}\right)=($ TRUE, TRUE $)$.
If $W=$ true then we get all solutions where $\left(L_{1}, L_{2}\right) \in\{($ True, false $),($ false, True $),($ FAlSE, FALSE $)\}$.
Hence the number of satisfying assignments is the same. But we still have a 4 -clause.
Do the same procedure on the 4 -clause that we did on the 5 -clause.
We leave it to the reader to formalize the case where there are ≥ 4 literals and then to show that the reduction is parsimonious.
3) The reduction from 3SAT to 3SAT-3 in Theorem 1.11 is parsimonious.
4) The reduction from 3SAT to Clique in Theorem 1.24 is parsimonious.

Exercise 12.17.

1. Give the reduction for Theorem 12.16 .2 in the case where the formula has ≥ 4 literals.
2. Prove that the reduction in Theorem 12.16 .2 is parsimonious.
3. Prove that the reduction in Theorem 12.16.3 is parsimonious.
4. For the reductions in the last two items give the additional function needed to make the ASP-reductions.

12.7 \#PLANAR 3SAT and Variants

The reader is advised to read Chapter 2 since in this section we discuss the reductions in that chapter with an eye towards either observing they already are parsimonious or modifying them so they are parsimonious.

Exercise 12.18.

1. Prove that \#Planar 3SAT is \#P-complete and ASP-complete.

Hint: The reduction in Theorem 2.10 is parsimonious, though this needs to be proven.
2. In Chapter 2 we proved that for several problems X, Planar 3 SAT $\leq_{p} X$. Modify these reductions (if needed) to show that $\# X$ is $\# \mathrm{P}-$ hard. Note which ones are actually $\# \mathrm{P}$-complete. Also look at the ASP question.

Theorem 12.19. \#PLANAR Rectilinear 3SAT is \#P-complete.

Proof sketch:

The reduction in the proof of Theorem 2.22 will suffice.

Exercise 12.20. Prove Theorem 12.19 rigorously.
We would like to show that \#Planar 1-In-3SAT is \#P-complete. The reduction from 3SAT to Planar 1-in-3SAT shown in Figure ?? is not parsimonious. There is exactly one case when we can set the variables of the original instance and cannot force the internal variables to a specific value. The figure shows that there are two possible solutions of the Planar 1-In-3SAT instance that correspond to the same solution of the 3SAT instance. If every solution of the 3SAT instance had 2 corresponding Planar 1-in-3SAT solutions we would have a c-monious reduction, but this irregularity makes this reduction not parsimonious.

Luckily, there is a different reduction from Planar Rectilinear 3SAT to Planar Positive Rectilinear 1-in-3SAT that does work. In this proof, all the variables are forced. The number of solutions is conserved and we have a parsimonious reduction. We omit the proof.

12.8 \#Planar Directed Ham Path is \#P-Complete

In the proof of Theorem 4.1 we showed that Planar 3SAT reduces to Planar Directed Ham Path restricted to graphs of degree 3. See Figure 4.1 for all of the gadgets used. The reduction was not parsimonious. When multiple variables satisfy a clause any of them can grab the vertices in the clause gadget. Since we can sometimes have 1, 2, or 3 possible solutions that correspond to the same 3SAT solution, we do not have a parsimonious (or c-monious) reduction. We sketch how to modify the reduction to make it parsimonious, as proved by Seta [Set02].

Theorem 12.21.

1. \#НАм Cycle restricted to directed planar max-degree-3 graphs is \#P-complete.
2. \#НАм Cycle is \#P-complete.

Proof sketch:

Figure 12.1 shows gadgets for XOR, crossing XOR, OR, and imply. Figure 12.2 shows a gadget for 3-OR which we will describe later. Figure 12.3 gives an example of the final construction. All of these figures are due to Seta [Set02].

We start with the XOR gadget. This gadget admits only one solution and forces that exactly one edge connected by the gadget is used in the cycle.

The OR requires that one or two of the edges are used in the cycle. The implication forces an edge to be used if the other edge is used. The 3-way OR gate implements a 3CNF constraint, that at least one of the three edges is used in the cycle. The difference between this clause gadget compared to the proof of Theorem 4.1 is that the 3-way OR gadget has all its edges forced, admitting only one cycle, per solution of the original 3SAT instance. Consequently, this new reduction is parsimonious and proves that finding the number of Hamiltonian cycles in a planar max degree-3 graph is \#P-hard. As noted above, Figure 12.3 gives an example.

The reduction of the restricted case to Ham Cycle is trivial.

Figure 12.1: Gadgets for XOR, Crossing XOR, OR, Implies.

Planar \# Ham.
 Cycles [Sato 2002]

Figure 12.2: Gadget for 3-OR.

Planar \# Ham. Cycles [Sato 2002]

Figure 12.3: Example.

We recap and ponder the ASP version. We have that \#НАм Cycle restricted to directed planar max-degree-3 graphs is \#P-complete. From Tutte's result (see Section 12.4) we know that the ASP version of this problem is in P. Hence it would seem that this problem is not useful for ASPcompleteness. This is true if all one cares about is the existence of another solution. What about finding one?

Seta [Set02] showed the following.
Theorem 12.22. The following problem is ASP-hard: Given a planar cubic graph and a Hamiltonian Cycle find a nother one.

We will use this in the next section.

12.9 Slitherlink

Recall that in Section 4.3.2 we defined the game of Slitherlink and showed that it was NP-complete. We are now interested in counting how many ways someone can win, which is of course a counting problem.

The proof that Slitherlink is NP-complete used a reduction from Hamiltonian cycle restricted to grid graphs. Alas, we do not have that the counting version of this variant of Hamiltonian cycle \#P-complete. However, we can use the restriction of Hamiltonian cycle to directed planar max-degree-3 graphs which was shown \#P-complete in Theorem 12.21. We will also use Theorem 12.22 to obtain an ASP result.

The following theorem is due to Yato [Yat03].

Theorem 12.23.

1. \#SLITHERLINK is \#P-complete.
2. The problem of, given an instance of SLITHERLINK, and a solution, find another solution, is ASPhard. (This follows from Part 1, the nature of the reduction to prove Part 1, and Theorem 12.22).

Proof sketch:

\#Slitherlink is clearly in \#P.
We show a parsimonious reduction from Hamiltonicity in directed planar max-degree-3 graphs.
The proof is basically Figure 4.11. For any Hamiltonian cycle (i.e., order in which we visit the vertices) in the planar graph, there is a unique way to solve the puzzle by visiting the "required" vertices in the corresponding order; and given this order, there is exactly one way to use the optional vertices to complete the cycle. Hence the reduction is parsimonious so Slitherlink is \#P-hard.

12.10 Permanent

All results in this section are due to Valiant [Val79a].
Definition 12.24. Let $M=\left(m_{i, j}\right)$ be an $n \times n$ matrix.

1. The determinant, denoted $\operatorname{Det}(M)$, is $\sum_{\pi}(-1)^{\operatorname{sign}(\pi)} \Pi_{i=1}^{n} m_{i, \pi(i)}$ where (1) the sum is over all permutations π of the set $\{1,2, \ldots, n\}$ and (2) sign(.) of a permutation is a $0 / 1$ value given by the parity of the number of inversions mod 2. Note that even though this definition has an exponential (in n) number of terms, computing the determinant is in FP.
2. The permanent of M, denoted $\operatorname{Perm}(M)$, is $\sum_{\pi} \Pi_{i=1}^{n} m_{i, \pi(i)}$ i.e. the unsigned sum over permutations.

It has been known for a long time that computing the determinant is easy. People wondered if computing the permanent was also easy. Before the modern notions of complexity the question of proving that the permanent was hard to compute could not even be stated. There were attempt to, in our terminology, show that Perm $\leq_{p, o}$ Det, which would show that Perm was easy.

The problem of showing Perm was hard motivated Valiant [Val79a] to define \#P. He proved that computing the permanent is \#P-complete. His proof is complicated. There are alternative proofs by Ben-Dor \& Halevi [BH93] and Aaronson [Aar11]. The proof by Aaronson uses quantum computing.

The proof by Ben-Dor \& Halevi [BH93] is simpler than Valiant's but is still complicated.

Theorem 12.25.

1. Perm is \#P-complete even when the matrix is restricted to having elements in $\{-1,0,1,2\}$.
2. PERM is \#P-complete even when the matrix is restricted to having elements in $\{0,1\}$.

12.11 Counting Bipartite Matchings: Perfect and Maximal

Definition 12.26. (Figure 12.4 illustrates the concepts in this definition.) Let G be a graph.

1. A matching for G is a set of edges that share no vertices.
2. MAT is the set of graphs that have a matching. Bip-MAT is the set of bipartite graphs that have a matching. These are silly definitions since all graphs that have a a matching, namely the empty set. However, we will see that \#MAT and \#Bip-MAT are \#P-complete.
3. A perfect matching for G is a matching M so that every vertex is the endpoint of some edge in M. Note that a perfect matching for a bipartite graph G is a bijection from the left vertices to the right vertices.
4. PerfMat is the set of graphs that have a perfect matching. Bip-PM is the set of bipartite graphs that have a perfect matching. It is known that both PerfMat $\in P$ and Bip-PM $\in P$; however, we will see that \#PerfMat and \#Bip-PM are \#P-complete.
5. A maximal matching of G is a matching M such that, for any edge e that is not in the matching, $M \cup\{e\}$ is not a matching. Note that a graph with no edges has \emptyset as a maximal matching.
6. MaximalMat is the set of all graphs that have a maximal matching. Bip-MM is the set of bipartite graphs that have a maximal matching. These are silly definitions since, by a greedy algorithm, every graph has a maximal matching and it can be found quickly; however, we will see that \#MAXIMALMAT and \#Bip-MM are \#P-complete.

Figure 12.4: (a) Bipartite graph. (b) Perfect matching. (c) Maximal matching.

Exercise 12.27. Let M be an $n \times n 0-1$ matrix. We denote the $i j$ th entry by $a_{i j}$. Let G be the bipartite graph with both left and right sets of vertices be $\{1, \ldots, n\}$, and there is an edge from i (Left) to j (Right) if and only if $a_{i j}=1$. Show that the permanent of M is \#Bip-PM(G).

Theorem 12.28. \#BIP-PM is \#P-complete. Hence \#PERFMAT is \#P-complete.

Proof:

This follows from Exercise 12.27 and Theorem 12.25.2.

The proof of Theorem 12.28 uses the premise that the graph is bipartite. None of the proofs of the remaining results in this section need that premise. Even so, we state the results for bipartite graphs.

Theorem 12.29. \#BIp-MAT and \#BIp-MM are \#P-complete. Hence \#MAT and \#MAXIMALMAT are \#P-complete.

Proof:

We show \#Bip-PM $\leq_{p, o}$ \#Bip-MM and \#Bip-PM $\leq_{p, o}$ \#Bip-MAT at the same time since the reductions are so similar. They are both one-call reductions.

1. Input $G=(X, Y, E)$, a bipartite graph with $|X|=|Y|=n$ (if $|X| \neq|Y|$ then there are no perfect matchings). We want to know \#Bip-PM(G).
2. Create a bipartite graph by doing the following:
(a) Replace every node v in $X \cup Y$ with n^{2} nodes $v_{1}, \ldots, v_{n^{2}}$.
(b) If (v, w) is an edge in G then put an edge between every v_{i} and w_{j}.
(c) Call this new bipartite graph G^{\prime}.
(d) Make the query \#Bip-MM $\left(G^{\prime}\right)$. We now give commentary before saying the next step. Let M be a (maximal) matching of G with i edges. Then it will correspond to $\left(n^{2}!\right)^{i}$ (maximal) matchings in G^{\prime}. For $1 \leq i \leq n$ let m_{i} be the number of maximal matchings in G with i edges. Note that $m_{n}=\# \operatorname{Bip}-\operatorname{PM}(G)$ (in either the matching or maximal matching case). Hence

$$
\# \operatorname{BIP}-\mathrm{MM}\left(G^{\prime}\right)=\sum_{i=1}^{n} m_{i}\left(n^{2}!\right)^{i}
$$

Since $m_{i} \leq\binom{ n^{2}}{n}<n^{2}$! we can view \#Bip-MM($\left.G^{\prime}\right)$ as the base- n^{2} ! number $m_{n} m_{1} \cdots m_{0}$.
(e) Express \#Bip-MM($\left.G^{\prime}\right)$ in base n^{2} ! to obtain $m_{n} \cdots m_{0}$. Output m_{n}.

12.12 Counting Versions of 2SAT and Several Graph Problems

Recall that 2SAT $\in P$. What about \#2SAT? Is it \#P-complete? It is. We do not prove this. We prove a variant of \#2SAT is \#P-complete, and use this variant to show several other problems \#P-complete or \#P-hard.

Definition 12.30. Th-Pos-2SAT is the following problem: given a boolean formula in 2CNF form with all literals positive, and a number t (called the threshold), does it have a satisfying assignment with at least t variables set to false.

Theorem 12.31. \#Tн-Pos-2SAT is \#P-complete.
Proof:
We describe a parsimonious reduction from PerfMat to Th-Pos-2SAT.

1. Input $G=(V, E)$, a graph on $2 k$ vertices. Note that any perfect matching will have k edges.
2. Form a formula as follows:
(a) For every edge e we have a boolean variable v_{e}. Our intent is that if e is in the matching then v_{e} is set to false (you read that right).
(b) For every edges e and e^{\prime} that are incident we have the clause $\left(v_{e} \vee v_{e^{\prime}}\right)$.
(c) Let the formula be φ.
3. Output (φ, t).

We show a bijection between the perfect matchings of G and the satisfying assignments of φ that have $\geq k$ variables set false.

Given a perfect matching, every variable corresponding to an edge in the matching is set to false, and all of the other variables are set to true. Since the edges in the matching are not incident to each other, there is no clause that has two variables false. Hence this is a satisfying assignment.

We leave it to the reader to show that every satisfying assignment is in the image of this map.

Exercise 12.32.

1. Show that Th -Pos-2SAT \leq_{p} Clique by a parsimonious reduction. (This provides another proof that \#Clique is \#P-complete.)
2. Show that counting the number of maximal independent sets is \#P-hard.
3. Show that counting the number of maximal cliques is \#P-hard.

Exercise 12.33. We state five \#P-complete problems and give references. Either try to prove they are \#P-complete or look up the papers, read them, understand the reductions, and put it in your own words.

- Counting the number of vertex covers of size $\leq k$ in a bipartite graph. This was shown by Provan and Ball [PB83]. They also showed several variants of this problem are \#P-complete.
- Minimum Cardinality (s, t) Cut: Given (G, s, t) where G is a graph and s, t are vertices, find how many minimum-size edge cuts separate s and t. This was shown by Pravan and Ball [PB83].
- Antichain. Given partial order (X, \leq) find the number of antichains (sets with all elements pairwise incomparable). This was shown by Provan and Ball [PB83]. They also showed several variants of the problem are \#P-complete.
- EXT is the problem of, given a partially ordered set (via the elements and the relations) determine whether there is an extension of it (a consistent way to order some pair that is not ordered). This problem is easily in P since a partial order is in EXT if and only if it does not compare every pair. But what about the problem of counting the number of extensions? Brightwell \& Winkler [BW91] showed that this problem is \#P-complete.
- Recall that 3COL is the problem of, given a graph G, determine whether it is 3 -colorable. Creignou \& Hermann [CH99] have shown that \#3COL is \#P-complete.
- For all of the problems in this exercise look into the ASP version.

For more \#P-complete problems see the papers of Valiant [Val79c, Val79a, Val79b] and Simon [Sim77].

12.13 Fewest Clues Problem

Imagine that you are designing a hard Sudoku puzzle. You want to give as few numbers as possible yet still have a unique solution. Demaine et al. $\left[\mathrm{DMS}^{+} 18\right]$ have formalized this notion.

Let
Definition 12.34. Let $A=\left\{x: \exists^{p} y:(x, y) \in B\right\}$ where $B \in \mathrm{P}$. Let $q(|x|)$ be the size of y. Let $x \in \Sigma^{*}$. A clue for x is a string in $(\Sigma \cup \perp)^{q(\mid x) \mid}$ such that there is exactly one way to fill in the \perp-spots to get a y such that $(x, y) \in B(x, y)$.

Fewest Clues Problem (FCP(A))
Note: $A=\left\{x: \exists^{p} y:(x, y) \in B\right\}$ where $B \in \mathrm{P}$.
Instance: $x \in \Sigma^{*}$ and $k \in \mathbb{N}$.
Question: Does there exist a clue for x with k non- \perp characters? (If $x \notin A$ then the answer is NO.)
Note: For the function version of the problem you are given x and want to find the least k such that $(x, k) \in \mathrm{FCP}(\mathrm{A})$.

Demaine et al. [DMS ${ }^{+}$18] showed that FCP versions of Planar 1-In-3SAT, Planar 3SAT, 1-In3SAT are Σ_{2}-complete. They then used these results to get that the FCP version of several games problems are Σ_{2}-complete: Sudoku, Akari, Shakashaka (these are Nikoli games [Nik08, Nik]). Latin Squares.

12.14 Open Problems

Project 12.35. For many $N P$-complete sets A determine if $\# A$ is $\# P$-complete.

Project 12.36. For many sets $A \in P$ determine if $\# A$ is $\# P$-complete. Try to formulate (1) criteria on A that makes $\# A \# P$-complete. (2) criteria on A that makes $\# A \in F P$. One must be careful since not every set $A \in P$ has a natural form involving existential quantifiers.

Here is an ill-posed conjecture.
Conjecture 12.37. If A is a natural $N P$-complete problem then $\# A$ is $\# P$-complete.
The conjecture is ill-posed because natural is not well defined. Even so, it seems to be true. So the open question here is to find some rigorous way to state it, and then prove it.

What if we drop the requirement that the problem A is natural? Since there can be rather contrived sets A we pose this as an open question instead of a conjecture:

Open Problem 12.38. Prove or disprove the following: If A is an $N P$-complete problem then $\# A$ is $N P$-complete.

We have seen that if A is NP-complete then ASP- A might be in P, NP-complete, ASP-complete, or even both NP-complete and ASP-complete.

Project 12.39. For many sets A that are $N P$-complete determine if ASP-A is in P or ASP-complete or NP-complete or both ASP-complete and NP-complete. Try to formulate criteria on A that puts in each of those classes.

Chapter 13

Existential Theory of the Reals

13.1 Introduction

Consider the following problem.

Point Guard Art Gallery Problem

Instance: A polygon and a number $k \in \mathbb{N}$. We think of the polygon as an art gallery that has valuable paintings and hence needs to be guarded.
Question: Can k points be placed in the polygon such that if each point has a a guard (who can turn 360 degree) every point of the museum is visible to some guard.

This is an unusual problem in that (1) it is NP-hard, (2) it is open as to whether it is NP, (3) it does not seem to be in the polynomial hierarchy, (4) it is in PSPACE but does not seem to be PSPACE-complete. The reason why Point Guard Art Gallery Problem is hard to classify is that it asks if some reals with some properties exist, as opposed to some finite object (like a satisfying assignment). In this chapter we discuss many problems that involve asking if a finite set of reals exists.

Chapter Summary

1. We discuss the problem Extistenail Theory of the Reals (ETR) which will be analogous to CNF SAT. It is a problem that asks if certain reals exist.
2. We discuss $\exists \mathbb{R}$, a complexity class that is analogous to NP. The main different is that a problem $A \in N P$ is defined by a polynomial quantifier over a finite set, where as $A \in \exists \mathbb{R}$ is defined by a quantifiers over the reals.
3. We give many examples of problems that are $\exists \mathbb{R}$-complete. We will discuss why is evidence that they are not in NP, not in the polynomial hierarchy, and not PSPACE-complete.

Te class $\exists \mathbb{R}$ is a vast topic that we will, for reasons of space, only be able to discuss briefly. We will have few proofs, algorithms, or reductions. For more information on these topics see (1) the paper by M. Schaefer [Sch09] which named the class $\exists \mathbb{R}$ and gave us the modern view of it, (2) the paper by M. Schaefer \& Stefankovic [SS17] whose introduction is a good summary of the theory, (3) the expository paper of Matousek [Mat14], (4) the survey by Cardinal [Car15],
(5) the thesis of Bieker [Bie20], and (6) the talk by M. Schaefer [Sch20]. This chapter will contain additional references for particular results.

13.2 Existential Theory of the Reals (ETR)

Consider the following two question where the quantifiers range over \mathbb{R}.

$$
\begin{aligned}
& S_{1}=\exists x: y: z: x^{2}+y^{z}+z^{2}<0 . \\
& S_{2}=\exists x: y: z: x^{2}+y^{2}+z^{2}>0 .
\end{aligned}
$$

Clearly S_{1} is false and S_{2} is true. We consider the problem where you are given a sentence like S_{1} or S_{2} and you need to determine whether it is true or false.

```
Existential Theory of the Reals (ETR)
```

Instance: A sentence of the form

$$
\exists x_{1}: \exists x_{2}: \cdots: \exists x_{n}: C_{1} \wedge \cdots \wedge C_{k}
$$

where each C_{i} is a polynomial equality or inequality in x_{1}, \ldots, x_{n} (it might not use
all of them). The polynomials have coefficients in \mathbb{Z}.
Question: If the quantifiers range over \mathbb{R} then is the sentence true?

13.3 The Complexity of ETR

We state upper and lower bounds on the complexity of ETR. First an upper bound
It is not obvious that ETR is decidable. Nevertheless, it is. The following are known:

Theorem 13.1.

1. (Tarski [Tar48]) ETR is decidable. (Tarski had the result in 1930 but did not publish it until 1948.)
2. (Collins [Col75]) ETR is in time $2^{2^{O(n)}}$ where n is the number of variables.
3. (Canny [Can88]) ETR \in PSPACE.

The algorithms in Theorem 13.1 will, given a formula, only tell you if it is true or false. If it is true then the algorithm does not return the reals r_{1}, \ldots, r_{n} that make it true. In fact, this might be impossible since some reals might require an infinite representation. But some reals do not. This leads to our next definition.

Definition 13.2. A language for some reals (LFSR) is an injection from a countable set to \mathbb{R}. We intend the representation of the reals to be natural, though we do not define that rigorously.

Example 13.3.

1. Map $\{0,1\}^{*} \times\{0,1\}^{*}$ to \mathbb{R} by (x, y) maps to $x . y$ which is the base 2 number represented by x then a decimal point then y.
2. The countable set A is formed as follows:
(a) Every element of Q is in A.
(b) If $a \in A$ and $q \in \mathbb{Q}$ then $a^{q} \in A$ with two caveats: (1) if a^{q} is ambiguous then add some bits to indicate which a^{q} it is, and (2) do not include the a^{q} that are imaginary.
(c) If $a_{1}, a_{2} \in A$ then $a_{1}+a_{2}, a_{1} \times a_{2}, a_{1} / a_{2}$ (if $a_{2} \neq 0$), and $a_{1}-a_{2}$ are all in A.

The map from A to \mathbb{R} is obvious.
When we discuss having an algorithm that actually outputs reals we will preface it with saying that there is a LFSR that is being used.

Theorem 13.1.2 is used to prove other problems in PSPACE whose membership there is not at all obvious. We do one example. For more examples see Bieker [Bie20].

Unit-Distance-Graphs

Instance: A graph $G=(V, E)$. Let the vertices be $\{1, \ldots, n\}$.
Question: Does there exist a set of points in the plane p_{1}, \ldots, p_{n} such that, for all

$$
1 \leq i<j \leq n,\left|p_{i}-p_{j}\right|=1 \text { iff }(i, j) \in E .
$$

Since the plane has irrational points it does not seem that Unit-Distance-Graph is in PSPACE. Nevertheless, it is. The proof that Unit-Distance-Graph \in PSPACE is a reduction of Unit-Distance-Graph to ETR. We do not know of a proof that does not use ETR. The issue of irrationals does not come up since the algorithm will, on input G, only return YES or NO, and if the answer is YES it does not return the points in the plane that show G is a unit distance graph.

Theorem 13.4. Unit-Distance-Graphs is in PSPACE.
Proof: A set of n points in the plane will be represented as a set of n ordered pairs of reals $\left(x_{1}, y_{1}\right)$, $\ldots,\left(x_{n}, y_{n}\right)$.

Let $G=(V, E)$ be a graph. G is in Unit-Distance-Graph iff the following problem is in ETR (the quantifiers are over \mathbb{R})

$$
\exists x_{1}: \cdots: \exists x_{n}: \exists y_{1}: \cdots: \exists y_{n}:
$$

$$
\bigwedge_{(i, j) \in E}\left[\left(x_{i}-x_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2}=1\right] \wedge \bigwedge_{(i, j) \notin E}\left[\left(x_{i}-x_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2} \neq 1\right] .
$$

Since ETR \in PSPACE, so is Unit-Distance-Graph.

Open Problem 13.5.

1. Does there exist a LFSR and a polynomial p such that the following holds. Let $G=(V, E)$ be a graph. Assume $|V|=n$. Given a graph $G=(V, E)$ that is a UNIT-DISTANCE-GRAPH, there is a representation in the plane where the points can be described by elements of the LFSR that are $\leq p(n)$ bits long.
2. If the answer to Part 1 is YES then find a PSPACE algorithm that will solve the following: given a graph G that Canny's algorithm has already said is a UNIT-DISTANCE-GRAPH, output the points in the plane (using the LFSR) and the edges that realize the graph.

We give a proof of the next theorem which is probably folklore from before any written account. We know of the written accounts by Shor [Sho91], J. Buss et al. [BFS99], and Schaefer \& Stefankovic [SS17]; however, all of these are of harder results of which the next theorem is a corollary.

Theorem 13.6. ETR is $N P$-hard.
Proof: We show 3 SAT \leq_{p} ETR. We use

$$
\varphi\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1} \vee x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee x_{3} \vee x_{4}\right)
$$

as a running example throughout the construction.
Here is the reduction.

1. Input $\varphi\left(x_{1}, \ldots, x_{n}\right)=C_{1} \wedge \cdots \wedge C_{m}$ where each C_{i} is a \vee of literals.
$\left(\left(x_{1} \vee x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee x_{3} \vee x_{4}\right).\right)$
2. For each boolean variable x_{i} we have a real variable r_{i} and will have as part of the ETR the equation $r_{i}=0 \vee r_{i}=1$.
3. For each clause C_{j} we obtain an inequality E_{j} as follows. Replace x_{i} with r_{i}, and $\neg x_{i}$ with ($1-r_{i}$). E_{j} is the sum of these expressions is ≥ 1. (In our running example (1) the first clause becomes $r_{1}+r_{2}+\left(1-r_{3}\right) \geq 1$ which we simplify to $r_{1}+r_{2}-r_{3} \geq 0$ and (2) the second clause becomes $\left(1-r_{1}\right)+r_{3}+r_{4} \geq 1$ which we simplify to $-r_{1}+r_{3}+r_{4} \geq 0$.)
4. The instance of ETR is

$$
\exists r_{1}: \cdots: r_{n}: \bigwedge_{i=1}^{n}\left(r_{i}=0 \vee r_{i}=1\right) \wedge \bigwedge_{j=1}^{m} E_{j} .
$$

In our running example we get

$$
\exists r_{1}: r_{2}: r_{3}: r_{4}:\left(\bigwedge_{i=1}^{4}\left(r_{i}=0 \vee r_{i}=1\right)\right) \wedge\left(r_{1}+r_{2}-r_{3} \geq 0\right) \wedge\left(-r_{1}+r_{3}+r_{4} \geq 0\right) .
$$

We leave it to the reader to show that the reduction works.
We have ETR is NP-hard. Is ETR in NP? This is open but is thought to be unlikely. We contrast CNF SAT to ETR.

1. Let

$$
\exists x_{1} \in\{\text { TRUE }, \text { FALSE }\}: \cdots: \exists x_{n} \in\{\text { TRUE }, \text { FALSE }\}: C_{1} \wedge \cdots \wedge C_{k}
$$

be an element of 3SAT (each C_{i} is a \vee of literals). If Alice wants to convince Bob that this instance is in SAT then Alice can give Bob the appropriate $\left(x_{1}, \ldots, x_{n}\right) \in\{\text { True , false }\}^{n}$. Note that $\left(x_{1}, \ldots, x_{n}\right)$ is a finite object.
2. Let

$$
\exists x_{1} \in \mathbb{R}: \cdots: \exists x_{n} \in \mathbb{R}: C_{1} \wedge \cdots \wedge C_{k}
$$

be an element of ETR (each C_{i} is a polynomial equality or inequality in x_{1}, \ldots, x_{n}) If Alice wants to convince Bob that this instance is in ETR then what can she do? It is possible that there is a language for some reals that works, but that seems unlikely. There may be some short proof that such reals exist without exhibiting them, but that also seems unlikely.

13.4 ETR in the Real World

The ETR problem is hard in theory. But what about in practice? There has been a great deal of research on this, including actual systems build to solve it. They seem to solve special cases. They do not seem to use Tarski's or Canny's algorithms stated in Theorem 13.1. The result of Collins [Col75] introduced a method called Cylindrical Algebraic Decomposition which are used in many of the best performing systems today. Collins algorithm is the only one that is simultaneously complete and used.

Passmore \& Jackson [PJ09] survey decision methods which seem to hit the sweet spot of solving just the kind of problems that need to be solved. More recent techniques can be found in the works of Passmore [Pas11], Jovanovic \& de Moura [JdM12], and de Moura \& Passmore [dMP13]. One package, the MetiTarski theorem prover, is actually used by NASA in the analysis of flight control software. For more on this see the package itself [Unk] and the paper by Passmore et al. [PPdM12].

$13.5 \quad \exists \mathbb{R}$ and $\exists \mathbb{R}$-Hardness

Theorems 13.1.2 and 13.6 leave open the question of how to best classify ETR. This question is better thought of as the complexity of the class $\exists \mathbb{R}$. We define $\exists \mathbb{R}$ and then discuss its history and complexity.

Definition 13.7.

1. A decision problem A is in $\exists \mathbb{R}$ if $A \leq_{p}$ ETR.
2. A decision problem A is $\exists \mathbb{R}$-hard if ETR $\leq_{p} A$.
3. A decision problem A is $\exists \mathbb{R}$-complete if $A \in \exists \mathbb{R}$ and A is $\exists \mathbb{R}$-hard.

Note: The prehistory and history of the study of ETR and $\exists \mathbb{R}$ is complicated.

1. L. Blum et al. [BSS88] defined a model of complexity over the reals. One of the complexity classes they defined is now seen as being $\exists \mathbb{R}$. Some of the results on that model (theirs and others) are now seen as saying certain problems are $\exists \mathbb{R}$-complete.
2. Mnëv [Mnë88] proved a problem in geometry was $\exists \mathbb{R}$-complete; however, his paper was phrased in geometric rather than complexity-theoretic terms. Shor [Sho91] proved that same problem NP-hard (a different way) and gave an explanation of Mnëv's proof suitable
for complexity theorists. J. Buss et al. [BFS99] defined a class that can now be seen as $\exists \mathbb{R}$. They also showed that it was equivalent to what we call $\exists \mathbb{R}$ but with $k=1$ and C_{1} of the form $p\left(x_{1}, \ldots, x_{n}\right)=0$.
3. Schaefer [Sch09] defined $\exists \mathbb{R}$ and $\exists \mathbb{R}$-complete and argued for the importance of a problem being $\exists \mathbb{R}$-complete. Schaefer \& Stefankovic [SS17] showed that $\exists \mathbb{R}$ does not change if you restrict to problems where all of the inequalities are strict. This result led to more problems being proven $\exists \mathbb{R}$-complete.

By Theorem 13.6 and 13.1, $N P \subseteq \exists \mathbb{R} \subseteq$ PSPACE. It is not known if $N P=\exists \mathbb{R}$ or if $N P=$ PSPACE. We discuss the possible equalities and also the possible relation to PH (the Polynomial Hierarch).

1. The statement $\exists \mathbb{R} \subseteq N P$ (and hence $\exists \mathbb{R}=N P$) does not currently contradict any known theorem. Nevertheless, this is thought to be unlikely. We give three reasons that were told to us by M. Schaefer. (1) If $\exists \mathbb{R}=$ NP, that probably reflects some deep structural property of existential real quantification that mathematicians have missed so far; that seems unlikely. (2) We noted above that 3SAT has a finite witness but ETR does not seem to. If NP $\subseteq \exists \mathbb{R}$ then every element of ETR would have a finite witness; that seems unlikely. We will see an example where the witnesses using finite decimal expansions are quite long when we discuss Rectilinear Crossing Number (this does not preclude some other LFSR working).
(3) Nobody has placed any of the many $\exists \mathbb{R}$-complete problems into NP.
2. The statement $\exists \mathbb{R} \subseteq$ PH does not currently contradict any known theorem. Nevertheless, this is thought to be unlikely, though not with the same confidence as the item above. All three reasons given for why $\exists \mathbb{R} \subseteq N P$ is unlikely hold for $\exists \mathbb{R} \subseteq P H$, though not as strongly. In addition, consider the problem SQRT-SUM (which we will discuss in Section 13.7). It is in $\exists \mathbb{R}$ but not known to be $\exists \mathbb{R}$-hard or even NP-hard. Yet getting this problem into PH has proven to be difficult.
3. The statement PSPACE $\subseteq \exists \mathbb{R}$ (and hence $\exists \mathbb{R}=$ PSPACE) does not currently contradict any known theorem. Nevertheless, this is thought to be unlikely. If $\exists \mathbb{R}=$ PSPACE then $\exists \mathbb{R}$ is closed under complement. Hence any existential statement over the reals is equivalent to a universal statement over the reals. This seems unlikely from a logical perspective.
4. The statement $\mathrm{PH} \subseteq \exists \mathbb{R}$ does not currently contradict any known theorem. We do not find this to be so unlikely.

We present an analog to NP-completeness.

1. If A is shown to be NP-complete then (1) the complexity of A is regarded as settled and (2) A is thought to not be in P. This is the common viewpoint since it is believed that $P \neq N P$.
2. If A is shown to be $\exists \mathbb{R}$-complete then (1) the complexity of A is regarded as settled, (2) A is thought to not be in NP, (3) A is thought to not be in PH, and (4) A is thought to not be PSPACE-complete. This is the common viewpoint since it is believed $\exists \mathbb{R}$ is strictly between NP and PSPACE, and not contained in PH. (Note that the community working with $\exists \mathbb{R}$ completeness is much smaller than the community working with NP-completeness, so the notion of a common viewpoint is not as compelling.)

Open Problem 13.8.

1. Prove that $\exists \mathbb{R} \subseteq N P$ has unlikely consequences (e.g., $P \neq N P$).
2. Let $i \in \mathbb{N}$ and $i \geq 2$. Prove that $\exists \mathbb{R} \subseteq \Sigma_{i}$ has unlikely consequences (e.g., $P \neq N P$). (Recall that Σ_{i} is the ith level of the Polynomial Hierarchy, see Section 0.15.)
3. Prove that PSPACE $\subseteq \exists \mathbb{R}$ has unlikely consequences (e.g., $P \neq N P$).
4. Show that the above problems are hard, perhaps with oracles. This may be difficult since defining $\exists \mathbb{R}$ with an oracle may be problematic. You may need to use an equivalent definition.

13.6 $\exists \mathbb{R}$-Complete Problems

In this section we present several problems that are $\exists \mathbb{R}$-complete. These results are interesting for several reasons: (1) these problems are in PSPACE which is not obvious from their description, (2) these problems are likely not in NP, (3) these problems are likely not in PH, (4) these problems are likely not PSPACE-complete, (5) the complexity of these problems is settled.

13.6.1 $\exists \mathbb{R}$-Complete Problems about Graph Realizability

We present several $\exists \mathbb{R}$-complete problems that ask, given graph G, can G be presented in a certain way?

Intersection Graphs of Line Segments (IGLS)
Instance: A graph $G=(V, E)$. Let the vertices be $\{1, \ldots, n\}$.
Question: Does there exist a set of line segments in the plane $\ell_{1}, \ldots, \ell_{n}$ such that, for all $1 \leq i<j \leq n, \ell_{i}$ intersects ℓ_{j} iff $(i, j) \in E$.
Note: Kratochvíl \& Matousek [KM94] proved this problem is $\exists \mathbb{R}$-complete, though not in that terminology. See also the expositions of M. Schaefer [Sch09] and Matousek [Mat14].
Note: Schaefer [Sch21] showed that IGLS remains $\exists \mathbb{R}$-complete when restricted to graphs with maximum degree ≤ 216. The number 216 is an artifact of the proof. It is likely there is a much smaller value will suffice.

Intersection Graphs of Convex Sets (IGCS)
Instance: A graph $G=(V, E)$. Let the vertices be $\{1, \ldots, n\}$.
Question: Does there exist a set of convex sets in the plane C_{1}, \ldots, C_{n} such that, for all $1 \leq i<j \leq n, C_{i}$ intersects C_{j} iff $(i, j) \in E$.
Note: Schaefer [Sch21] showed that IGCS remains $\exists \mathbb{R}$-complete when restricted to graphs with maximum degree ≤ 216. The number 216 is an artifact of the proof. It is likely there is a much smaller value of that will suffice.

Open Problem 13.9. Let $I G L S_{k}\left(I G C S_{k}\right)$ be IGLS (IGCS) restricted to graphs with max degree $\leq k$. Note the following contrast: (1) $I G L S_{2}, I G C S_{2} \in P$; (2) $I G L S_{216}, I G C S_{216}$ are $\exists \mathbb{R}$-complete. Narrow the gap between 2 and 216. It is possible that, for some values of $k, I G L S_{k}\left(I G C S_{k}\right)$ is neither in P nor $\exists \mathbb{R}$-complete. For example, it is possible that $I G L S_{3}$ is NP-complete.

Unit-Distance-Graphs
Instance: A graph $G=(V, E)$. Let the vertices be $\{1, \ldots, n\}$.
Question: Does there exist a set of points in the plane p_{1}, \ldots, p_{n} such that, for all $1 \leq i<j \leq n,\left|p_{i}-p_{j}\right|=1$ iff $(i, j) \in E$.
Note: The proof of Theorem 13.4 showed that Unit-Distance-Graph is in in $\exists \mathbb{R}$. Note: Breu \& Kirkpatrick [BK98b] showed that this problem is NP-hard (see the k Sphere Graphs problem for what they then conjectured). M. Schaefer [Sch12] showed that this problem is $\exists \mathbb{R}$-complete.
k-Sphere Graphs and k-Dot Graphs. k is a parameter.
Instance: A graph $G=(V, E)$. Let the vertices be $\{1, \ldots, n\}$.
Question: (k-sphere) Does there exist a set of k-dimensional vectors v_{1}, \ldots, v_{n} such that, for all $1 \leq i<j \leq n,\left|v_{i}-v_{j}\right| \leq 1$ iff $(i, j) \in E$.
Question: (k-dot) Does there exist a set of k-dimensional vectors v_{1}, \ldots, v_{n} such that, for all $1 \leq i<j \leq n, v_{i} \cdot v_{j} \geq 1$ iff $(i, j) \in E$.
Note: Looges \& Olariu [LO02] showed that, for $k=1$, the k-sphere problem is in linear time. For $k=2$ the k-sphere problem is the Unit-DistanceGraphs problem. After Breu \& Kirkpatrick [BK98b] showed that this case is NP-hard they conjectured that, for $k \geq 3$, the problem is NP-hard. Kang \& Müller [KM12] proved that conjecture. They note in the last section of their paper that their proof also shows that, for $k \geq 3, k$-sphere is $\exists \mathbb{R}$-complete.
Note: Fiduccia et al. [FSTZ98] showed that, for $k=1, k$-DOT is in linear time. He conjectured that, for $k \geq 2$, the problem is NP-hard. Kang \& Müller [KM12] proved that conjecture. They note in the last section of their paper that their proof also shows that, for $k \geq 2, k$-dot is $\exists \mathbb{R}$-complete.

Rectilinear Crossing Number

Instance: A graph G and a number c.
Question: Can G be drawn in the plane such that (1) every edge is a straight line (such a drawing is called Rectilinear) and (2) there are at most c crossings?
Note: Bienstock [Bie91], showed that Rectilinear Crossing Number is $\exists \mathbb{R}$ complete, though not in that terminology.
Note: Goodman et al. [GPS89] showed the following.

1. There exists d_{1} such that for every n, for every graph G on n vertices, there exists a rectilinear drawing of G where the vertices are on rational coordinates and each every coordinate takes $\leq 2^{d_{1} n}$ bits.
2. There exists d_{2} such that for every n there exists a graph G on n vertices so that for all rectilinear drawings of G that use rational coordinates, the coordinates require at least $2^{d_{2} n}$ bits.

These results show that there it might be difficult to actually compute the rectilinear drawing quickly.

Open Problem 13.10. What is the complexity of Rectilinear Crossing Number for fixed c? For
$c=3$ the problem is in NP since it is equal to the crossing number. For $c=4$ it is an open question as to whether it is in NP. Is there a fixed c such that the problem is $\exists \mathbb{R}$-complete?

13.6.2 Non-Graph $\exists \mathbb{R}$-Complete Problems

In this section we present several $\exists \mathbb{R}$-complete problems that are not about graphs. This shows that there are $\exists \mathbb{R}$-complete problems of different types.

Theorem 13.11. (Abrahamsen et al. [AAM22]) Point Guard Art Gallery Problem is $\exists \mathbb{R}$-complete.

```
General Packing
Instance: A set of polygons and a square S.
Question: Can these polygons fit into the square S without overlap?
Note: Abrahamsen et al. [AMS20] showed this problem is }\exists\mathbb{R}\mathrm{ -complete.
```

Theorem 13.12. (Abrahamsen et al. [AMS20])GENERAL PACKING is $\exists \mathbb{R}$-complete.
Open Problem 13.13. In Section 6.6 we discussed several packing problems: Rect-Rect Packing, SQ-Rect Packing, SQ-SQ Packing, Tri-Rect Packing, and Tri-Tri Packing. They are all NP-hard and in $\exists \mathbb{R}$. None of them are known to be in NP. For each one either prove its $\exists \mathbb{R}$-complete or prove its in $N P$.

Min Convex Cover and min Triangle Cover
Instance: A polygon P represented by an ordered set of rational coordinates in the plane, and a number k.
Question: (Min Convex Cover) Do there exists k convex polygons whose union is P ?
Question: (Min Triangle Cover) Do there exists k triangles whose union is P ? Note: Abrahamsen [Abr21] showed that both problems are $\exists \mathbb{R}$-complete.

Partial Order Type Realizability

Instance: A number n and a function $f:\{1, \ldots, n\}^{3} \rightarrow\{L, C, R\}$ (we will say what this means soon).
Question: Does there exist points p_{1}, \ldots, p_{n} in the plane such that, for all $(i, j, k) \in$ $\{1, \ldots, n\}^{3}$, the following happen:

1. If $f(i, j, k)=L$ then p_{k} is to the left of the line through p_{i} and p_{j}. (L is for left.)
2. If $f(i, j, k)=C$ then p_{k} is on the line through p_{i} and p_{j}. (C is for colinear.)
3. If $f(i, j, k)=R$ then p_{k} is to the right of the line through p_{i} and p_{j}. (R is for right.)

Note: Mnëv [Mnë88] showed this problem is $\exists \mathbb{R}$-complete. Schaefer [Sch21] showed that a restricted version of this problem is $\exists \mathbb{R}$-complete.

In Section 23.3.3 we will define anr-game and a Nash Equilibrium. The reader should read that section before proceeding.

There are two obstacles in studying the complexity of Nash equilibrium.

1. Given an r-game there is always a Nash equilibrium. So the decision problem is trivial. In Chapter 23 we study many problems of that type and look at the complexity of finding a solution (in this case a Nash Equilibrium). In our discussion here we deal with this issue by asking questions about the Nash equilibrium.
2. If there are 2 players then the Nash equilibrium is always rational. However, for 3 players the Nash equilibrium can be irrational. That is not an issue for the $\exists \mathbb{R}$ framework.

In Chapter 23 we show that finding a 2-player approximate Nash equilibrium is PPAD-complete. Here we consider $r \geq 3$ players.

Questions About Nash Equilibrium

Instance: An r-game where all of the utilities are integers.
Question: Does there exist a Nash equilibrium that has certain properties? We go into detail about which properties in the notes below.
Note: In all of the problems below, $r \geq 3$.

1. If the strategies are restricted to those where no action is played with probability $>\frac{1}{2}$, then is there a Nash equilibrium? Schaefer \& Stefankovic [SS17] showed this problem is $\exists \mathbb{R}$-complete.
2. Are there at least 2 Nash equilibria? Garg et al. [GMVY18] showed this problem is $\exists \mathbb{R}$-complete. They also showed that other questions about Nash equilibrium are $\exists \mathbb{R}$-complete.
3. The input also has $q \in \mathbb{Q}$. Is there a Nash equilibrium where every player has payoff $\geq q$? Bilo \& Mavronicolas [BM21] showed this problem is $\exists \mathbb{R}$ complete. They also showed that other questions about Nash equilibrium are $\exists \mathbb{R}$-complete.
4. Berthelson \& Hansen [BH22] showed that the results of Garg et al. [GMVY18] hold when restricted to 3-player zero-sum games. They also give a summary of what is known for $r \geq 3$ players.

13.7 Further Results

13.7.1 Possibly Between $\exists \mathbb{R}$ and PSPACE

Schaefer \& Stefankovic [SS22] have defined a hierarchy of classes based on $\exists \mathbb{R}$ that is similar to the polynomial hierarchy. They have used this to classify some problems that seem to be strictly between $\exists \mathbb{R}$ and PSPACE.

13.7.2 SQRT-SUM: A Hard to Classify Problem

We present a problem which is in $\exists \mathbb{R}$ but otherwise its status is unknown and there is no consensus.

SQRT-SUM
Instance: $d_{1}, \ldots, d_{n}, k \in \mathbb{N}$.
Question: Is $\sum_{i=1}^{n} \sqrt{d_{i}} \geq k$?
SQRT-SUM comes up in the study of ETSP. In Theorem 4.6 we showed that ETSP is NP-hard; however, its status in NP is unknown.

Exercise 13.14.

1. Show that if SQRT-SUM is in P then ETSP is in NP.
2. Show that if SQRT-SUM is in NP then ETSP is in NP.

Way back in 1976 Garey et al. [GGJ76] asked whether SQRT-SUM is in NP. This question is still open. So perhaps it's $\exists \mathbb{R}$-complete, giving evidence that it's not in NP. This question is also open. It's not even known to be NP-hard.

It is easy to show that SQRT-SUM is in $\exists \mathbb{R}$. Since SQRT-SUM is in $\exists \mathbb{R}$, SQRT-SUM is in PSPACE, though this can also be proved directly. Allender et al. [ABKM06] obtained slightly better upper bounds on SQRT-SUM.

Is SQRT-SUM one of those problems that is thought to be hard, and by assuming its hard we can get other problems are hard? Etessami \& Yannakakis [EY09] took this approach. With the assumption that SQRT-SUM is hard, they proved that some problems involving recursive Markov chains are hard. Perhaps more problems of this type will be found and there will be a notion of SQRT-SUM-hard and SQRT-SUM-complete.

Open Problem 13.15. Show that any of the following are true.

1. SQRT-SUM is in P.
2. SQRT-SUM is in $N P$.
3. SQRT-SUM is $\exists \mathbb{R}$-hard (and hence $\exists \mathbb{R}$-complete).

Chapter 14

PSPACE-Hardness

14.1 Overview

In Chapter 4, we discussed two metatheorems, due to Viglietta [Vig14], that guided us to proofs that some game problems were NP-hard. We expand on that theme.

Chapter Summary

1. We discuss more metatheorems due to Viglietta (from the same paper) that allow us to prove more hardness results.
2. We apply these metatheorems to show some games are PSPACE-complete.

The term metatheorem in somewhat vague sense because it's hard to state all the assumptions for all games. It will give a general set up for the proof.

14.2 Definitions

Viglietta defines an "avatar" in his proofs, but for our case, we will use the term "player". The player is the character in the game that we can control and move around to complete objectives. One basic assumption we make about the player is that we can choose, at any time, to change the player's direction of movement.

14.3 PSPACE

PSPACE is the set of problems solvable in polynomial space.
Exercise 14.1. Prove the following.

1. $N P \subseteq P S P A C E$.
2. PSPACE \subseteq EXPTIME.
3. $\operatorname{PSPACE}=$ NPSPACE.

14.3.1 PSPACE-Complete Problems

In order to show that a problem is PSPACE-hard, we need a set of problems known to be PSPACEhard (to reduce from). The classical problem is to simulate a polynomial space algorithm (or simulate a linear space Turing Machine). This problem is not very useful for hardness proofs.

We present a set of simpler problems.
Quantified Boolean Formulas (QBF) and Variants
Instance: For QBF a quantified Boolean Formula. It may begin with either a \exists or a
\forall. We will take it to be of the form

$$
\left(Q_{1} x_{1}\right) \cdots\left(Q_{k} x_{k}\right)\left[\varphi\left(x_{1}, \ldots, x_{k}\right)\right]
$$

where the Q_{i} 's are quantifiers. For Q2SAT, φ is in 2CNF form. For Q3SAT, φ is in 3 CNF form. Other variants can be defined and we will freely use them.
Question: Is the quantified Boolean formula true?
Note: We will also use the abbreviation QSAT.

Exercise 14.2.

1. Show that Q2SAT $\in P$.
2. Show that Q3SAT is PSPACE-complete.

Hint: Given a polynomial-space-bounded Turing machine M and an input x you need a QBF φ such that $M(x)$ accepts if and only if φ is true. Construct a sequence of QBF's $\varphi_{0}(a, b), \varphi_{1}(a, b), \ldots, \varphi_{L}(a, b)$ (we leave it to you to figure out L) such that φ_{i} is satisfiable if and only if there is a way for M to go from configuration a to configuration b in time $\leq 2^{i}$.

14.3.2 Schaefer-Style Dichotomy Theorem

Recall that T. Schaefer [Sch78] (our Theorem 1.20) proved a dichotomy theorem which states exactly which types of SAT problems are in P and which are NP-complete. Schaefer stated a dichotomy theorem for QSAT but did not provide a proof. Twenty three years later Creignou et al. [CKS01] proved the theorem T. Schaefer stated. For other interesting variants on the issue of dichotomy for QSAT see the papers of E. Hemaspaandra [Hem04] and Dalmau [Dal99].

We now present the dichotomy theorem for QSAT. Note that QSAT problems are to determine whether

$$
\left(Q_{1} x_{1}\right) \cdots\left(Q_{k} x_{k}\right)\left[\varphi\left(x_{1}, \ldots, x_{k}\right)\right]
$$

is true. The different QSAT formulas are based on the different forms that φ can have.

Theorem 14.3.

1. QSAT $\in P$ if and only if φ is Horn, Dual Horn, Q2SAT, or $X(N) O R$
2. QSAT is PSPACE-complete otherwise.

As with regular $k S A T$, the planar versions of QSAT are also hard: we can start with the same crossover gadget as seen in the proof of Theorem 2.10 that forces some variables to be the same, and then also have it create new variables that must also be quantified. We can do this by adding a $\exists x_{i}$ for every newly created variable x_{i}.

Notably, Planar 1-In-3QSAT is still hard, and Planar NAE-3QSAT is still easy.

14.4 Metatheorem 3

(Metatheorems 1 and 2 are in Sections 4.4.1 and 4.4.2 respectively.)
Convention 14.4. When we say that a game is PSPACE-complete (or any other complexity) we mean that determining who wins is PSPACE-complete. This also applies to 1-player games (puzzles) where the question is can the one player complete the task.

The third metatheorem from Viglietta's paper [Vig14] states that a game where you have a player who needs to traverse a planar graph from start to finish, and has door and pressure plate objects, is PSPACE-hard. A door can be considered an edge that exists only if a certain condition is met. There are two types of pressure plates - an "open" pressure plate which satisfies the condition of the door, and a "closed" pressure plate which causes the door condition to not be satisfied.
(Keep in mind that these pressure plates simply cause the door to open or close, but do not require constant pressure to keep them in that state, i.e., unlike Portal's door mechanics.)

All of the games we consider are easily seen to be in PSPACE. Hence when we show that they are PSPACE-complete, we are actually showing they are PSPACE-complete.

14.4.1 Reduction from Q3SAT

The idea is as follows:

- We start at the position labeled "start," and continue along the path.
- Wherever there is a \exists quantifier, we fix a value for that variable.
- Wherever there is a \forall quantifier, we will check both possible values by:

1. Traversing towards the clauses (top branch in Figure 14.1), we remember that we have seen this variable once, and set its value to true.
2. Traversing back from the clauses (bottom branch in the diagram), we check to see if this variable is true: if true, set to false and loop again; if false, continue along the branch.

Remember that we will continue along the bottom only if the quantifier is satisfied; e.g. if one value fails to satisfy the formula for a \forall quantifier, the second loop is no longer necessary, as we already know that the \forall quantifier cannot be satisfied.

Now, we let a door's state determine the value of its literal: an open door indicates that its represented literal is selected. Thus, for a variable x, we need two doors for it: x and $\neg x$. Note

Reduction from Q3SAT
 [Viglietta 2014]

Figure 14.1: Overview of reduction.
that, when we say an x door, we actually mean all doors labeled by x such that an x-open switch opens all the x doors, and so on for closing and $\neg x$.

Then, a clause is a hall with three doors possible to the next hall, one for each literal; if any of the three doors is open, the clause is considered to be satisfied.

Finally, we need to come up with our quantifiers:

- Existential quantifier: two branching paths, that mutually close each other, and turn the variable on or off
- Universal quantifier: snake-like path, with middle gate that "counts" how many times we've gone through

The clause gadget and the quantifier gadgets are both diagrammed in Figure 14.2. One key point to note about the quantifier gadgets is that they prevent deadlock by requiring the path to open one door contain pressure plates to close the other doors such that the progression must move forward.

Note that, by construction, a solution will take exponential time: at least $O\left(2^{U}\right)$ time for U universal quantifiers. However, the reduction process should still take polynomial time.

Pressure Plates are PSPACE-complete

 [Viglietta 2014]
existential quantifier

Figure 14.2: Gadgets.

14.4.2 First Person Shooter (FPS) Games

Metatheorem 3 allows many FPS games such as Quake to be easily proved PSPACE-hard, by simply designing the maps and puzzles using pressure plates and doors as described in the reduction above.

14.4.3 Role Playing Games (RPG)

Additionally, Metatheorem 3 allows one to prove many RPG games (such as Eye of the BeHOLDER) to be PSPACE-hard, using the same idea of designing the maps and puzzles correctly.

14.4.4 Script Creation Utility for Maniac Mansion (SCUMM) Engine

Many adventure games can also be proven PSPACE-hard in this way. One rather large category of such games - the SCUMM engine - can be shown to be PSPACE-hard, allowing all games that use it to be shown to be as well. Some SCUMM engine-based games are The Secret of Monkey Island and Maniac Mansion. Most Sierra adventure games, such as the Space Quest series, can also be proved hard in this way.

14.4.5 Prince of Persia

In this game, the player is given the ability to jump. So, in order to ensure that pressure plates are always pressured when the player passes over that tile, we put the pressure plate on top of a very high wall, such that the player can only jump that high, so the player must touch the pressure plate (which is important to ensure that the player must make progress in the game).

With this adjustment, one can show that Prince of Persia is PSPACE-hard.

14.5 Metatheorem 4

Metatheorem 4 by Viglietta [Vig14] expands upon Metatheorem 3 to allow the use of buttons instead of pressure plates. These buttons do not need to be pressed and open/close 3 doors at once (and in fact it was recently shown that 2 doors at once will work, but this has not yet been published).

The reduction for 3 doors at once involves treating a button as 3 pressure plates put together.

14.5.1 Examples

Some examples of games that fall under this pattern are Sonic the Hedgehog, The Lost Vikings, and Tomb Raider. With this adjustment, they can be shown PSPACE-hard.

14.6 Doors and Crossovers

Another metatheorem, by Aloupis et al. [ADG14, ADGV15], is a further generalization that relies on doors and crossovers to show PSPACE-hardness.

To do this, we show that we can use doors and crossovers to create an environment that provides the following three types of paths: a traverse path (whereby the player can only pass if the door is opened), an open path (which allows the player to open the door) and a close path (which forces the player to close the door).

This result can be found in the paper of Aloupis et al. [ADG14, ADGV15] which uses it to analyze various Nintendo games. More recent work of Ani et al. [ABD $\left.{ }^{+} 21\right]$ has removed the need for a crossover.

14.6.1 Legend of Zelda: A Link to the Past

In Legend of Zelda, we create a traverse path with just a labeled door: if the labeled door is open, then we can traverse; if not, then we can't.

One interesting caveat with Legend of Zelda is that the game has only toggles: it opens all the connected doors if they're closed, and closes them if they were open. This means that the open and close paths are somewhat trickier: the general idea is for the open and close paths to lead to directed teleporters to the appropriate halls (seen at the bottom of Figure 14.3). Then, to toggle the door, we have to traverse from the direct that we want to toggle to, and then hit the toggle in a secluded room, for which the only way out is through the directed teleporter right next to it, which takes us back to a hall.

Since we want to initialize all doors to the closed state, we need to create an initializer for this purpose; basically, we just create a chain of gadgets that will toggle all the doors to be closed. At the very end, we have a crystal that can be broken, which will active the inactive toggles, and deactivate the active toggles. There will be only one crystal, and it serves the purposes of destroying our initializing paths and enabling a one-way gadget. To make sure that it does not appear at the wrong place, we ensure that it appears only between the initializer and final traversal gadgets.

14.6.2 Donkey Kong Country 1, 2 and 3

Donkey Kong Country is another Nintendo series of games that can be shown to be PSPACE-hard using doors and crossovers. Unfortunately, DKC 1, 2, and 3 have mutually exclusive "features," so we will have to address each one individually.

Donkey Kong Country 1

In the Donkey Kong Country games, there are bees. If you touch a bee, you die, so the goal is to not die. In Donkey Kong Country 1, there is a tire object: if you land on the tire, you bounce back up. For a traversal, we use a barrel shot straight down, so landing on a tire would cause us to be stuck in the game (and thus not win).

Furthermore, we will introduce stationary bees as obstacles, and moving bees (highlighted in red on Figure 14.4- not to be confused with actual red bees in the game), which move in a deterministic pattern, demonstrated by the arrows.

To open the door, we come in from the open path, jump across the ledge, and push the tire just up the hill so that it does not roll back down. Note that the giant box of bees that are labeled

Figure 14.3: Legends of Zelda gadget.

Figure 14.4: Donkey Kong Country I gadget for PSPACE-completeness
"open" move in a left-down-right-up pattern, so that after pushing the tire up the hill, we can still run back down through the traversal path.

To close the door, we come in from the close path, and push the tire down the hill with a slight nudge, and scramble up a rope to exit. One caveat here is that, in the real game, we'd either have to make the bees slower, or make the climbing faster.

With these adjustments one can show that Donkey Kong Country 1 is PSPACE-hard.

Donkey Kong Country 2

In Donkey Kong Country 2, instead of tires, we have balloons and air currents (the gray steam near the bottom of the map). The balloons float on top of the air currents, and in order to traverse, we have to move it out of the way of the traversal path.

To do this, from the open end, we can jump on the balloon and move it away from the air currents in the middle so that it drops down to point A. We then escape through the entrance of the open path.

To close, we enter from the close path, drop onto the balloon, and move it back into the current before using the barrels to propel ourselves out of the region.

With these adjustments one can show that Donkey Kong Country 2 is PSPACE-hard.

Donkey Kong Country 3

[Aloupis, Demaine, Guo, Viglietta 2014]

Figure 14.5: Donkey Kong Country 3 gadget for PSPACE-completeness.

Donkey Kong Country 3

In Donkey Kong Country 3, instead of tires and balloons, we have tracking barrels, which the player can slide around sideways once the player land in one, and it always shoots up. The caveat is that the barrel will follow the player if the player tries to jump out of it, so the tracking barrel effective prevents the player from going down.

Thus, the open state is for the barrel in the big gap in Figure 14.5 to be on the left: if the player enters to traverse, the player can drop into the barrel, get shot up, and exit through the traversal path.

To close, we enter from the close path, jump into the barrel, and slide it all the way to the right. Since the barrel tracks us wherever we go after we land in it, we are guaranteed that, if we leave through the close path, the barrel must be on the right.

To open, then we just drop into the barrel from the open end, slide to the left, and shoot ourselves out through the open path.

With these adjustments one can show that Donkey Kong Country 3 is PSPACE-hard.

14.6.3 Super Mario Bros

Recall that in Section 1.6.1 we showed that Super Mario Bros is NP-hard. Actually it is harder than that. Super Mario Bros is actually PSPACE-hard.

Figure 14.6: Super Mario Brothers gadget for PSPACE-completeness.

Using Figure 14.6, we see that the traversal path is on the left, the open path is on the bottom, and the close path is the entire right side.

The intuition behind the setup is: we need something that the player can't pass through, but an obstacle can. We use a rotating firebar to separate the traversal and close paths, and a spiny to block a path. We draw the firebar as length- 1 for clarity of what it intends to block, though the gadget can still be (carefully)traversed with longer firebars). Note that, in the original game, spinies only fall from the top of the screen, and here we assume they start in certain locations.

To close, we enter from the close side, and if the spiny is on the right, then we go under the spiny, and at the right time, we knock up and over the fireball to the other side, so that we can traverse the close path.

To open, we enter from the open side, knock the spiny over to the right, and leave again.
Then, when we traverse, we can traverse if and only if the spiny isn't on the traverse side.

14.6.4 LEMMINGS

Lemmings is an old real-time strategy game where the player is in control of a bunch of Lemmings, and can imbue any Lemming with jobs. For our purposes, we will have two jobs: a builder (to build bridges) and a basher (to cut through dirt, but not steel).

Although many results for Lemmings exist, we will show PSPACE-hardness using an exponential amount of builders, bashers, and time.

The standard Lemming is a Walker, and its mechanics are documented in Figure 14.7 (upper). In brief, Walkers can climb up out of ditches but only if they're not too tall.

One kind of special Lemming that we will use is a Basher, who can cut through dirt but not steel. The mechanics are documented in Figure 14.7 (lower), and a Basher will stop bashing once the steel check finds steel, or a solidarity check finds no more dirt.

What is interesting to note is that disparity between the steel and the solidarity checks.
The last kind of special Lemming that we will use is a Builder, who can build bridges over gaps (otherwise the Lemmings will die from falling between the gaps). The mechanics are documented in Figure 14.8 (upper) and again, there are solidarity checks for where to lay the bridge pieces, and whether the Lemming can keep going forward and up, by using a solidarity check near the head.

In order to apply the doors and crossovers metatheorem, we need to show the primitive paths that we will use: a rising path, a falling path, and rise-and-double-back path, and fall-and-doubleback path, and a crossing path. To prevent Lemmings from effectively running away, we place steel pretty much everywhere that isn't marked with a red crossed-box or a gray platform in Figure 14.8 (lower).

Now, we will need a fork (a.k.a. crossover) gadget, to allow for traversals of two different paths. This is achieved by having a gap for lemmings to fall through: if they fall through, they'll go through one path; if they build a bridge instead, they'll go through another path (which also requires a Basher to clear some obstacles, which are placed to prevent builders from going crazy and building a stairway to heaven).

Finally, our door gadget will be represented in Figure 14.9: an open door will have a gap in the middle, while a closed door will have a bridge in the middle that will prevent traversal from the top to the bottom. To open the door, we bash the bridge apart using a Basher; to close the door, we layer a bridge on top of the gap using a Builder. Since we have a limited (but exponential) number of Builder and Basher upgrades available to us, we must use each one wisely.

Thus, with our door and crossover gadgets, we have shown that Lemmings is PSPACE-hard.

14.7 Stochastic Games

In addition to standard 2-player games, we can also consider Stochastic games, where one of the players plays randomly. For Bounded 2-player stochastic games, we ask whether the non-random player can force a win with a probability greater than $\frac{1}{2}$. This question is PSPACE-complete.

More formally, we have Stochastic SAT which asks

$$
\exists x_{1}: \mathcal{R} x_{2}: \exists x_{3}: \cdots: \operatorname{Pr}(\text { Win })>\frac{1}{2}
$$

where we use $\mathcal{R} x_{2}$ to denote a randomly chosen x_{2}. Interestingly replacing random choice with a for all choice seen in standard 2 player games does not change the hardness.

14.8 Other Kinds of Games

So far we have been focused on 1 player games, or puzzles. Instead, we will be focusing on 0 player games, or simulations, and 2-player games. In each case, if the game is on a bounded

Lemmings: Walker

[Viglietta 2014]
max climb $=8$ pixels

Lemmings: Basher

[Viglietta 2014]

Figure 14.7: Upper Lemmings Walker Gadget; Lower Lemmings Basher Gadget

Lemmings: Builder

[Viglietta 2014]

Lemmings: Paths

[Viglietta 2014]

Figure 14.8: Upper: Builder Gadget; Lower: Path Gadget

Lemmings: Door

 [Viglietta 2014]

Figure 14.9: Lemmings Door gadget for PSPACE-completeness.
board, then it will either take an exponentially bounded number of moves (unbounded) or a polynomially bounded number of moves (bounded). Generally speaking, these games are in the complexity classes given by Figure 14.10 . We will look at hardness results for several games in particular, including

- Various SAT games, all 2-player games with a bounded number of moves
- Reversi/Othello, a 2-player game with a bounded number of moves,

All of these games are in fact PSPACE-complete.

Figure 14.10: A table showing the complexity classes for each type of game, with bounded and unbounded referring to whether the number of moves is polynomially bounded or not.

14.9 Open Problems

1. Define and analyze generalizations of Nine-Men-Morris, Quoridor, and other games (check to see if they have already been analyzed). Then determine the complexity of these versions. You should also look at variants of these games.
2. (This is a research program.) Most of the results on the hardness of games do not use the game as it is actually played. (See Biderman [Bid20] for a possible exception.) For example, Chess and Checkers are played on an 8×8 board, not an $n \times n$ board. Develop a framework for the complexity of games that can be used to show that a game, as it is actually played, is hard.

Chapter 15

Beyond PSPACE But Decidable

15.1 Introduction

In this chapter we will examine problems whose complexity is beyond PSPACE. Some of them will be EXPTIME-complete. It is easy to show that PSPACE \subseteq EXPTIME but they are not known to be different. Nevertheless, we (and the theory community) believe they are. Why? Note that if $A \in$ EXPTIME then the algorithm for A can use exponential space. For example, if your algorithm needs to look at every subgraph of an n-vertex graph at the same time, then an EXPTIME algorithm can do this, whereas a PSPACE algorithm cannot.

Chapter Summary

1. We define many games based on SAT.
2. We use these SAT games to show that several other games are EXPTIME-complete. We note that these are not games people actually play.
3. We ook at the complexity of games people really do play. They are mostly EXPTIME-complete.

The problems we consider will all be games: given a game position, which player will win (if they both play perfectly).

We will not define "game" formally, however we will define parameters of games and give examples which are also summarized in Table 15.2.

15.2 Types of Games

Definition 15.1.

1. A game is bounded if the number of moves is bounded by a polynomial in the board size. A game is unbounded otherwise.
2. A game has perfect information if there is no hidden information. A game has imperfect information otherwise.
3. A 0-player game is a simulation. The game of life which we will study in Section 16.2 is such a game. These always have perfect information. Bounded 0-player games tend to be in P where as unbounded ones tend to be NP-complete or worse. The game of life provides examples of both bounded and unbounded problems.
4. A 1-player game is a puzzle. Jigsaw puzzles, packing puzzles, and all of the other puzzles in Chapter 6 are 1-player games with perfect information. The bounded versions of 1-player games with perfect information tend to be NP-complete whereas the unbounded versions tend to be PSPACE-complete.
5. A 2-player game is just what you think it is. Chess is an example of a 2-player game with perfect information.
6. A multiplayer game is a game of 3 or more players. Monopoly and Scrabble are examples.
7. Team games are when there are two sides, but each side can have 2 or more players. Bridge is a multiplayer game of imperfect information. It is conjectured to be in NEXPTIME. More generally, Bounded multiplayer games tend to be NEXPTIME-complete whereas unbounded multiplayer games tend to be undecidable. Rengo Go is a team version of Go (1) where white has 2 players (2) black has 2 players, (3) the player on each team alternate play, but (3) the players on a team cannot communicate. Rengo Go is believed to be undecidable. Rengo Kriegspiel Go is a complicated Team version of Go where the players on a team do not know what their teammate or opponents did, and is played on many boards. Rengo Kriegspiel Go is also believed to be undecidable.

Team games with imperfect information fall into one of two categories - games that have a bounded number of moves can be shown to be in NEXPTIME, while games with an unbounded number of moves are undecidable in general. In most situations above, an "unbounded" number of moves is still bounded by the number of board states, which is exponential. In this setting, however, we exploit that board states might repeat, which might make for a superexponential number of moves.

We will also look at bounded 0-player games, such as Game of Life run for a polynomial number of moves. These simulations are in P , but also provide a notion of P -completeness, and many games can be reduced to the Game of Life simulation. This is interesting because P -complete problems are conjectured to problems that cannot be parallelized (see Chapter 22 for a short discussion of P -completeness) so it is likely that there is no way to parallelize a simulation of Game of Life.

Table 15.2 shows which complexity classes these different types of games tend to reside.
Table 15.2. Natural complexity classes for computations with varying numbers of players and length of computation. (Based on [HD09, Figure 1.1].)

Unbounded	PSPACE	PSPACE	EXPTIME	CE (Undecidable)
Bounded	P	NP	PSPACE	NEXPTIME
	0 players	1 player	2 players	Team, imperfect information

15.3 SAT Games

Consider the following game:
Definition 15.3. The QBF game is as follows.

1. The board is a boolean formula $\varphi\left(x_{1}, \ldots, x_{2 n}\right)$.
2. For $i=0$ to $n-1$
(a) Player I sets $x_{2 i+1}$ to $b_{2 i+1} \in\{$ True, FALSE $\}$
(b) Player II sets $x_{2 i+2}$ to $b_{2 i+2} \in\{$ True, FALSE $\}$
3. If $\varphi\left(b_{1}, \ldots, b_{n}\right)=$ TRUE then I wins, else II wins.

This is an example of a 2-player SAT game. It is a bounded game because the number of moves is exactly n. Indeed, determining who wins is exactly the QBF problem so is PSPACE-complete.

Stockmeyer and Chandra [SC79] introduced many other SAT games that are unbounded the number of moves can be exponential in n - and showed they are EXPTIME-complete. They used these EXPTIME-complete problems to prove that other problems are EXPTIME-complete. Since $P \neq$ EXPTIME (by a simple diagonalization argument) any EXPTIME-complete problem is provably (!) not in P . We do not need to condition on $\mathrm{P} \neq \mathrm{NP}$ or any other assumption.

The games they consider are unbounded in that they could go on forever. This happens since (1) in some games you can change the value of a variable, and (2) in some games a player can pass.

All of the games have the following:

1. The game begins with one or two boolean formula and a partial assignment (which might not set any variables).
2. The players are RED (who goes first) and BLUE (who goes second).
3. Some of the variable are RED, some of the variables are BLUE, and some of the variables are neither. Only the RED (BLUE) player can set the RED (BLUE) variables.
4. These variables can then be set to TRUE or false. In some cases they can be reset.
5. A player may be allowed to pass.

Stockmeyer and Chandra [SC79] proved the following theorem.
Theorem 15.4. For the following games, determining which player will win is EXPTIME-complete.

1. G1:

Board: A 4CNF formula with variables RED, BLUE, and one x which is neither, and a truth assignment for the RED and BLUE variables, but not x.
Move: A move of RED (BLUE) consists of setting all the RED (BLUE) variables and also setting x to true (false).
Passing: Not allowed.
Win Condition: If after a player's move the formula is FALSE then that player loses.
2. G2:

Board: Two 12DNF formulas with all variables RED or BLUE, and a truth assignment for all the variables. One formula is itself called RED, the other BLUE.
Move: A move of RED (BLUE) consists of changing ≤ 1 RED (BLUE) variable
Passing: Allowed since you can opt to change 0 variables.
Win Condition: If, after RED (BLUE) moves, the RED (BLUE) formula is TRUE, then RED (BLUE) wins.
3. G3:

Board: Two 12DNF formulas with all variables RED or BLUE, and a truth assignment for all the variables. One formula is itself called RED, the other BLUE.
Move: A move of RED (BLUE) consists of changing one RED (BLUE) variable
Passing: Not allowed.
Win Condition: If, after RED (BLUE) moves, the RED (BLUE) formula is TRUE , then RED (BLUE) loses.
4. G4:

Board: A 13DNF formula with all variables RED or BLUE, and a truth assignment for all the variables.
Move: A move of RED (BLUE) consists of changing ≤ 1 RED (BLUE) variable
Passing: Allowed since you can opt to change 0 variables.
Win Condition: If, after RED (BLUE) moves, the formula is TRUE, then RED (BLUE) wins.
5. G5

Board: An (unrestricted) formulas with all variables RED or BLUE, and a truth assignment for all the variables.

Move: A move of RED (BLUE) consists of changing ≤ 1 RED (BLUE) variable
Passing: Allowed since you can opt to change 0 variables.
Win Condition: RED wins if the formula ever becomes true.
6. G6: Identical to G5 except that the formula has to be in CNF form.

We mention one more type of game, due to Papadimitriou [Pap85]
Definition 15.5. Stochastic SAT is the following 1-player game.

1. The board is a boolean formula $\varphi\left(x_{1}, \ldots, x_{2 n}\right)$.
2. For $i=0$ to $n-1$
(a) The Player sets $x_{2 i+1}$ to $b_{2 i+1} \in\{$ TRUE, FALSE $\}$.
(b) $x_{2 i+2}$ is set to $b_{2 i+2} \in\{$ TRUE, FALSE $\}$ randomly.
3. If $\varphi\left(b_{1}, \ldots, b_{n}\right)=$ true then the Player wins, else he loses.

Theorem 15.6. Given a boolean formula, determining whether the Player has a strategy so that their probability of winning is over $\frac{1}{2}$ is PSPACE-complete.

The stochastic SAT game can be viewed as the original SAT game (Definition 15.3) but with Player 2 replaced by a random player. As such it is interesting that the original SAT game and the Stochastic SAT game are both PSPACE-complete. Papadimitriou used the PSPACE-completeness of Stochastic SAT to prove other problems are PSPACE-complete.

15.4 Games People Don't Play

All of the results in this section are due to Stockmeyer and Chandra [SC79]. In each of the games one player is RED and the other is BLUE. RED goes first. The complexity of a game is the complexity of, given a position in it, determine which player wins.

15.4.1 PeEK

Definition 15.7. Peek is the following 2-player game:

1. The parameters of the game are n and d. The players are RED and BLUE. RED will go first.
2. The setup is a stack of n plates, each of which has $\leq d n$ holes in it. The plates are known to both players. The plates are initially all in a box (see Figure 15.1). Later in the game each plates can each be in one of two states: IN or OUT. (Note from the picture that an OUT plate is still partially in the box.)
3. One of the plates cannot be moved. The rest are in two disjoint set: RED and BLUE.
4. On a players turn he can either (1) pass, (2) push one of his OUT plates IN, or (3) push one of his IN plates OUT.
5. The game ends when a hole appears through the entire stack of plates. When this happens, the player who made the last move wins.

Theorem 15.8. $G 4 \leq_{p}$ PEEK, so PEEK is EXPTIME-complete.

15.4.2 Ham Game

Definition 15.9. HAM GAME is a game where we start with a simple, undirected graph where each edge is colored either RED or BLUE. The Players are named RED and BLUE. Player RED (BLUE) will control the RED (BLUE) edges. Player RED goes first. In addition to a color, each edge also has a state - IN or OUT. Each turn, a player must toggle the state of an edge of his color. Player RED wins if at any point in the game, the edges that are IN form a Hamiltonian cycle. Player BLUE wins if this never happens. The associated problem asks if Player RED has a winning strategy.

Theorem 15.10. G6 \leq_{p} HAM GAME, hence HAM GAME is EXPTIME-complete.

Figure 15.1: Left: A stack of plates. Right: An example of a plate.

15.4.3 BLock

Block is another graph game.
Definition 15.11. Block starts with 3 graphs over the same vertices. Some of these vertices contain tokens that are either RED or BLUE. A vertex can have at most one token. Each turn, a player must slide a token of his color along any path in one of the 3 graphs, as long as the target vertex and all intermediate vertices on the path do not have any tokens. Each player i has some set of "victory vertices" W_{i}. If a player can move one of his tokens to a vertex in his set of victory vertices, he wins.

Theorem 15.12. G3 \leq_{p} BLOCK, so BLOCK is EXPTIME-complete.

Proof sketch:

Figures 15.2 shows the variable gadgets for both players (white left, black right). Stars are winning vertices, and the dashed, dotted, and solid lines represent edges in each of the graphs. If either player deviates from setting variables, the other can instantly win.

Figure 15.3 shows the gadget for the formula $\overline{x_{3}} \wedge y_{5}$. Once white activates by moving up, both black and white are forced to move up one at a time - or else the other player wins instantly. If x_{3} and $\overline{y_{5}}$ are blocked, then white can't move up, in which case black wins and white should not have activated the formula.

15.5 Games People Play

We look at the complexity of Checkers, Chess, and Go on an $n \times n$ board. A statement of the form "СНескеRS is BLAH-complete" means that the problem of, given a position, which player wins (the one whose turn it is, or the other one) is BLAH-complete. Checkers mate-in- 1 is the problem of determining whether the player who is about to go and make one move that wins the game. Similar for other problems of the form Game mate-in-one.

We will also look at slight variations on the ruleset that make these games even harder than EXPTIME.

Figure 15.2: Variable gadgets

Figure 15.3: Gadget for the formula $\overline{x_{3}} \wedge y_{5}$

15.5.1 Checkers

Questions about Checkers run the gamut between P and EXPTIME-time complete.

Theorem 15.13.

1. (Fraenkel et al. [FG7+ 78]) Checkers mate-in-1 seems to involve a large number of jumps; however, deciding whether a Checkers position is a mate-in-1 is in P. The proof reduced this problem to that of finding an Eulerian path on a graph, which is in P.
2. (Bosboom et al. $\left.\left[B C D^{+} 19\right]\right)$ Deciding whether there is a move that force the other players to win in one move is NP-complete. (This may be useful if you are playing a child, or a Wookiee, or a Wookiee Child. See https://www. youtube.com/watch?v=rN0T5tyJlo8.)
3. (Bosboom et al. $\left.\left[B C D^{+} 19\right]\right)$ Checkers where every move has to be a jump (capturing the other players piece) is PSPACE-complete. The first players who cannot make a jump loses. For the standard beginning position Player I would always lose; however, the problem is hard if you allow any initial position.
4. (Robson [Rob84b] G3 \leq_{p} Checkers, hence Checkers is EXPTIME-time complete. This is the result you probably care about the most.

Proof sketch:

We sketch the proof of Part 4.
In the proof we exploit the fact that a player must capture a piece when it is possible to. The board is split into 2 regions - an inner region where the clauses and variables are represented, and an outer region which can be triggered by a player to win (Figure 15.4).

Initially, players start by moving their own Kings between either a true or a false position. If at any point, a player satisfies their own DNF clause represented by pieces in the middle, the other player can activate an attack. A successful attack results in "free moves" - where the opponent has a configuration that requires a capture, but the other player does not. After accumulating enough free moves, the player can maneuver his pieces in the outer spiral where the opponent is forced to jump into a position where all of his pieces in the spiral can be taken in one jump in the next turn. This gives enough of a material advantage to guarantee a win.

15.5.2 Chess

In traditional Chess there are some limits on how long the game can go. For example, if the same position is repeated three times then the game is a draw (it's more complicated than that and depends on which chess federation you are playing in, but we ignore that). In this bounded version, Chess is PSPACE-complete - but without this rule, we obtain an unbounded game and Fraenkel and Lichtenstein [FL81] showed EXPTIME-completeness:

Theorem 15.14. Let Chess be chess with no rule to limit the length of a game, and only using pawns, bishops, and kings. Then $G 3 \leq_{p}$ CHEss. Hence CHESS is EXPTIME-complete.

Figure 15.4: The spiral set up around the variables and clauses.

15.5.3 Go

In the Japanese ruleset positions are only not allowed to immediately repeat. Robson [Rob83] showed the following:

Theorem 15.15. G6 \leq_{p} Go, if Go uses fapanese rules. Hence this version of Go is EXPTIMEcomplete.

Note that, with Japanese rules, Go is in EXPTIME since we only need to compare two states at a time.

15.5.4 Hard Variants of Games People Play

The results on Checkers, Chess, and Go were for the versions of the game where the rules allow the game to go on forever. If we add some additional rules that prohibit this then the games may get harder.

Robson [Rob84a] studied both The No-Repeat Rule and The Conditional No-Repeat Rule. He looked at versions of G1, G2, and G3. We state his results.
Definition 15.16. A problem is in 2EXPTIME if it is in time $O\left(2^{2^{k^{k}}}\right)$ for some k.
The No-Repeat Rule. This rule makes a player lose if they ever repeat a past game configuration. This condition makes the following games EXPSPACE-complete: G1, G2, G3, Chess and Checkers The intuition here is that we have to track and compare against all past game states.

Open Problem 15.17. Is Go with the no-repeat rule (known as the superko rules) EXPSPACEcomplete?

The Conditional No-Repeat Rule. We are not going to define this notion formally; however, we will give an example of a game with this condition.

We introduce two special variables y and z to the game G1. y will be RED and z will be BLUE. A player now loses if they repeat a past game configuration and at most one of y or z have changed since that configuration was played. Adding this rule makes G1 2EXPTIME-complete. Here, the intuition is that we have to track y and z temporarily, in addition to all past game states.

Reif [Rei84] studied both Private Information Games and Blind Games. He looked at versions of G1 and G2. We state his results.

Private Information Games. In this variation, you can see some, but not all of an opponent's state. An example of this game is Реек with a partial barrier obscuring the state of some of each players plates to the other player. This condition makes the following games 2EXPTIME-complete: (a) G1 with 5DNF, (b) G2 with DNF, and (c) Peek.

Blind Games. Here, neither player knows the state of the other player. This condition makes the following games EXPSPACE-complete: (a) G2 with DNF and (b) Реек.

Open Problem 15.18. The complexity ofno-repeat, conditional no-repeat, private-information, and blind versions of constraint logic.

15.6 Further Results

We list problems that are complete in classes that are likely above PSPACE. For games listed the problem is

> given a position in the game, which player wins?

1. Chinese Checkers, and other pebble games, were proven EXPTIME-complete by Kasai, Adachi, and Iwata [KAI79]. Variants of pebble games were proven EXPTIME-complete by Kolaitis \& Panttaja [KP03].
2. Shogi, also known as Japanese Chess, is a 2-player strategy game. It does share some properties of chess, though the games are not that much alike. It was proven EXPTIMEcomplete by Adachi et al. [AKI87]. The complexity of variants of Shogi was studied by Yato et al. [YSI05].
3. Quixo is a complicated variant of tic-tac-toe. It was shown EXPTIME-complete by Mishiba and Takenaga [MT20].
4. Cops and Robbers is a game played on a graph where a robber is trying to escape a group of cops trying to encircle them. It was shown EXPTIME-complete by Kinnersley [Kin15].
5. The Custodian Capture game is a game where pieces move like rooks and capture by being on either side of a piece. It was shown EXPTIME-complete by Ito et al. [INKT21].
6. Reachability-Time Games on Timed Automata were showed EXPTIME-complete by Jurdzínski and Trivedi [JT07].
7. Different versions of Angry Birds were shown NP-hard or PSPACE-hard or EXPTIME-hard by Stephenson et al. [SRG20].
8. Skolem's Problem Given $a_{0}, \ldots, a_{k-1} \in \mathbb{Z}$ and $u_{0}, \ldots, u_{k-1} \in \mathbb{Z}$, does the recurrence

$$
u_{n}=a_{k-1} u_{n-1}+\cdots+a_{0} u_{n-k}
$$

ever produce a 0 ? (The problem has also been considered with rational coefficients and algebraic coefficients.)

Skolem, Mahler, and Lech independently showed that if a sequence of numbers is generated by a linear recurrence (with real coefficients) then, with a finite number of exceptions, the places where the sequence is 0 forms a regular repeating pattern. Hence the problem we are considering is called Sкоlem's Problem even though it is not know if Skolem asked it.
Halava et al. [HHHK05] and Ouakine \& Worrell [OW12] have nice surveys of what is known. (See those surveys for references). For $k=1$ and $k=2$ Skolem's problem is decidable. This is folklore and fairly easy. For $k=3$ and $k=4$ Skolem's problem is decidable. These proofs are difficult. For all $k \geq 5$ the problem is open. Halvana et al. claimed to show that for $k=5$ the problem is decidable; however, Ouakine \& Worrell showed that there was a bug in the proof.
Blondel \& Portier [BP02] have shown that Sкоlem's Problem is NP-hard.

Chapter 16

Undecidable Problems

All of the problems discussed in this book so far (and in later chapters) are decidable. That is, they may take a long time to solve, but some algorithm solves them. Are there problems that are undecidable? Yes. The Halting problem (defined below) is undecidable. Rice [Ric53] showed that any non trivial problem about Turing machines is undecidable. For example
$\{M$: Turing Machine M halts on all the primes $\}$.

The problem above is about Turing machines and hence may ve considered unnatural.
Chapter Summary

1. We will discuss problems that are undecidable but are perhaps unnatural.
2. We will discuss natural problems that are undecidable.

16.1 Basic Undecidable Problems

To show that a set A is undecidable we need to already have some basic undecidable problem X and then show $A \leq_{r} X$ (the r stands for recursive which means decidable). We present some of these basic undecidable problems.

Halt
Instance: A Turing Machine M.
Question: Does M halt on 0 ?
Note: There are many equivalent formulations of Halt that are all efficiently reducible to each other.
Note: This is the problem that one first proves is undecidable from first principles. Almost all proofs that a problem is undecidable use either Halt or some other problem known to be undecidable. This is similar to how we view SAT except that we actually know that Halt is undecidable, whereas we need to assume SAT is not in P.

Post Correspondence Problem (Post Corr Prob)
Instance: An finite alphabet Σ and two vectors of words over $\Sigma, \alpha=\left(\alpha_{1}, \ldots, \alpha_{N}\right)$,

$$
\beta=\left(\beta_{1}, \ldots, \beta_{N}\right) .
$$

Question: Does there exists $1 \leq i_{1}, \ldots, i_{k} \leq N$ such that $\alpha_{i_{1}} \cdots \alpha_{i_{k}}=\beta_{i_{1}} \cdots \beta_{i_{k}}$?
Note: k might be much larger than n so the naive algorithm of trying all possibilities to see if one works will go on forever if the answer is no.

A counter machine is another model of computation. We will not define it formally.

Counter Machines (Counter Mach)

Instance: A Counter Machine M.
Question: Does M halt on 0 ?

Theorem 16.1.

1. (Post [Pos46]) Halt \leq_{r} Post Corr Prob with an efficient reduction.
2. If Post Corr $P_{r o b} \leq_{r} A$ with an efficient reduction then $H a l t \leq_{r} A$ with an efficient reduction. This will be important when we claim that a reduction of POST Corr Prob to a game problem will produce reasonably small, playable, initial settings for the game.
3. (Minsky [Min67], but probably also folklore)) HALT \leq_{r} COUNTER MACH; however the reduction takes a Turing machine of length n and returns a Counter machine of length $2^{O(n)}$. This will be important when we claim that a reduction of COUNTER MACH to a game problem does not produce reasonably small, playable, initial settings for the game.

16.2 Conway's Game of Life

In Conway's game of life, we have a grid of cells that are either living or dead. A cell's neighbors are defined to be the eight cells that are horizontally, vertically, or diagonally adjacent to it. Each iteration of the simulation, the cells update as follows:

1. A living cell stays alive if it has 2 or 3 living neighbors. Otherwise it dies.
2. A dead cell becomes living if it has exactly 3 living neighbors.

Questions about Life

Instance: An initial configuration for the game of Life. This is a grid where some cells are blank and some have a living cell.
Question: What will happen when the game is run. This is an informal question; however, we will state rigorous theorems.

With these rules, we can end up with periodic patterns, e.g. pulsars, or static patterns, known as still life. Some of these can be seen in Figure 16.1. For more examples of how various patterns behave, there are many interactive simulations online.

There are a couple of different decision problems we can ask. The first, whether it is an example of still life is easy; we just compute the next step. We can also ask whether the configuration

Figure 16.1: A couple of common patterns in Life. Black squares are living, and white squares are dead.
is periodic and whether all the cells will die out, which are harder. These are unbounded simulations, and with polynomial space, they are PSPACE-complete, whereas with infinite space but a finite starting area for live starting area, they are undecidable.

1. Given a configuration, is it a still life? This is trivial: just do one step of the game and see if anything changed.
2. Given a configuration and a box that it is inside of, so the game does not affect anything outside of that box, will it become periodic? Will all of the cells die? Rendell [Ren00a, Ren00b] showed that both of these are PSPACE-complete.
3. Given a configuration will it become periodic? Will all of the cells die? Rendell [Ren00a, Ren00b, Ren11] showed that both of these are undecidable. The statement "The Game of Life is Undecidable" refers to this statement.

These results are generally proven by showing that Conway's Game of Life can simulate Turing machines. This works for both bounded games (e.g., inside a box) for PSPACE-hardness, and unbounded games for undecidability.

The Game of life is undecidable. Perhaps a lesson for us all.

16.3 The Video Game Recursed

Recursed is a 2D puzzle platform game involving chests, pink flames, green glows, crystals, ledges, jars, rings, and other objects. You start in a room. If you open a chest in that room you do not get any object or treasure. Instead you are in another room! Jars also lead to rooms, but in a different
way. Suffice to say, the game is complicated. We hasten to point out that this is a fun game that people actually play.

Recursed is a 1-player game where the goal is for the player to get the crystal. Recursed is the decision problem where you are given an initial set up for the game Recursed and need to determine whether the player can win.

Demaine et al. [DKL20] showed the following.
Theorem 16.2. RECURSED is undecidable.
Some notes about the result and the proof:

1. Theorem 16.2 was proven by showing Post Corr Prob \leq_{r} Recursed and using Theorem 16.1. Since the basic problem used is Post Corr Рrob, and the reduction is efficient, the instances of Recursed that are produced are fairly small.
2. Most complexity-of-games results such as those about Chess and Go rely on (1) the board getting bigger and bigger, and (2) such large constants that, even for short inputs, the resulting games are not playable. The result for recurse is novel in that (1) the board stays the same size at 15×20, and (2) the games for short inputs are playable. A caveat: the number of recursions from the chests gets bigger and bigger.

16.4 Other Undecidable Games

1. The video game Braid [Wikc] is playable and fun. We denote the problem of determining whether the player can win Braid by Braid. Hamilton [Ham14] showed that Braid is undecidable. Hamilton's proof uses Counter Mach. As a result, the instances of Braid that are produced are rather large. Braid and Recursed are the only two video game problems that we know of that are undecidable.
2. Magic: The Gathering [UA93] (henceforth Magin) is a popular well known game. Note that Magic is 2-player, as opposed to Recursed of Braid which are 1-player. We denote the problem of determining whether a particular player can win Magic by Magic. Churchill et al. [Chu12] showed that MAGIC is undecidable by using counter-machines. As a result, the instances of Magic that are produced are rather large. Later Churchill et al. [CBH21] presented a reduction using Turing machines that was efficient; however, the instances of Magic had every players moves forced, so it was not a natural instance of the game. Biderman [Bid20] showed that the problem of mate-in- n for Magic is not arithmetic, which means it's beyond the arithmetic hierarchy. The reduction produces natural game positions. Magic is the only 2-player game that we know of that is undecidable.

16.5 Diophantine Equations: Hten

In 1900 David Hilbert proposed 23 problems for mathematicians to work on. We state Hilbert's tenth problem in todays terminology.

Is the following problem decidable?

Hten

Instance: A polynomial $p \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$.
Question: Does there exist $a_{1}, \ldots, a_{n} \in \mathbb{Z}$ such that $p\left(a_{1}, \ldots, a_{n}\right)=0$?
Note: We denote the problem where the degree $\leq d$ and the number of variables is $\leq n$ by $\operatorname{Hilbert} 10(d, n)$.
Note: The question of decidability is equivalent to the case where $a_{1}, \ldots, a_{n} \in \mathbb{N}$. If you compare the results we state to those in the literature they might not be the same since the literature often states results for the \mathbb{N} version.

Hilbert had hoped this problem would lead to number theory of interest. It did lead to some, but the combined efforts of Davis-Putnam-Robinson [DPR61] and Matijasevic [Mat70] (see also a survey article by Davis [Dav73] and a book by Matijasevic [Mat93]) showed that the problem is undecidable.

Gasarch [Gas21] has a survey about what happens for particular degrees d and number of variables n.

16.6 Mortal Matrices

We present another undecidable problem that does not refer to Turing machines.
Mortal Matrices
Instance: A set of $m n \times n$ matrices M_{1}, \ldots, M_{m} over \mathbb{Z},
Question: Does there exists i_{1}, \ldots, i_{N} such that $M_{i_{1}} \times \cdots \times M_{i_{N}}$ is the all zero matrix?
Note that we are allowed to use M_{i} many times.

Theorem 16.3.

1. (Cassaigne et al. [CHHN14]) Mortal Matrices is undecidable for: (1) 63×3 matrices, (2) 4 5×5 matrices, (3) 39×9 matrices, (4) 215×15 matrices.
2. (Bournez \& Branicky [BB02]) Mortal Matrices is decidable for 2×2 matrices.
3. (Bell et al. [BHP12]) Mortal Matrices for 2×2 matrices is NP-hard.

Note that the question of decidability for 23×3 matrices is open.

16.7 Further Results

Poonen [Poo14] has collected up many other undecidable problems that do not involve Turing machines.

Chapter 17

Constraint Logic

17.1 Introduction

Constraint Logic is a technique that has been used to prove problems NP-hard, PSPACE-hard, EXPTIME-hard, and Undecidable. This chapter will give just a taste of this vast area. The interested reader should see the book by Hearn \& Demaine [HD09] and/or the Ph.D. thesis of Hearn [Hea06].

In general, Constraint Logic aims to define one model of computation for which natural problems are complete for the natural complexity class in a variety of scenarios:

1. The number of players influencing the computation can vary, from 0 players (a standard computation or a simulation like Life) to 1 player (a nondeterministic computation or a puzzle with choices) to 2 players (a perfect-information game where players alternate choices) to team games (with three or more players divided into two teams, and imperfect information between players).
2. The length of the computation can vary from bounded where the number of operations/moves is at most polynomial in the size of the computation, and unbounded where there is no a priori bound so the computation may go on for exponentially long.

Figure ?? summarizes the natural complexity classes for each combination of these parameters. Constraint Logic, interpreted appropriately for each setting (as described below), gives a complete problem for each.

17.2 Constraint Logic Graphs

In each case, Constraint Logic defines computation in terms of a directed weighted graph representing the state of a machine:

Definition 17.1.

1. A constraint graph is an undirected weighted graph G where every weight is either 1 ("red", drawn thinner) or 2 ("blue", drawn thicker). (The constraint graph is the "machine".)
2. A configuration is a constraint graph together with an orientation (direction) for each edge. (A configuration represents a state of the machine.)
3. A valid configuration satisfies the constraints that every vertex has incoming weight at least 2.

(a) AND vertex: the top (blue) edge can be directed out if and only if the left and right (red) edges are directed in. We put an X on those that are not valid.

(b) OR vertex: the top (blue) edge can be directed out if and only if the left or right (blue) edge is directed in. We put an X on those that are not valid.

Figure 17.1: The two main types of Constraint Logic vertices, and all eight possible configurations, with illegal configurations labeled with an \times. (Based on [HD09, Figure 2.1].)

The key is the constraints that define "valid configuration". How do these constraints represent computation? Figure 17.1 gives two examples of vertices which represent (in a certain sense) AND and OR constraints. The top edge is constrained to direct out only when we have AND (both) or OR (at least one) of the bottom edges directed in. Intuitively, this makes it possible to express Boolean logic, and reduce from various versions of SAT.

17.3 CONSTRAINT Graph Satisfaction (CGS)

We start with the simplest form of Constraint Logic, corresponding to 1-player bounded computation. This problem is just a problem in graph theory. It is "bounded" in the sense that each edge orientation can be chosen only once.

Constraint Graph Satisfaction (CGS)

Instance: A constraint graph G.
Question: Is there a valid configuration for G ?
Note: CGS can be considered a 1-player game: the player is given the constraint graph and tries to find a way to orient the edges to obtain a valid configuration.

Hearn \& Demaine [HD09] proved the following:

Theorem 17.2.

1. $3 S A T \leq_{p}$ CGS, hence CGS is NP-complete.
2. CGS restricted to planar graphs is $N P$-complete.
3. CGS restricted to planar graphs where every vertex is an AND or an OR according to Figure 17.1 is NP-complete.
4. CGS restricted to grid graphs is $N P$-complete.

CGS has not been applied to prove natural problems are NP-complete. Nonetheless, Theorem 17.2 is a good starting point for the study of Constraint Logic.

17.4 Nondeterministic Constraint Logic (NCL)

Next we consider the problem of, given two valid configurations, whether you can move from one to the other. This is essentially a 1-player unbounded game. It is "unbounded" because each edge can flip (exponentially) many times.

Nondeterministic Constraint Logic (NCL)
Instance: A constraint graph G and two valid configurations C_{1} and C_{2} of G.
Question: Is there a sequence of valid configurations that (1) begins with C_{1}, (2) ends with C_{2}, (3) every adjacent pair differ in that one edge's orientation was flipped?
Note: The term "Nondeterministic" is used because an NSPACE algorithm can solve the problem by guessing the next valid configuration. Because PSPACE = NSPACE, the problem is in PSPACE.

Hearn \& Demaine [HD09] proved the following:
Theorem 17.3.

1. NCL is PSPACE-complete.
2. NCL restricted to planar graphs is PSPACE-complete.
3. NCL restricted to planar graphs where every vertex is an AND or an OR according to Figure 17.1 is PSPACE-complete.
4. NCL restricted to grid graphs is NP-complete.

The following two puzzles were proved hard by a reduction from NCL. ${ }^{1}$
Sliding Blocks
The sliding block game is a puzzle game (both physical and digital) played on a square grid containing rectangular blocks. The player can slide each block horizontally and vertically so long as it does not collide with other blocks.
Instance: An initial position for the sliding-block game, and a special block and position for that block.
Question: Can the player win by moving the special block to the specified position?

Rush Hour

Rush Hour is a puzzle game (both physical and digital) played on a square grid containing horizontal $1 \times k$ and vertical $k \times 1$ cars (for varying k), and the player can slide each car along their long axis so long as it does not collide with other cars.
Instance: An initial position for the game Rush Hour, and a special car and position for that car.
Question: Can the player win by moving the special car to a specified position?

Theorem 17.4.

1. (Hearn \& Demaine [HD09]) Sliding Blocks is PSPACE-complete. The case where all of the rectangles are 1×2 is still PSPACE-complete.
2. (Flake \& Baum [FB02], Hearn \& Demaine [HD09]) RuSH Hour is PSPACE-complete, even when restricted to cars of length 2 and 3.
3. (Tromp \& Cilibrasi [TC05]) Rush Hour is PSPACE-complete, even when restricted to cars of length 2.
4. (Brunner et al. $\left.\left[B C D^{+} 21\right]\right)$ RUSH HOUR with cars of length 1 (which now must be explicitly specified as either horizontal or vertical) and fixed blocks that cannot move at all is PSPACEcomplete.

Proof sketch:

(2) Figure 17.2 gives a sketch of the proof of Theorem 17.4 .2 for 1×2 and 1×3 blocks. By Theorem 17.3.3, we just need to build an AND vertex and an OR vertex of a constraint graph, and show how to connect them into an arbitrary planar graph. Figure 17.2 gives two Sliding Blocks gadgets that implement AND and OR vertices, and shows some sample move sequences for how to reverse edge directions by sliding blocks around. Here a block being retracted inside the gadget represents an NCL edge directed away from the vertex, and a block extending outside the gadget represents an NCL edge directed into the vertex (the opposite of what might seem natural). The naturally limited capacity of each gadget to store blocks ends up implementing the "incoming weight of at least 2 " constraint. These gadgets can then be put together into a grid, following the grid graph of Theorem 17.3.4. For grid graphs we need a "straight" and "turn" gadget which

[^4]simply propagate an edge in a desired direction; these gadgets can be constructed from an OR gadget by closing off one side. When the gadgets are against the outer boundary, we also need to extend the corner blocks to fill the empty corners in Figure 17.2; otherwise, they will be filled by the adjacent gadget. See [HD09] for details, and for the more complicated 1×2 construction.

Van der Zanden [vdZ15] strengthened these theorems to show NCL remains PSPACE-complete when the graph has bounded bandwidth, i.e., the vertices can be placed on the integer line so that every edge has length at most c for some constant c. For example, this graph class is smaller than graphs of bounded pathwidth or graphs of bounded treewidth. This result often lets us prove PSPACE-completeness of games and puzzles when restricted to a narrow $O(1) \times n$ board.

Theorem 17.5.

1. NCL restricted to planar bounded-bandwidth graphs where every vertex is an AND or an $O R$ according to Figure 17.1 is PSPACE-complete.
2. Rush Hour and Sliding Blocks restricted to $O(1) \times n$ boards are PSPACE-complete.

Next we describe some "reconfiguration" problems that were proved hard by a reduction from NCL. In general, the reconfiguration version of an NP problem is, given two certificates, to determine whether you can change one into the other by a sequence of "local" moves. The natural notion of locality depends on the problem.

Reconfiguration SAT

Instance: Boolean formula $\varphi\left(x_{1}, \ldots, x_{n}\right)$ and two satisfying assignments \vec{x}, \vec{y} for φ.
Question: Is there a sequence of satisfying assignments for φ that (1) begins with \vec{x},
(2) ends with \vec{y}, and (3) every two consecutive satisfying assignments differ in only one variable?

Reconfiguration NAE-3SAT

Instance: NAE-3SAT formula $\varphi\left(x_{1}, \ldots, x_{n}\right)$ and two satisfying assignments \vec{x}, \vec{y} for φ.
Question: Is there a sequence of satisfying assignments for φ that (1) begins with \vec{x}, (2) ends with \vec{y}, and (3) every two consecutive satisfying assignments differ in only one variable?
Note: Here a "satisfying assignment" for φ means that, in each clause, not all literals have the same assignment.

Theorem 17.6.

1. (Gopalan et al. [GKMP09]) Reconfiguration SAT is PSPACE-complete.
2. (Gopalan et al. [GKMP09]) Reconfiguration NAE-3SAT is PSPACE-complete.
3. (Cardinal et al. [CDE 20$]$) Reconfiguration NAE-3SAT restricted to planar formulas is PSPACEcomplete.

(a) AND gadget: The top middle block can be retracted into the gadget if and only if the left middle block and the bottom middle block can be extended out of the gadget (i.e., retracted into the neighboring gadget).

(b) OR gadget: The top middle block can be retracted into the gadget if and only if the left middle block or the bottom middle block can be extended out of the gadget (i.e., retracted into the neighboring gadget).

Figure 17.2: The reduction from NCL to Sliding Blocks consists of just two gadgets (plus an argument about how they fit together, omitted here). Dark blocks are never useful to slide. (Based on [HD09, Figure 1.2].)

Moret [Mor88] showed that Planar NAE-3SAT is in P, so it is surprising that Reconfiguration Planar NAE-3SAT is PSPACE-complete.

Holzer \& Jakobi [HJ12] show the following maze puzzles hard using a reduction from NCL. (The reader needs to look at their paper for formal definitions of the mazes.)

Theorem 17.7.

1. Determining whether a a Rolling Block Maze can be solved is PSPACE-complete.
2. Determining whether an Alice Maze can be solved is PSPACE-complete.

For more games and puzzles proved PSPACE-complete using NCL, see Hearn [Hea06], Hearn \& Demaine [HD09], Hearn [Hea09], and Holzer \& Jakobi [HJ12].

17.5 Deterministic Constraint Logic (DCL)

Next we look at a 0-player version of Constraint Logic, which corresponds to a more typical computation. To make it zero player, we add rules to Constraint Logic to ensure that all moves are deterministic, rather than chosen by a player. Aside from orientation of edges, we also track whether an edge is "active" or "inactive". An edge is active if it was just flipped in the last round. Otherwise, it is inactive. We call a vertex active if its active incoming edges have a total weight of at least 2 .

Deterministic Constraint Logic (DCL)
Instance: A constraint graph G and an edge e.
Question: Consider a sequence of rounds, where in each round the following things happen:

- Inactive edges pointing to active vertices get reversed.
- Active edges pointing to inactive vertices get reversed.
- The edges that have been reversed are the new active edges.

Does edge e ever get reversed?
Demaine et al. [DHHL22] proved ${ }^{2}$
Theorem 17.8.

1. DCL is PSPACE-complete.
2. DCL restricted to planar graphs is PSPACE-complete.

Demaine et al. [DHHL22] use Theorem 17.8 (or rather, a framework used to prove Theorem 17.8) to prove PSPACE-completeness for predicting the behavior of several reversible deterministic systems. We give one example.

[^5]> Billiards
> Instance: A set of billiard balls on a table. The table also has fixed blocks which, when a ball hits it, reflect off at the same angle. We are also given, for each ball, the direction the ball will initially roll and the ball's initial velocity. Finally, we are given a ball and a place on the table.
> Question: Will the specified ball ever get to the specified place?

Theorem 17.9.

1. (Fredkin \& Toffoli [FT82]) Billiards is PSPACE-complete.
2. (Demaine et al. [DHHL22]) DCL \leq_{p} Billiards, hence Billiards is PSPACE-complete. This proof (1) is simpler than that of Fredkin \& Toffoli, and (2) has only two balls moving at any one time and they are close together.

17.6 2-Player Constraint Logic (2CL)

We have looked at 0-player and 1-player Constraint Logic. Next we turn to 2-player Constraint Logic. We define two games corresponding to bounded and unbounded length:

Definition 17.10.

1. A 2-player constraint graph is a constraint graph where each edge is labeled White or Black, in addition to being labeled red (weight 1) or blue (weight 2). The two colorings are independent of each other.
2. The Bounded/Unbounded 2-Player Constraint Logic Game is as follows:
(a) Initially the two players, called "white" and "black", are given a 2-player constraint graph and a valid configuration. Each player is also given a target edge.
(b) The players alternate making moves, with white going first. A move consists of flipping the orientation of an edge of the same color as the player, such that the resulting configuration is still valid.
(c) In the bounded game, each edge can be reversed at most once.
(d) The first player to reverse their target edge wins.
```
Bounded/Unbounded 2-Player Constraint Logic (Bounded/Unbounded 2CL)
Instance: 2-player constraint graph, valid orientation, and two target edges (so a starting board for the game).
Question: Which player wins the Bounded/Unbounded 2-Player Constraint Logic Game?
```

Hearn \& Demaine [HD09] proved the following:

Theorem 17.11.

1. Bounded 2CL is PSPACE-complete.
2. Bounded 2CL restricted to planar graphs is PSPACE-complete.
3. Unbounded 2CL is EXPTIME-complete.
4. Unbounded 2CL restricted to planar graphs is EXPTIME-complete.

We describe three games that have reductions from Bounded 2CL:

Definition 17.12.

1. Amazons is played by two players-black and white-with an equal number of black and white queens on a chess board. Each turn, a player must make a "queen move" with one of his queens, and then shoots an arrow onto any square reachable by a "queen move" from the new position of the queen. Arrows do not kill or even injure; however, the are used to restrict how the queens (of either side) can move. Here, a queen move is any non-zero move in a straight line diagonally, horizontally, or vertically. Queens may not move through or shoot through squares occupied by arrows or other queens. The player who is able to move last wins. We denote the problem of determining who wins by Amazons.
2. Konane is played with 2 colors of stones-black and white-on a board. Each turn, a player can perform with a single piece, 1 or more jumps over opponent pieces, as long as they all lie in a straight line. The jumped pieces are removed. The last player to move wins. We denote the problem of determining who wins by Konane.
3. Cross Purposes is played with black and white stones on the intersection of a Go board. A black stone represents towers of two blocks, and a move consists of "pushing" a black stone over, resulting in two white stones either above, below, left, or right of the stone. The two players are named Vertical and Horizontal, with Vertical moving first. Vertical may only tip over a stone up or down, and Horizontal may only tip over the stone left or right, so long as the two spaces are unoccupied before hand. The last player to be able to move wins. We denote the problem of determining who wins by Cross Purposes.

It is easy to see that Amazons, Konane, and Cross Purposes are in PSPACE. Hearn [Hea09] proved the following theorem by a reduction from 2CL.

Theorem 17.13. Amazons, Konane, and Cross Purposes are PSPACE-complete.
Figures 17.3 and 17.4 are the gadgets used to show Konane is PSPACE-complete.
Bilò et al. [BGL $\left.{ }^{+} 18\right]$ show the following using a reduction from 2CL. (the reader needs to look at their paper for formal definitions of the game).

Theorem 17.14. Peg Duotaire (a 2-player peg jumping game) is PSPACE-complete.
Unbounded 2CL has not yet been used to show natural problems EXPTIME-complete; however, it is part of a framework for lower bounds developed by Demaine et al. [DHL20] and Ani et al. [ADHL22].

Project 17.15. Prove Go, Chess, or Checkers EXPTIME-complete using Unbounded 2CL.

Konane is PSPACE-complete

[Hearn 2005]

Figure 17.3: Gadgets to prove Konane PSPACE-complete.

Konane is PSPACE-complete

Figure 17.4: More gadgets to prove Konane PSPACE-complete.

17.7 Team Private Constraint Logic (TPCL)

Definition 17.16. The Bounded/Unbounded Team Private Constraint Logic Game is a version of the Constraint Logic game played with three players-one black player and two white players-on a team private constraint graph. Like a 2-player constraint graph, every edge is marked as flippable only by the white team or only by the black team. A new feature is that the state of the edges in the game is semi-private information: each edge is marked as visible to (only) the white players, one of the white players, or the black player.

The same moves allowed in 2CL games apply, including in the bounded case a limit of one reversal per edge. Players face the additional restriction that all moves that they make must be legal given visible information. Passing is also allowed, which makes it difficult to gain any information about changes to the state of the board based on the possible moves of other players. This is a necessary condition, because a black player may move an invisible edge, which may not change the available moves for a white player, thus giving them some knowledge about the black player's moves. By allowing passing, the white player does not know whether the state of an invisible edge was changed, or if the black player decided to pass on a turn.

```
Bounded/Unbounded Team Private Constraint Logic (BTPCL/UTPCL)
Instance: A team private constraint graph.
Question: Which player wins the Bounded/Unbounded Team Private Constraint
    Logic Game?
```

Hearn \& Demaine [HD09] proved the following:
Theorem 17.17. BTPCL \in NEXPTIME.

Proof:

If there exists a winning strategy for the white player, the strategy is deterministic and is a function of the visible state. There are at most n different visible edges, so the number of possible states is exponential in the number of visible edges. Thus the white players may guess a strategy at the beginning of the game, which takes exponentially many bits, and the white players play deterministically with that strategy to verify that it is a solution. The game may run for many rounds, but the information used to describe the moves is exponential, hence determining who wins is in NEXPTIME.

Theorem 17.18. BTPCL is NEXPTIME-complete.

Theorem 17.19. UTPCL is CE-complete and in particular Undecidable.
The last result provides a game with a finite board (the constraint graph) where the question of who wins is Undecidable. This result is surprising because Turing machines or word-RAM algorithms can run for an arbitrary amount of time and have an arbitrary amount of space to store information and their state, whereas the game has finite board space and cannot represent the state of an arbitrarily large computation. Effectively, the state of the simulated machine is in the heads of the players as they consider what move would be optimal.

Part III

Below NP

Chapter 18

The 3SUM-Conjecture: A Method for Obtaining Quadratic Lower Bounds

18.1 Introduction

Part I this book is about showing that problems are probably not solvable in polynomial time. But even within polynomial time there are distinctions. We will show certain problems are probably not in subquadratic time.

Chapter Summary

1. We discuss the problem 3SUM and conjecture that it cannot be solved in subquadratic time.
2. We define an appropriate notion of reduction.
3. We use the assumption that $3 S U M$ cannot be solved in subquadratic time, and the reductions in the last item, to show that many problems cannot be solved in subquadratic time.
4. We look at the consequences of assuming that another problem, Orthogonal Vectors, cannot be done in subquadratic time.

18.2 The 3SUM Problem

Gajentaan \& Overmars [GO12] used the following problem to show that other problems are probably not in subquadratic time.

3SUM

Instance: n integers.
Question: Do three of the integers sum to 0 ?
Note: We consider any arithmetic operation to be unit cost.
The following theorem gives better and better algorithms for 3SUM.
Theorem 18.1.

1. $3 S U M$ can be solved in $O\left(n^{3}\right)$ time.
2. $3 S U M$ can be solved in $O\left(n^{2} \log n\right)$ time.
3. $3 S U M$ can be solved in randomized $O\left(n^{2}\right)$ time.
4. 3 SUM can be solved in deterministic $O\left(n^{2}\right)$ time.

Proof:
Let A be the original input of n integers.

1) The trivial algorithms suffice to get $O\left(n^{3}\right)$ time: check all $O\left(n^{3}\right) 3$-sets of A to see if any of them sum to 0 .
2) First compute all the pairwise sums of A and sort them into an array B. This takes $O\left(n^{2} \log n\right)$ steps. Then, for each element of A, use binary search to see if its negation is in B. This takes $O(n \log n)$ steps. If you find a negation in B then the answer is YES, otherwise NO.
3) Let p be a prime close to n^{2}. We will have a hash table of size p. The number z will go into cell $z(\bmod p)$ of the hash table.

For all $1 \leq i<j \leq n$ put $-\left(x_{i}+x_{j}\right)$ (along with $\left.\left(x_{i}, x_{j}\right)\right)$ into the hash table. This takes $O\left(n^{2}\right)$ steps. Then, for each element of $x \in A$ hash it into the table. See if there is at least one pair already there. If there is then with high probability there are $O(1)$ paris there. See if any of the sums in that entry of the hash table, sum with x to 0 . If so then output YES and halt. If for no $x \in A$ do you get a YES then output NO. For each x, With high probability every x will be involved with $O(1)$ checks, so the expected run time is $O\left(n^{2}\right)$.
4) First sort A. This takes $O(n \log n)$ steps. Place a pointer at both the front and the end of A. Then, for each $x \in A$, do the following: If the sum of the integers at the two pointers and x is smaller than 0 , then move the first array's pointer forward; if the sum is larger than 0 , then move the second array's point backwards; otherwise, we have the three integers sum to 0 , and we output YES and are done. If the two pointers crossover, then move onto the next integer in A. This algorithm clearly takes $O\left(n^{2}\right)$ time.

Exercise 18.2. Code up all four algorithms in Theorem 18.1. Run them on data and see which ones do well when.

Is there an algorithm for 3SUM that runs in time better than $O\left(n^{2}\right)$? This depends on your definition of "better". The following are known:

1. If the integers are in $[-u, u]$ then 3 SUM can be solved in $O(n+u \log n)$ time. We leave this an an exercise.
2. Baran et al. [BDP08] showed the following: Assume the word-RAM model which can manipulate $\log n$-bit words in constant time. Then there is a randomized algorithm for 3SUM that takes time

$$
O\left(\frac{n^{2}(\log \log n)^{2}}{(\log n)^{2}}\right)
$$

3. Gronlund \& Pettie [GP18] have shown that there is a randomized algorithm for 3SUM that takes time

$$
O\left(\frac{n^{2} \log \log n}{\log n}\right)
$$

and a deterministic algorithm that takes time

$$
O\left(\frac{n^{2}(\log \log n)^{2 / 3}}{(\log n)^{2 / 3}}\right)
$$

4. Chan [Cha20] has shown there is a deterministic algorithm for 3SUM that runs in time

$$
O\left(\frac{n^{2}(\log \log n)^{O(1)}}{\log ^{2}(n)}\right)
$$

5. Gronlund \& Pettie [GP18] have also shown that there exists a decision tree algorithm that had depth (so time) $O\left(n^{1.5} \sqrt{\log n}\right)$ for 3SUM. Their proof does not show how to actually construct the decision tree in subquadratic time.

Exercise 18.3. Show that if the integers are in $[-u, u]$ then $3 S U M$ can be solved in $O(n+u \log n)$ time.

While the algorithms above are impressive and very clever none are that much better than $O\left(n^{2}\right)$. We need a definition for "much better than $O\left(n^{2}\right)$ ".

Definition 18.4. An algorithm is subquadratic if there exists $\varepsilon>0$ such that it runs in time $O\left(n^{2-\varepsilon}\right)$.

Despite enormous effort nobody has obtained a subquadratic algorithm for 3SUM. In the next section we turn this around: we state a conjecture that 3 SUM cannot be done in subquadratic time. From that conjecture we obtain quadratic lower bounds on other problems.

18.3 The 3SUM-ConJECTURE

Gajentaan \& Overmars [GO12] (essentially) defined 3SUM-hardness and showed many problems are 3SUM-hard. Many of the problems are in computational geometry.

Conjecture 18.5. The 3SUM-Conjecture: There is no subquadratic algorithm for 3SUM.
We will later see ways in which this conjecture is similar to the conjecture that SAT is not in P and ways in which it is different.

We define a notion of reduction between problems.
Definition 18.6. Let A and B be sets or functions (they will almost always be sets).

1. $A \leq_{s q} B$ means that if there is a subquadratic algorithm for B then it can be used to obtain a subquadratic algorithm for A. The $s q$ stands for sub-quadratic.
(a) (The usual way to do this.) On input x produce in O (n polylogn) time (usually just linear) a y such that $x \in A$ iff $y \in B$. Note that $\leq_{s q}$ is transitive.
(b) (This is sometimes needed.) On input x produce in O (npolylogn) time a set y_{1}, \ldots, y_{k} (k is independent of n) such that $x \in A$ can be determined from the answers to $y_{1} \in B$?, $\ldots, y_{k} \in B$? in $O(n$ polylogn $)$ time. Note that $\leq_{s q}$ is still transitive.
(c) We leave it to the reader to modify the above definitions for when A and B are functions.
2. $A \equiv_{s q} B$ if $A \leq_{s q} B$ and $B \leq_{s q} A$.

Definition 18.7. Let A be a problem.

1. A is 3 SUM-hard if $3 S U M \leq_{s q} A$.
2. A is 3 SUM-complete if A is 3 SUM-hard and $A \leq_{s q} 3 S U M$.

Because of Conjecture 18.5 we think that if A is 3 SUM-hard then there is no subquadratic algorithm for it. In brief:

1. When you read " A is 3 SUM-complete" you should think: A is in quadratic time but not in subquadratic time.
2. When you read " A is 3 SUM-hard" you should think: A is not in subquadratic time.

By the 3SUM-Conjecture we think that, if A is 3 SUM-hard, then there is no subquadratic algorithm for A.

The definition of NP-hard is used to show that problems are not in P, contingent on the conjecture that $P \neq N P$. The definition of 3SUM-hard is used to show that problems do not have subquadratic algorithms, contingent on the conjecture that 3SUM does not. We list out similarities and differences between the two theories.

1. Both use reductions and build up a large set of problems that are thought to be hard. The number of NP-hard problems is far larger than the number of 3SUM-hard problems.
2. Contrast the following:
(a) A problem B is NP-hard if for all $A \in N P, A \leq_{p} B$. SAT is a natural NP-hard problem. As a consequence, one can show C is NP-hard by showing SAT $\leq_{p} C$.
(b) A problem B is 3 SUM-hard if $3 S U M \leq_{s q} B$. Note that we do not have a result for 3 SUM that is analogous to the Cook-Levin theorem. We suspect 3SUM requires quadratic time and use it as such.

If we did not know the Cook-Levin theorem, but really thought SAT was hard, we could still have a large set of problems that are NP-complete and think they were hard. That is the position we are in with 3SUM-hard.

Exercise 18.8. Let 2SUM be the problem of, given an array A of integers, does there exists $x, y \in A$ such that $x+y=0$.

Figure 18.1: The relationships of problems to 3SUM.

1. Show that 2 SUM is in $O(n \log n)$ time.
2. Show that 2SUM is in $O(n)$ time.
3. F3SUM is the following problem: Given a set of integers A, determine whether there exist $x, y, z \in A$ such that $x+y+z=0$ and if there is then output an (x, y, z) that works. Show that F3SUM $\leq_{s q} 3$ SUM.

18.4 Three Variants of 3SUM

Recall that if the integers are in $[-u, u]$ then 3 SUM can be solved in time $O(n+u \log n)$. For $u=O\left(n^{2-\varepsilon}\right)$ this yields a subquadratic algorithm for 3SUM. What if u is bigger? The hashing technique used in Theorem 18.1.3 to obtain a randomized $O\left(n^{2}\right)$ algorithm for 3SUM can be used to prove the following.

Theorem 18.9. The $3 S U M$ problem restricted to $\left[-n^{3}, n^{3}\right]$ is $3 S U M$-complete.

Proof sketch:

Clearly the restricted problem is reducible to 3SUM.
The proof that 3 SUM reduces to the restricted problem uses a reduction that hashes the set of n elements to $\left[-n^{3}, n^{3}\right]$.

Theorem 18.9 is interesting since it rules out the possibility that 3SUM is only hard when it involves large numbers.

Pǎtraşcu [Pǎt10] considered the following problem and proved it was 3SUM-hard.

Convolution 3SUM
Instance: A set of n integers a_{1}, \ldots, a_{n}.
Question: Is there $i \neq j$ such that $a_{i+j}=a_{i}+a_{j}$?
Note: Proving Convolution 3SUM is in $O\left(n^{2}\right)$ is much easier than showing 3SUM is in $O\left(n^{2}\right)$.

Theorem 18.10. Convolution 3SUM is 3SUM-complete.

Proof sketch:

Convolution 3SUM is easily in $O\left(n^{2}\right)$ so Convolution 3 SUM $\leq_{s q} 3$ SUM trivially. The proof that $3 S U M \leq_{s q} C t h S U M$ uses a family of hash functions.

Gajentaan \& Overmars [GO12] defined the following problem and showed it was 3SUM-hard. It is used in many proofs that problems are 3SUM-complete.

3 SUM $^{\prime}$

Instance: Three sets A, B, C of n integers.
Question: Is there $a \in A, b \in B$, and $c \in C$ such that $a+b=c$?

Theorem 18.11. $3 S U M^{\prime}$ is $3 S U M$-complete.

Proof:

$3 S U M \leq{ }_{s q} 3 S U M^{\prime}$.
This is easy to see by a reduction from 3SUM with the original instance being S; just put $A=S$, $B=S, C=-S$.
$3 S^{\prime} \leq_{s q} 3 S U M$.
Given A, B, C we set S to be all the elements of $A+$ large, $B+2 \times$ large, and $-C-3 \times$ large, where large just means a large number that is added to each element of the corresponding sets.

Note that the reduction $3 \mathrm{SUM}^{\prime} \leq_{s q} 3$ SUM used large numbers.

18.5 3SUM-hard Problems in Computational Geometry

All of the results in this section are by Gajentaan and Overmars [GO12]. For each problem in this section try to prove that it is in $O\left(n^{2}\right)$ time, so the 3SUM-hardness will mean that the complexity is $\Theta\left(n^{2}\right)$ (assuming the 3SUM-Conjecture). In some cases we will give a reference.

18.5.1 Geombase and Geombase'

GeomBase

Instance: n points in \mathbb{Z}^{2} with y-coordinate in $\{0,1,2\}$.
Question: Does there exist a non-horizontal line hitting 3 points of this set? (This is displayed in Figure 18.2.)

Theorem 18.12. Geombase is 3SUM-complete.

Figure 18.2: The Geombase problem.

Proof:

3 SUM $^{\prime} \leq_{s q}$ Geombase :
Given A, B, C, an input to $3 \mathrm{SUM}^{\prime}$, we consider the following input to geombase.

$$
\{(a, 0): a \in A\} \cup\{(b, 2): b \in B\} \cup\{(c / 2,1): c \in C\}
$$

It is easy to show that three points lie on a non-horizontal line if and only if there exist $a \in A$, $b \in B$, and $c \in C$, such that $a+b=c$. There is one small issue. The problem we create might not have integer coordinates (the $c / 2$). The problem can easily be scaled to create a version with integer coordinates.

Geombase $\leq_{s q} 3$ SUM $^{\prime}$:
Reverse the above reduction.

We will sometimes need the following variant of Geombase.

Geombase ${ }^{\prime}$

Instance: n points in \mathbb{Z}^{2} with y-coordinate in $\{0,1,2\}$, and ε. View the points as holes in the $y=0,1,2$ lines and enlarge them to be ε-long. In addition we view the $y=0,1,2$ lines as finite segments.
Question: Does there exist a non-horizontal line going through 3 of the holes?

Theorem 18.13. Geombase $\leq_{s q}$ Geombase'

Proof sketch:

This proof is displayed in Figure 18.3.

Figure 18.3: Reduction of Geombase to Geombase'.

18.5.2 COLLINEAR

Collinear

Instance: n points in $\mathbb{Z} \times \mathbb{Z}$,
Question: Are three of the points collinear?
Theorem 18.14. $3 S U M \leq_{s q}$ Collinear, hence Collinear is 3SUM-hard.

Proof:

Given an instance of 3SUM A, we map it to the instance of Collinear $\left\{\left(x, x^{3}\right): x \in A\right\}$, as shown in Figure 18.4.

We show that three points on the curve will lie on a line if and only if there are three integers summing to 0 in the original set.

Indeed, notice that
$\frac{b^{3}-a^{3}}{b-a}=\frac{c^{3}-a^{3}}{c-a} \Longleftrightarrow b^{2}+b a+a^{2}=c^{2}+c a+a^{2} \Longleftrightarrow(b-c)(b+c+a)=0 \Longleftrightarrow b+c+a=0$, where in the last equality we assume that the three numbers are distinct. There is a slight issue here. We are assuming that the input to 3 SUM are distinct integers. We leave it to the reader to show that this version of 3SUM is 3SUM-complete.

18.5.3 Concurrent

Concurrency is the geometric dual of collinearity.

Figure 18.4: Reduction of 3SAT to Collinear.

Concurrent

Instance: n lines.
Question: Is there a point on three of the lines? (Such lines are called concurrent.)
Theorem 18.15. Collinear $\equiv_{\text {sq }}$ Concurrent and hence Concurrent is 3SUM-hard.

Proof:

Collinear $\leq_{s q}$ Concurrent
Given a set of points X we map it to the set of lines $\{a x+b y+1=0:(a, b) \in X\}$. (This is called projective plane duality.) Then, this preserves point/line incidence; if three points were collinear, the three corresponding lines are incident, and vice versa. Therefore, we have a subquadratic reduction.
Concurrent $\leq_{s q}$ Collinear
Use the reverse of the Collinear $\leq_{s q}$ Concurrent reduction.

Note: All the d dimensional versions of the problems mentioned so far, are $d+1$-sum hard.

18.5.4 SEPARATOR

Separator

Instance: n line segments in the plane.
Question: Is there a line that separates the n line segments into two nonempty groups? (This line is not allowed to intersect any of the segments.)
Exercise 18.16. Geombase $\leq_{s q}$ Separator, hence Separator is 3SUM-hard. (
Hint: See Figure 18.5)

Figure 18.5: Reduction of Geombase' to Separator.

18.5.5 Covering Problems

Definition 18.17. A strip is just a fixed region in between two parallel lines.

```
Strips Cover Box(Strips)
Instance: A set of n strips and an axis-aligned rectangle R,
Question: Does a union of the strips cover R?
```

Theorem 18.18. Geombase $\leq_{s q}$ Strips, hence Strips is 3 SUM-hard.

Proof sketch:

We are given an instance of Geombase'. Rotate it 90 degrees. Look at the line segments between the holes and the 6 half-infinite lines. For each line segment do the following (called point-line-duality). For each point (m, b) on the segment associate the line $y=m x+b$. The union of those lines is a strip. This gives us our strips. (See Figure 18.6.)

Look at a non-vertical line L as a candidate for a line that goes through three holes in the rotated instance of our original problem. Let p be its dual. L succeeds in going through 3 holes iff p lies in none of the strips. We are not done yet- we need to define the Rectangle for Strips.

Now take the 6 half-infinite lines. The point-line duality gives 6 half-planes H_{1}, \ldots, H_{6}. Let P be the intersection of $\overline{H_{1}}, \ldots, \overline{H_{6}}$. We will now define the rectangle and 6 more strips.

One can show that P is bounded. Let R be some rectangle that contains it. Also, we turn each H_{i} into a strip using a line outside R such that the intersection of the strip with R is the same as the intersection of the half-plane with R.

Figure 18.6: Reduction of Geombase' to Strips.

We can also do the same type of question with Triangles.

```
Triangle Cover Triangle (TriCovTri)
```

Instance: A set of n triangles and a target triangle.
Question: Does the set of triangles cover the target triangle?

Theorem 18.19. Strips $\leq_{s q}$ TriCovTri, hence TriCovTri is 3SUM-hard.
Exercise 18.20. Proof Theorem 18.19.

Hole in Union Problem (HoleInU)
Instance: A set of n triangles in the plane. They can overlap.
Question: Does the set have a hole? That is, is there a closed region within the union that is not covered by any of the triangles?

Theorem 18.21. TriCovTri $\leq_{s q}$ HoleInU, hence HoleInU is 3SUM-hard.
Proof:
We are given an instance of TriCovTri which is a triangle t and a set of triangles S. Note that every $t^{\prime} \in S$ can have some parts of it inside t and some parts outside of t. For every $t^{\prime} \in S$ chop off the parts that are outside of t to obtain $t^{\prime \prime}$. If $t^{\prime \prime}$ is not a triangle (which is likely) then cut it into a set of $O(1)$ triangles. Take the union over $t^{\prime} \in S$ of all of these triangles. Call this set U. This is our instance of HoleInU. Clearly the original set of triangles covers t iff there is no hole in the union of the triangles in U.

We have yet another question regarding triangles that is similar to covering problems.

```
Triangle Measure Problem (TriMeas)
Instance: A set of ntriangles in the plane.
Output: The measure (that is,the area) of their union.
```

Theorem 18.22. TriCovTri $\leq_{s q}$ TriMeas, so TriMeas is $3 S U M$-hard. $_{\text {. }}$.

Proof:

We are given an instance of TriCovTri which is a triangle t and a set of triangle S. We form the set U as in the proof of Theorem 18.21. The set U is our instance of TriMeas. Find its area. Also find (this is easy) the area of t. The union of the triangles in S cover t iff the area of the union over U equals the area of t.
I
Point-Covering Problem (Point Cover)
Instance: n half-planes and a number k.
Question: Is there a k-way intersection, i.e., is there a point in the plane covered by at least k of the half-planes?
If $k \leq \frac{n}{2}$, we claim that the answer is always YES. First rotate the plane so that none of the half-planes are bounded by a vertical line. Now every half-plane's bounding line intersects the y-axis, and the half-plane includes either the interval of the y-axis above that intersection or the interval below the intersection. Equivalently, the half-plane includes either the point $(0,+\infty)$ or the point $(0,-\infty)$. Now divide the half-planes into two classes accordingly. The larger of the two classes has size at least $\frac{n}{2}$, and all of those half-planes meet at a point sufficiently far along the y-axis.

But for larger values of k, the problem becomes harder:
Theorem 18.23. Strips $\leq_{s q}$ Point Cover, hence Point Cover is 3 SUM-hard.

Proof:

Assume there are n strips. Let S be a strip. Let $\left(H_{1}, H_{2}\right)$ be the 2 half-planes that are the complement of the strip. If $x \notin S$ then $\left(x \in H_{1}\right) \oplus\left(x \in H_{2}\right)$. Hence if x is not in any strip then it must be in n half-planes. One might think we are done; however, the point might not be in the box.

Add to the set of half-planes the four half-planes whose intersection is the box.
There exists x in the box that is not covered by any strip iff there exists an x in the intersection of $n+4$ of the half-planes.

18.5.6 Visibility Between Segments

Visibility Between Segments (VisBetSeg)

Instance: A set of n horizontal line segments in the plane, and two particular segments s_{1} and s_{2}.
Question: Are there points on s_{1} and s_{2} that can see each other? (This is displayed in Figure 18.7.)

Figure 18.7: Reduction of Geombasé to VisBetSeg.

Theorem 18.24. Geombase ${ }^{\prime} \leq_{s q} V_{\text {VisBetseg, }}$, hence VisBetSeg is 3SUM-hard.
Exercise 18.25. Prove Theorem 18.24.
We consider a three-dimensional version of the previous problem with triangles.

```
Visible Triangle (VisTri)
```

Instance: A set of n horizontal triangles in \mathbb{Z}^{3} (3-dimensions), a special triangle T, and a given point in \mathbb{Z}^{3}.
Question: Can we see triangle T from that given point? (We assumes that the n horizontal triangles are not transparent.)

McKenna [McK87] showed that VisTri can be solved in $O\left(n^{2}\right)$ time using hidden surface removal.

Theorem 18.26. TriCovTri $\equiv_{s q}$ VisTri, hence VisTri is 3SUM-hard.

Proof:

We show VisTri $\leq_{s q}$ TriCovTri. We can assume T has z-coordinate 0 , and then make all the other triangles have different heights above T. Then, we can let the point be the point of infinity, and we have that T is visible from infinity if and only if the triangles do not cover T. This is depicted in Figure 18.8

We also have a reverse reduction from this problem to Triangles Cover Triangle.

18.5.7 Planar Motion Planning

We also consider a group of Motion Planning Problems.

Planar Motion Planning (PlMotPlan)

Instance: n line segments, some horizontal and some vertical (we think of the line segments as obstacles) and two points called the source and the goal.
Question: Can we move a robot (represented in the form of a line segment) allowing translations and rotations, from the source to the goal without colliding into any obstacles?

Figure 18.8: Reduction of VisTri to TriCovTri.

Vegter [Veg90] has shown that PlMotPlan is in $O\left(n^{2}\right)$ time.
Theorem 18.27. Geombase $\leq_{s q} P_{L M o t P l a n, ~ h e n c e ~ P l M o t P l a n ~ i s ~} 3 S U M$-hard.

Proof:

The reduction is evident from the Figure 18.9.

We can then extend the previous problem into $3 D$-space, to get 3-dimensional Motion Planning.

3-Dimensional Motion Planning (3DMotPlan)
Instance: A set of n horizontal non-intersecting triangle obstacles in \mathbb{Z}^{3} and a robot represented as a vertical line segment.
Question: Can the robot move through the obstacles without collision, using translations only?

There is an algorithm to solve this problem in $O\left(n^{2} \log n\right)$ time. This result seems to be folklore. Gajentaan \& Overmars [GO12] say that it can be done using a paper by Ke \& O'Rourke [KO87].

Theorem 18.28. TriCovTri $\leq_{s q} 3 D M o t P l a n, ~ h e n c e ~ 3 D M o t P l a n ~ i s ~ 3 S U M-h a r d . ~$

Proof sketch:

First we create a cage to prevent the robot from leaving the original triangle T in the original problem instance. Then, we see that we can go from a given source from the top of the cage to the bottom of the cage, if and only if there is a point not covered by a triangle, and we are done. This is depicted in Figure 18.10.

Figure 18.9: Reduction of Geombase to PlMotPlan.

18.6 Other Lower Bounds from 3SUM-Hardness

Pǎtraşcu [Pǎt10] showed that some graph problems are 3SUM-hard:
Theorem 18.29. Consider the following problem: Given a weighted graph and a number x we want to know whether some triangle has weight x (weight is the sum of the edges).

1. There is an $O\left(|E|^{3 / 2}\right)$ algorithm for this problem for dense graphs (this is obvious).
2. If there is an $O\left(|E|^{3 / 2-\varepsilon}\right)$ algorithm for this problem then there is an $O\left(n^{2-\delta}\right)$ algorithm for 3SUM.

Theorem 18.30. Consider the following problem: Given an (unweighted) graph we want to know whether there are $|E|$ triangles.

1. There is an $|E|^{3 / 2}$ algorithm for this problem for dense graphs (this is obvious).
2. If there is an $O\left(|E|^{4 / 3-\varepsilon}\right)$ algorithm for this problem then there is an $O\left(n^{2-\delta}\right)$ algorithm for 3SUM.

Open Problem 18.31. Narrow the gap between the upper and lower bound in Theorem 18.30.

Figure 18.10: Reduction of TriCovTri to 3DMotPlan.

18.7 dSUM and Its Relation to Other Problems

The 3SUM problem can easily be generalized.
d SUM
Instance: A set of n integers.
Question: Do some d of the integers sum to 0 ?

Exercise 18.32. Show that there is a randomized $O\left(n^{[d / 2\rceil}\right)$ algorithm for d SUM.
Pǎtraşcu \& R. Williams [PW10] showed that improving the algorithm in Exercise 18.32 is equivalent to other problems being improved:

Theorem 18.33. Let $d<n^{0.99}$. If dSUM with numbers of $O(d \log n)$ bits can be solved in $n^{o(d)}$ time, then 3SAT can be solved in $2^{o(n)}$ time (thus violating the ETH).

We really want to say
Theorem 18.33 is evidence that dSUM is not in time $O\left(n^{o(d)}\right)$.
However, Pǎtraşcu \& R. Williams are more ambivalent (page 1066) (comments in square brackets are ours for clarification).

We have expended significant effort attempting to either find an improved algorithm [for d SUM and other problems they have results about], or give interesting evidence against its possibility. In this paper, we present several hypothesis which appear
plausible [dSUM is not in time $n^{o(d)}$ is one of them], given the current state of knowledge. We prove that if any of the hypothesis are true then CNF SAT has an improved algorithm. One can either interpret our reductions as new attacks on the complexity of CNF SAT, or lower bounds (ruling out all hypothesis) conditional on the hardness of CNF SAT.

Borassi et al. [BCH16] have shown several problems cannot be done in subquadratic time using hypothesis SETH.

18.8 Lower Bounds on Data Structures via the 3SUM-ConJECTURE

Imagine that you want a data structure for (1) a graph with n vertices and m edges, or (2) a collection of m sets within a universe of n elements. There are three issues:

- How long will it take to to set up the data structure? This is called preprocessing.
- How much space will the data structure need?
- How long will it take to update the data structure? There are many update operations you might allow. For graphs vertex operations (add or delete), or edge operations (add or delete). For sets adding an element, deleting an element, adding a set, deleting a set, merging sets, maintaining the min or max (if the elements are numbers). There are other operations as well.
- How long will it take to answer a query? There are many queries you might be interested in. For graphs one might want to query is-there-an-edge, reachability, degree, and others. For sets membership is the the key one, though there are others.
- Assume that you want to make L queries where L is large. It may be that some queries take a long time; however, while doing the computation to answer the query you modify the data structure a lot, so that later queries are much faster. We do not want to look at the worst case. We want to say that L queries took $\alpha(n) L$ time. The function $\alpha(n)$ is the amortized query time).
- One can also look at amortized update time.

In the context of data structures, fast is polylog (or even $O(1)$) and slow is n^{δ}. Often there is a tradeoff.

1. Pǎtraşcu [Pǎt10] was the first person to use the 3SUM-Conjecture to get lower bounds on dynamic data structures. We state one of his results:
Dynamic Reachability The problem is to find a data structure for directed graphs that allows (1) updates: insertion and deletion of edges (but not vertices), and (2) queries: given vertices u, v determines if there is a directed path from u to v. There exists $\delta>0$ such that, for any data structure for this problem, either updates or queries take $\Omega\left(n^{\delta}\right)$. All of the later papers build on this paper.
2. Abboud \& V. Vassilevska Williams [AW14] considered many problems where the 3SUMConjecture (or other assumptions) were used to get lower bounds on data structures. We state two of the problems they considered which have the same lower bound assuming the 3SUM-Conjecture.
\boldsymbol{s} - \boldsymbol{t}-Reachability The problem is to find a data structure for a directed graphs and two distinguished vertices s, t that allows (1) updates: insertion and deletion of edges (but not vertices), and (2) queries: is there a directed path from s to t ?

Bipartite Perfect Matching The problem is to find a data structure for an undirected bipartite graphs that allows (1) updates: insertion and deletion of edges (but not vertices), and (2) queries: is there a perfect matching?

For both problems the following holds: For all α there is no data structure that does updates in $O\left(m^{\alpha}\right)$ and queries in $O\left(m^{2 / 3-\alpha}\right)$.
3. Kopelowitz et al. [KPP16] proves several lower bounds. We state one of them.

The Static Set Disjointness Problem. The Universe U has n elements. (1) store subsets of U statically so there are no updates, (2) queries: given two sets, are they disjoint?
They show that if query time is $O(1)$ then preprocessing must take $\Omega\left(n^{2-o(1)}\right)$,

18.9 The Orthogonal Vectors Conjecture

In this chapter we have used the 3SUM-Conjecture as a hardness assumption to obtain quadratic lower bounds. We now look at another hardness assumption to obtain quadratic lower bounds.

```
Orthogonal Vectors (OrthVec)
Instance: }n\mathrm{ vectors in {0,1} d}\mathrm{ where d =O(log n).
Question: Do two of the vectors have an inner product that is 0 mod 2?
```

A naive algorithm for OrthVec solves it in time $O\left(n^{2} d\right)$ by trying all possible pairs. Abboud et al. [AWY15] obtained the following slight improvement.

Theorem 18.34. There is a randomized algorithm of ORTHVEC that runs in time $O\left(n^{2-\Omega\left(\frac{1}{\log (d / n)}\right)}\right)$.
There are no known algorithms for the problem that run in time $n^{2-\varepsilon}$ for some $\varepsilon>0$. This leads to the following conjecture, due to R. Williams [Wil05]. See also Abboud et al. [AVW14], Backurs et al. [BI15], and Abboud et al. [ABV15]

Conjecture 18.35. The Orthogonal Vectors Conjecture (OVC) For all $\varepsilon>0$, there is $a c \geq 1$ such that OrthVec cannot be solved in time $n^{2-\varepsilon}$ on instances with $d=\lceil c \log (n)\rceil$.

We now have several conjectures with rather concrete bounds in them: ETH, SETH, 3SUMConjecture, and now OVC. Clearly SETH \Longrightarrow ETH. Are any other implications known? Yes. R. Williams [Wil05] showed the following.

Theorem 18.36. $S E T H \Longrightarrow O V C$.

The lack of any subquadratic algorithm for OrthVec, and Theorem 18.36, are evidence for OVC. In addition, OVC holds in several restricted computational models. Kane \& R. Williams [KW19] show:

1. OV has branching complexity $\tilde{\Theta}\left(n \cdot \min \left(n, 2^{d}\right)\right)$ for all sufficiently large $n, d .(\tilde{\Theta}(f(n))$ means that we ignore polylog factors.)
2. OV has boolean formula complexity $\tilde{\Theta}\left(n \cdot \min \left(n, 2^{d}\right)\right)$ over all complete bases of $O(1)$ fan-in.
3. OV requires $\tilde{\Theta}\left(n \cdot \min \left(n, 2^{d}\right)\right)$ wires, in formulas comprised of gates computing arbitrary symmetric functions of unbounded fan-in.

What does OVC imply and vice-versa?

Theorem 18.37. Assume OVC. Then the following problems do not have subquadratic algorithms.

1. (Backurs \& Indyk [BI15]) Edit Distance: Given 2 strings x, y how many times do you need to delete or insert or replace a letter from either so that, at the end, the resulting strings are the same. (There are many variants depending on what operations are allowed.)
2. (Bringmann [Bri14]) Fréchet Distance: This is a measure of similarity between two curves that takes into account the location and ordering of the points on the curve. The formal definition is rather long so we omit it. The problem is, given two curves, find the Fréchet distance between them.
3. (Backurs \& Indyk [BI16]) Regular Expression Matching: Given a regular expression p and a string t, does p generate some substring of t.

While the above results show that many problems are not subquadratic assuming OrthVec is not subquadratic, this does not necessarily imply that they are equivalent to OrthVec. Chen \& R. Williams [CW19] study equivalences between OrthVec and different problems. They showed the following.

Theorem 18.38. Each of the following problems is subquadratic-equivalent to OrthVec.

1. Min-IP: Given n blue vectors in $\{0,1\}^{d}$, and n red vectors in $\{0,1\}^{d}$, find the red-blue pair of vectors with minimum inner product.
2. Max-IP: Given n blue vectors in $\{0,1\}^{d}$, and n red vectors in $\{0,1\}^{d}$, find the red-blue pair of vectors with maximum inner product.
3. Equals-IP: Given n blue vectors in $\{0,1\}^{d}$, and n red vectors in $\{0,1\}^{d}$, and an integer k, find a red-blue pair of vectors with inner product k, or report that none exists.
4. Red-Blue-Closest Pair: Let $p \in[1,2]$ and $d=n^{o(1)}$. Use the p-norm for distance (see Section 7.7.1 for a discussion of the p-norm). Approximating the closest red-blue pair among n red points and n blue points in \mathbb{R}^{d}.

18.10 Further Results

Barequet \& Har-Peled [BH01] proved that the following problems (and more) are 3SUM-hard. They are from computational geometry. Some care must be taken to define these problems rigorously since the inputs are real numbers. We ignore such issues.

1. Given two simple polygons P and Q, determine whether P can be translated to fit inside Q.
2. Given two simple polygons P and Q, determine whether P can be translated and rotated to fit inside Q.
3. Given two simple polygons P and Q, determine whether P can be rotated around a given point to fit into Q
4. Given P, a finite sets of reals, and a set S of intervals of real numbers, Determine whether there a $u \in \mathbb{R}$ so that $P+u \subseteq S$?

Aronov \& Har-Peled [AH08] study the problem of finding the "deepest" point in an arrangement of disks, where the depth of a point denotes the number of disks that contain it. They show this problem is 3SUM-hard.

Abboud et al. [AVW14] consider the local alignment problem: given two input strings and a scoring function on pairs of letters, one is asked to find the substrings of the two input strings that are most similar under the scoring function. They show that if there exists $\varepsilon>0$ and an $O\left(n^{2-\varepsilon}\right)$ algorithm for this problem then there exists a $\delta>0$ such that all of the following are true:

1. 3 SUM can be done in $O\left(n^{2-\delta}\right)$ time (so the 3SUM-Conjecture is false).
2. CNF SAT can be done in $O\left((2-\delta)^{n}\right)$ time (so SETH is false).
3. The following problem can be done on $O(4-\delta)^{n}$) time (which people who have looked at it do not think it can be): The Max Weight k-Clique problem, which is, given a weighted graph, find a k-clique of max weight or say there is no k-clique.

Chapter 19

The APSP-Conjecture: A Method for Obtaining Cubic Lower Bounds

19.1 Introduction

In Chapter 18 we used the assumption that 3SUM cannot be solved in subquadratic time to prove that many other problems can not be solved in subquadratic time. In this chapter we use the assumption that the All Pairs Shortest Paths Problem (APSP) cannot be solved in subcubic time to prove that there are many other problems that can not be solved in subcubic time.

Chapter Summary

1. We discuss the problem APSP and conjecture that it cannot be solved in subcubic time.
2. We define an appropriate notion of reduction.
3. We use the assumption that APSP cannot be solved in subcubic time, and the reductions in the last item, to show that some problems cannot be solved in subcubic time.

19.2 APSP: All Pairs Shortest Paths

Recall that big-O notation is used when you want to ignore constants. We need a notation for when we want to ignore log factors.

Notation 19.1. $f=\tilde{O}(g)$ means that there exist $n_{0}, c \in \mathbb{N}$ such that, for all $n \geq n_{0}, f(n) \leq$ $(\log n)^{c} g(n)$.

Notation 19.2.

1. We denote a weighted directed graph by $G=(V, E, w)$ where w is the weight function. The weights will always be integers. They will almost always be nonnegative.
2. We use n for the number of vertices and m for the number of edges.
3. Let $G=(V, E, w)$ be a weighted directed or undirected graph with weights in \mathbb{N}. Let $x, y \in$ V. Then $\operatorname{dist}_{G}(x, y)$ is the length of the shortest path between x and y. We will sometimes use $\operatorname{dist}(x, y)$ when G is clear.

Note: This chapter will deal with weighted directed graphs. Most of what we prove is true for weighted undirected graphs. In Project 19.16 we will invite the reader to redo the entire chapter with variants of weighted directed graphs.

All Pairs Shortest Paths (APSP)
Instance: A weighted directed graph $G=(V, E, w)$ with weights in \mathbb{N}.
Output: For all pairs of vertices $x, y, \operatorname{dist}_{G}(x, y)$.
Note: We will consider any arithmetic operation to have unit cost.
This problem is a very important and central problem in graph theory.
Floyd [Flo62] and Warshall [War62] (Roy [Roy59] had some of the ideas) independently proved the first part of the next theorem. (The second part is folklore.) This was an early use of the technique now known as dynamic programming.

Theorem 19.3.

1. APSP can be solved in $O\left(n^{3}\right)$ time.
2. Let m be the number of edges. APSP can be solved in $O\left(n m+n^{2} \log n\right)$ time. (If the graph has n^{α} edges, where $\alpha \geq 1$, then this algorithm is $O\left(n^{1+\alpha}\right)$. For $\alpha=2$ (the worst case) this is $O\left(n^{3}\right)$; however, for $\alpha<2$ this algorithm is subcubic.)

Proof:

We give two Proofs

1) The algorithm is as follows:

Data: A graph $G=(V, E, w)$ given as an adjacency matrix $w(i, j)$
Result: The matrix dist.
$\forall i, j \in V: \operatorname{dist}(i, j) \leftarrow w(i, j)$;
for $k=1$ to n do
for $i=1$ to n do
for $j=1$ to n do if $\operatorname{dist}(i, j)>\operatorname{dist}(i, k)+\operatorname{dist}(k, j)$ then $\operatorname{dist}(i, j) \leftarrow \operatorname{dist}(i, k)+\operatorname{dist}(k, j) ;$
end
end
end
end
Algorithm 1: The Floyd-Warshall algorithm.
2) Another way to compute the all pair shortest path is by invoking the Dijkstra's algorithm for each vertex. Dijkstra's algorithm finds the shortest path from a given vertex v to all other vertices in the graph. Hence, invoking it n times by choosing a different starting vertex v each time, will result in calculating the all pair shortest path. A single invocation of the Dijkstra's algorithm takes $O(m+n \log n)$. Hence, n iterations of this algorithm takes a time of $O\left(n m+n^{2} \log n\right)$.

Is there an algorithm for APSP that runs in time better than $O\left(n^{3}\right)$? This depends on your definition of "better". The following are known:

1. Fredman [Fre76] gave a $O\left(\frac{n^{3} \sqrt[3]{\log \log n}}{\sqrt[3]{\log n}}\right)$ deterministic algorithm.
2. R. Williams [Wil18] gave a randomized algorithm which ran in time $\frac{n^{3}}{2^{\Omega(\sqrt{\log n})}}$. There were many results between Fredman (1976) and R. Williams (2018).
3. Chan \& R. Williams [CW21] found an algorithm for APSP in deterministic time $\frac{n^{3}}{2^{\Omega(\sqrt{\log n)}}}$ time, matching the randomized algorithm listed above.
4. Zwick [Zwi98] showed that APSP can be approximated well: For all $\varepsilon>0$ there exists a $(1+\varepsilon)$-approximation to the APSP problem running in time $\tilde{O}\left(\frac{n^{\omega}}{\varepsilon}\right)$, where ω is the exponent in the running time of the fastest known matrix multiplication problem (currently $\omega<$ 2.3719).

While the algorithms above are impressive and very clever, the first three are not that much better than $O\left(n^{3}\right)$, and the fourth is an approximation. We need a definition for "much better than $O\left(n^{3}\right)$ ".

Definition 19.4. An algorithm is subcubic if there exists $\varepsilon>0$ such that it runs in time $O\left(n^{3-\varepsilon}\right)$.
Despite enormous effort nobody has obtained a subcubic algorithm for APSP. In the next section we turn this around: we state a conjecture that APSP cannot be done in subcubic time. From that conjecture we obtain cubic lower bounds on other problems.

19.3 The APSP-CONJECTURE

The following conjecture was first made explicit in a paper by Abboud \& V. Vassilevska Williams [AW14]; however, it was used implicitly before then. The first time might have been in 2004 by Roditty \& Zwick [RZ04]. Another notable earlier use is a 2010 paper by R. Williams \& V. Vassilevska Williams [WW10].

Conjecture 19.5. The APSP-ConJecture: There is no subcubic algorithm for APSP.
We define a notion of reduction between problems.
Definition 19.6. Let A and B be sets or functions (they will almost always be sets).

1. $A \leq_{s c} B$ means that if there is a subcubic algorithm for B then it can be used to obtain a subcubic algorithm for A. The sc stands for sub-cubic.
(a) (The usual way to do this.) On input x produce in O (npolylogn) (usually just linear) a y such that $x \in A$ if and only if $y \in B$. Note that $\leq_{s c}$ is transitive.
(b) (This sometimes is needed.) On input x produce in O (npolylogn) y_{1}, \ldots, y_{k} (k is a constant) such that $x \in A$ can be determined from the answers to $y_{1} \in B$?, $\ldots, y_{k} \in B$? in O (npolylogn) time. Note that $\leq_{s c}$ is still transitive.
(c) We leave it to the reader to modify the above definitions for when A and B are functions.
2. $A \equiv_{s c} B$ if $A \leq_{s c} B$ and $B \leq_{s c} A$. We often use the terminology A and B are subcubic equivalent.

Definition 19.7. Let A be a problem.

1. A is APSP-hard if APSP $\leq_{s c} A$.
2. A is APSP-complete if A is APSP-hard and $A \leq_{s c}$ APSP.

Because of Conjecture 19.5 we think that if A is APSP-hard then there is no subcubic algorithm for A. In brief:

1. When you read " A is APSP-complete" you should think: A is in cubic time but not in subcubic time.
2. When you read " A is APSP-hard" you should think: A is in not in subcubic time.

The definition of NP-hard is used to show that problems are not in P, contingent on the conjecture that $\mathrm{P} \neq \mathrm{NP}$. The definition of APSP-hard is used to show that problems do not have subcubic algorithms, contingent on the conjecture that APSP does not. We list out similarities and differences between the two theories.

1. Both use reductions and build up a large set of problems that are thought to be hard. The number of NP-hard problems is far larger than the number of APSP-hard problems.
2. Contrast the following:
(a) A problem B is NP-hard if for all $A \in$ NP, $A \leq_{p} B$. SAT is a natural NP-hard problem. As a consequence, one can show C is NP-hard by showing SAT $\leq_{p} C$.
(b) A problem B is APSP-hard if APSP $\leq_{s c} B$. Note that we do not have a result for APSP that is analogous to the Cook-Levin Theorem. We suspect APSP requires cubic time and use it as such.

If we did not know the Cook-Levin theorem, but really thought SAT was hard, we could still have a large set of problems that are NP-complete and think they were hard. That is the position we are in with APSP-hard.

19.4 Problems of Interest: Centrality Measures

We define several measures on graphs that are called Centrality Measures (the reason for the name will be clear once we define the measures). These measures appear in a variety of applications such as social networks, biological networks, transportation and allocation problems, and others. Hence, calculating these measures efficiently has a lot of real life implications. All of these measures have trivial $O\left(n^{3}\right)$ algorithms (they all begin by first doing APSP). We will later
show reductions between them and some other problems. The goal is to get them to be subcubic equivalent to APSP; however, alas, that is an open problem.

We now define three centrality measures.

Radius and Center

Instance: A weighted directed graph $G=(V, E, w)$.
Output: (RADIUS) $\min _{v} \max _{w} d(v, w)$. (This quantify is called the radius of G.)
Output: (Center) A vertex v such that $\max _{w} d(v, w)$ is minimized. (This vertex is called the center of $G)$.)

DIAM

Instance: A weighted directed graph $G=(V, E, w)$.
Output: $\max _{u, v} \operatorname{dist}(u, v)$. (This number is called the diameter of G.)
Note: The diameter is the maximum distance between two vertices.

```
Median
Instance: A weighted directed graph G = (V,E,w).
Output:min}\mp@subsup{|}{v}{}\mp@subsup{\sum}{u}{}\operatorname{dist}(v,u)\mathrm{ ? (This number is called median of the G.)
```


19.5 Other Measures

We now define another measure called the betweenness centrality. This measure determines how useful a vertex is to shortest paths in the graph.
Definition 19.8. Let $G=(V, E, w)$ be a weighted directed graph and $s, t, x \in V$.

1. Bent $^{\text {Cent }}{ }_{s, t}(x)$ is the fraction of shortest paths between s and t that contain $x . B C$ stands for Betweenness Centrality
2. $\operatorname{BentCent}(x)$ is $\sum_{s, t \in V} \operatorname{BentCent}_{s, t}(x)$.
3.

$$
\operatorname{PosBetCent}(x)= \begin{cases}1 & \text { if } \operatorname{BentCent}(x)>0 \\ 0 & \text { otherwise }\end{cases}
$$

PosBetCent stands for Positive Betweenness Centrality. If the graph G is not understood we sometimes write $\operatorname{PosBetCent}(G, x)$. In simpler terms: $\operatorname{PosBetCent}(x)=1$ if and only if x is on some shortest path.

```
Positive Betweenness Centrality (PosBetCent)
```

Instance: A weighted directed graph $G=(V, E, w)$ and an $x \in V$.
Question: Does PosBetCent $(G, x)=1$? In other words, is x on some shortest path?

The last problem we present is not a measure; however, it will be useful.
Negative Triangle (NegTri)
Instance: A weighted directed graph $G=(V, E, w)$ with weights in $\{-M, \ldots, M\}$.
Question: Is there a triangle with weight-sum negative?

19.6 Subcubic Equivalence

It is clear that all the problems in Sections 19.4 and 19.5 are $\leq_{s c}$ APSP and hence in time $O\left(n^{3}\right)$. Do any of them have a sub-cubic algorithm? The following theorem, do to the combined efforts of Abboud et al. [AGV15] and R. Williams \& V. Vassilevska Williams [VW18] shows that assuming the APSP-Conjecture, no. We omit the proof.

Theorem 19.9. Radius, Median, BentCent, and NegTri are APSP-complete.

Note: See Boroujeni et al. $\left[\mathrm{BDE}^{+} 19 \mathrm{~b}\right]$ for evidence that Diam is subcubic-complete. The status of DIAM is still open.

We will prove some other subcubic reductions. From Theorem 19.9 and what we prove in the next few sections we will have Figure 19.1.

Figure 19.1: Subcubic equivalence between various problems.
See Figure 19.1 for a diagram of reductions. The dotted lines are easy reductions where as the solid lines are harder reductions.

19.7 Diam and PosBetCent are Subcubic Equivalent

Abboud et al. [AGV15] proved both theorems in his section.
Theorem 19.10. Diam $\leq_{s c}$ PosBetCent.

Proof:

Figure 19.2 is an example of the reduction. Here is the reduction.

1. Input a weighted directed graph $G=(V, E, w)$. Without loss of generality, let us assume that all distances, and hence, the diameter are even (Multiply all distance by 2 initially, and divide the finally obtained diameter by 2). Let M be the maximum weight.
2. (This is not part of the algorithm, this is a definition we will use later.) For $1 \leq D \leq M$ with D even let $G_{D}=\left(V_{D}, E_{D}\right)$ be the following graph:
$V_{D}=V \cup\{x\}$ i.e. add a new vertex labeled x
$E_{D}=E \cup\{(x, u, D / 2): u \in V\}$.
The largest possible value of D such that $\operatorname{PosBetCent}\left(G_{D}, x\right)=1$ is the required diameter of the original graph G. Note that $\operatorname{PosBetCent}\left(G_{2}, x\right) \geq \cdots \geq \operatorname{PosBetCent}\left(G_{M}, x\right)$.

Figure 19.2: (a) Original graph G. (b) Transformed graph G^{\prime}.
3. Perform a binary search on D to find the largest D such that $\operatorname{PosBetCent}\left(G_{D}, x\right)=1$. Output that D. In the example of Figure 19.2 we get $D=10$.

Theorem 19.11. PosBetCent $\leq_{s c}$ Diam.

Proof:

We present the reductions.

1. Input a weighted directed graph $G=(V, E, w)$ and $x \in V$. Let M be the max weight and let $\tilde{D}=3 M|V|$, which is much bigger than any shortest path in G. For all pairs of vertices that do not have an edge between them we put an edge of weight \tilde{D}. This guarantees that those edges will not be used in any shortest path.
2. By running Dijkstra's algorithm on (G, x) find, for all vertices $v, d_{G}(v, x)$ and $d_{G}(x, v)$. Note that this takes $O(|E|+|V| \log (|V|))$ which is subcubic in $|V|$.
3. We create a weighted graph $G^{\prime}=\left(V^{\prime}, E^{\prime}, w^{\prime}\right)$ as follows.
$V^{\prime}=\left\{v_{a}: v \in V-\{x\}\right\} \cup V \cup\left\{v_{b}: v \in V-\{x\}\right\}$ (so there are three copies of every $v \in V-\{x\}$ and one copy of x).

We think of the v_{a} vertices being on the left, then the V vertices being in the middle, then the v_{b} vertices being on the right.
$E^{\prime}=E_{a} \cup E \cup E_{b}$ where E_{a}, E, E_{b} are the following sets of weighted edges:
$E_{a}=\left\{\left(v_{a}, v\right): v \in V\right\}$ with $w^{\prime}\left(v_{a}, v\right)=\tilde{D}-d_{G}(v, x)$.
E is the original set of edges from G. So the middle graph is the original graph.
$E_{b}=\left\{\left(v, v_{b}\right): v \in V\right.$ with $w^{\prime}\left(v, v_{b}\right)=\tilde{D}-d_{G}(x, v)$.
See Figure 19.3 for an example.
4. Let $D=\operatorname{Diam}\left(G^{\prime}\right)$.
5. (This is not part of the algorithm. This is commentary.) The longest path in G^{\prime} has to go from some s_{a} to some t_{b}. We can assume the path is of the form

$$
s_{a} \rightarrow s \Rightarrow t \rightarrow t_{b}
$$

where $s_{a} \rightarrow s$ is and edge, $s \Rightarrow t$ is a path in G, and $t \rightarrow t_{b}$ is an edge. Hence, in G^{\prime}, the distance of the path from s_{a} to t_{b} is
$\left(\tilde{D}-\operatorname{dist}_{G}(s, x)\right)+\operatorname{dist}_{G}(s, t)+\left(\tilde{D}-\operatorname{dist}_{G}(x, t)\right)=2 \tilde{D}+\operatorname{dist}_{G}(s, t)-\operatorname{dist}_{G}(s, x)-\operatorname{dist}_{G^{\prime}}(x, t)$.
Since $\operatorname{dist}_{G}(s, t)-\operatorname{dist}_{G}(s, x)-\operatorname{dist}_{G}(x, t) \leq 0$,

$$
\forall s, t \in V: 2 \tilde{D}+\operatorname{dist}_{G}(s, t)-\operatorname{dist}_{G}(s, x)-\operatorname{dist}_{G}(x, t) \leq \operatorname{dist}_{G^{\prime}}\left(s_{a}, t_{b}\right) \leq 2 \tilde{D} .
$$

Note the following:
(a) If $\operatorname{PosBetCent}(x)=1$ then there exist $s, t \in V$ such that $\operatorname{dist}_{G}(s, t)=\operatorname{dist}_{G}(s, x)+$ $\operatorname{dist}_{G}(x, t)$, hence $\operatorname{dist}_{G^{\prime}}\left(s_{a}, t_{b}\right)=2 \tilde{D}$.
(b) If $\operatorname{PosBetCent}(x)=0$ then for all $s, t \in V$, $\operatorname{dist}_{G^{\prime}}(s, t)<\operatorname{dist}_{G}(s, x)+\operatorname{dist}_{G}(x, t)$, hence $\operatorname{dist}_{G^{\prime}}\left(s_{a}, t_{b}\right)<2 \tilde{D}$.
6. If $D=2 \tilde{D}$ then output YES, else output NO.

19.8 NegTri

R. Williams \& V. Vassilevska Williams [VW18] showed the following.

Theorem 19.12. NegTri $\leq_{s c}$ Radius.

Proof:

Here is the reduction. The graph we construct will be undirected. Since formally Radius is a set of directed graphs, one can take each edge $\{x, y\}$ and make two directed edges (x, y) and (y, x).

1. Input a weighted directed graph $G=(V, E, w)$ with weights in $\{-M, \ldots, M\}$. Let $Q=3 M$.
2. We create a graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ as follows (See Figure 19.4).
x is a new vertex. $V_{a}, V_{b}, V_{c}, V_{d}$ are each copies of V.
If $v \in V$ then $v_{a}\left(v_{b}, v_{c}, v_{d}\right)$ is the analog of v in $V_{a}\left(V_{b}, V_{c}, V_{d}\right)$.
$V^{\prime}=\{x\} \cup V_{a} \cup V_{b} \cup V_{c} \cup V_{d}$.
There is an edge of weight $2 Q+M$ from x to each vertex of V_{a}.
For all $(u, v) \in E$ we put edges of weight $Q+w(u, v)$ between (1) u_{a}, v_{b}, (2) u_{b}, v_{c}, (3) u_{c}, v_{d}.
For all $u, v \in V$ with $u \neq v$ we put edges of weight $2 Q$ between u_{a} and v_{d}. Note that we do not require that $(u, v) \in E$.
There are no edges within V_{a} or V_{b} or V_{c} or V_{d}.

$$
\tilde{D}=3 \times 7 \times 4=84
$$

(a)

(b)

Figure 19.3: Reduction of PosBetCent to Diam.
3. If the radius of G^{\prime} is $<9 M$ then output YES (there is a negative triangle). Else output no. We prove this works below.

Claim 19.13. Radius $\left(G^{\prime}\right)<9 M$ if and only if G has a negative triangle.

Proof of Claim:

Let $R=\operatorname{Radius}\left(G^{\prime}\right)$.
We will make and prove four observations which will essentially prove this claim.

- Observation 1: Any vertex of the form v_{b}, v_{c}, or v_{d} is more than $9 M$ away from x. Hence, if $R<9 M$, then the center of the graph is contained in V_{a}.

We look at v_{b}, v_{c}, and v_{d}.
If $v_{b} \in V_{b}$ then there exists u_{a} such that

$$
\begin{aligned}
\operatorname{dist}_{G^{\prime}}\left(v_{b}, x\right) & =\operatorname{dist}_{G^{\prime}}\left(v_{b}, u_{a}\right)+\operatorname{dist}_{G^{\prime}}\left(u_{a}, x\right) \\
& =(Q+w(v, u)+(2 Q+M) \\
& =10 M+w(v, u) \\
& \geq 9 M .
\end{aligned}
$$

A similar arguments work for v_{c} and v_{d}.

- Observation 2: Let $v_{a} \in V_{a}$ and let $z \in V^{\prime}-\left\{v_{b}, v_{c}, v_{d}\right\}$. Then $\operatorname{dist}_{G^{\prime}}\left(v_{a}, z\right) \leq 8 M$.

There are cases:

Figure 19.4: Reduction of NegTri to Radius.
$z=x$. Then $\operatorname{dist}_{G^{\prime}}\left(v_{a}, x\right)=2 Q+M=7 M<8 M$.
$z=u_{b}$. Then $\operatorname{dist}_{G^{\prime}}\left(v_{a}, u_{b}\right)=Q+w(v, u) \leq 3 M+M=4 M<8 M$.
$z=u_{c}$. Then there exists $w \in V$ such that

$$
\begin{aligned}
& \operatorname{dist} G p\left(v_{a}, u_{c}\right)= \operatorname{dist}_{G^{\prime}}\left(v_{a}, u_{b}\right)+\operatorname{dist}_{G^{\prime}}\left(u_{b}, u_{c}\right) \\
&=(Q+w(v, w)+(Q+w(w, u)=6 M+w(v, w)+w(w, u) \\
& \leq 8 M
\end{aligned}
$$

$z=u_{d}$. Then the shortest distance to x uses the edge from v_{a} to u_{d}, which has distance $2 Q=6 M$.
$z=u_{a}$. Then $\operatorname{dist}_{G^{\prime}}\left(v_{a}, u_{a}\right)$ is determined by going from v_{a} to u_{b} and then from u_{b} to u_{a}, so

$$
\operatorname{dist}_{G^{\prime}}\left(v_{a}, u_{a}\right) \leq Q+w(v, u)+Q+w(u, v) \leq 3 M+M+3 M+M=8 M
$$

- Observation 3: If vertex v in graph G was present in a negative triangle, then $\operatorname{dist}_{G^{\prime}}\left(v_{a}, v_{b}\right)<$ $3 Q=9 M$.
Let the triangle by v, w, x. So $w(v, w)+w(w, x)+w(x, v)<0$. Then $\operatorname{dist}_{G^{\prime}}\left(v_{a}, v_{b}\right)$ can be bounded by the route that goes from v_{a} to w_{b}, then w_{b} to x_{c}, then x_{c} to v_{b}, so

$$
\begin{aligned}
\operatorname{dist}_{G^{\prime}}\left(v_{a}, v_{b}\right) & \leq(Q+w(v, u))+(Q+w(u, x))+(Q+w(x, v)) \\
& =3 Q+w(v, u)+w(u, x)+w(x, v)<9 M .
\end{aligned}
$$

- Observation 4: Finally, if a vertex v is not in a negative triangle in the original graph, then $\operatorname{dist}_{G^{\prime}}\left(v_{a}, v_{b}\right) \geq \min \{3 Q, 4 Q-2 M\}=9 M$.

We leave this to the reader.

This claim follows easily from the above four observations.

End of Proof of Claim

This Theorem follows easily from the Claim.

Exercise 19.14. Give a sub-cubic reduction from Negative-Triangle to Median.

19.9 Connection to SETH

The Strong Exponential Time Hypothesis (SETH) states that there is no $\delta<1$ such that SAT can be solved in time $O\left(2^{\delta n}\right)$. We mentioned this (in a different form) in Hypothesis 7.7. Note that SETH implies $\mathrm{P} \neq \mathrm{NP}$.

Roditty \& V. Vassilevska Williams [RV13] obtained an upper bound (that is, an algorithm) for computing the approximate value of the diameter and a lower bound assuming SETH. We state both.

Theorem 19.15.

1. There is an expected run time $\tilde{O}(m \sqrt{n})$ algorithm for 1.5-approximation for DIAM. Note that if $m=\Theta\left(n^{1.5}\right)$ (which could be called quasi-sparse but never is) this is an $\tilde{O}\left(n^{2}\right)$ algorithm.
2. Assume SETH. There is no ε such that there is an $O\left(m^{2-\varepsilon}\right)$ time, 1.5-approximation algorithm, for the diameter of a graph.

Project 19.16. This chapter dealt with directed weighted graphs. There are three other options: undirected weighted graphs, directed unweighted graphs, and undirected unweighted. For each of those options try to redo this entire chapter. Which theorems are true with similar (or even the same) proofs?

19.10 Further Results

19.10.1 More APSP-Complete and APSP-Hard Problems

1. The Matrix Product Verification Problem is as follows: Given matrices A, B, C verify that $A B=C$ where the product is over the (min, +)-semiring. R. Williams \& V. Vassilevska Williams [VW18] showed this problem is APSP-complete.
2. The Replacement Paths Problem is as follows: Given weighted directed graph G, vertices s, t, and a shortest (s, t)-path P compute the length of the shortest (s, t)-path that does not use any edge from P. R. Williams \& V. Vassilevska Williams [VW18] showed this problem is APSP-complete. They also show other problems related to shortest paths are APSPcomplete
3. CoDiameter: Given a graph G, the goal of CoDiameter is to report a vertex which does not participate in an edge of length equal to the diameter of G. Boroujeni et al. [$\mathrm{BDE}^{+} 19 \mathrm{~b}$]
showed that this problem is APSP-complete by a reduction from APSP. Boroujeni also defines CoRadius, CoRadius, CoNegativeTriangle, CoMedian, and shows them all APSPcomplete.
4. The Tree Edit Problem is (informally) as follows: Given two trees, what is the least number of changes needed to get one from the other. Bringmann et al. [BGMW20] show the this problem is APSP-hard.
5. The Metricity problem is as follows: Given an $n \times n$ nonnegative matrix A, determine whether it defines a metric space on [n], i.e. if A is symmetric, has 0 s on the diagonal, and entries satisfy the triangle inequality. R. Williams \& V. Vassilevska Williams [VW18] showed this problem is APSP-hard.

19.10.2 Using the Unweighted APSP Problem For a Hardness Assumption

The next two problems have as their hypothesis that the unweighted APSP problem is hard. Both results are by Lincoln et al. [LPV20].

1. The All Edges Monochromatic Triangle Problem is as follows. Given an n-node graph G with edges labeled a color from 1 to n^{2}, decide, for each edge, if it belongs to a monochromatic triangle, (a triangle whose 3 edges have the same color). If this problem has a $T(n)$ time algorithm then the unweighted APSP has an $O(T(n) \log n)$ time algorithm.
2. The Min-Max Product Problem is as follows. Given two matrices A, B compute the matrix C where $C_{i, j}=\min _{k} \max \left(A_{i k}, B_{k j}\right)$. If this problem has a $T(n)$ algorithm then the Unweighted APSP problem has an $O(T(n) \log n)$ time algorithm.

19.10.3 Unusual Hardness Assumptions, Proofs, or Results

1. (Abboud et al. [AGI $\left.{ }^{+} 19\right]$) Let ω be (as usual) the exponent for matrix multiplication. Let 4-clique be the problem of, given a 4 -partite graph, does it have a 4 -clique. Eisenbrand \& Grandoni [EG04] have an $O\left(n^{\omega+1}\right)$ algorithm for 4 -clique. The 4 -clique conjecture is that this algorithm is optimal. The All-Pairs Min Cut problem asks: Given a graph G compute, for every pair of vertices s, t, a min $s-t$ cut (a partition of the vertices where s and t are in different parts and the number of edges between the parts is minimal). The All-Pairs Min Cut- k problem asks for the min-cut if it is $\leq k$, and if not then just report that it is $\geq k$. Assuming the 4 -clique conjecture, All-Pairs Min Cut- k has a super-cubic lower bound of $n^{\omega+1-o(1)} k^{2}$
2. Boolean matrix multiplication (BMM): (R. Williams \& V. Vassilevska Williams [VW18]) A combinatinatoral algorithm for $\boldsymbol{B M M}$ is an algorithm that takes advantage of the viewpoint that a boolean matrix represents a bipartite graph. This definition is not rigorous. Indeed, it is hard to make a rigorous definition; however Das et al. [DKS18] have tried. No known combinatorial algorithm for BMM is subcubic. If BMM has a sub cubic combinatorial algorithm, then so does the triangle detection problem in graphs. All known
algorithms for triangle detection take cubic time, hence using the hardness of triangle detection as an assumption is reasonable.
3. (Boroujeni et al. [$\left.\mathrm{BDE}^{+} 19 \mathrm{~b}\right]$) CoAPSP Verification: Given a graph G and a matrix D, either find a pair (i, j) such that $D_{i, j}$ is equal to the distance between vertices i and j in G, or determine that there is no such pair. There is a subcubic reduction from DiAm to CoAPSP Verification Recall that Diam is thought to require cubic time; however, we do not know whether DiAm is APSP-hard.
4. $\{-1,0,1\}-$ APSP is As follows: Given a weighted directed graph with edge weights in $\{-1,0,1\}$, compute the APSP. Despite the complication of having negative edge weights, this problem has a subcubic $\left(O\left(n^{2.52}\right)\right)$ algorithm given by Zwick [Zwi02]. This problem seemed to require cubic time but did not. Consider that a cautionary note.

19.10.4 Using the OR of APSP, SETH, and 3SUM-ConJECTURE

In Chapter 7 we used ETH and SETH as assumptions. In Chapter 18 we used the 3SUM-Conjecture as an assumption. In this section we used the APSP-Conjecture as an assumption. We think the AND of these assumptions is true. Abboud et al. [AVY18] assumed the OR of the assumptions is true. They looked at four problems involving data structures for graphs or directed graphs. All four of them had some update operations and one type of query. In all four, the lower bound was the same: you must have either amortized query time $n^{1-o(1)}$, or amortized updated time $n^{1-o(1)}$, or preprocessing time $n^{3-o(1)}$. We present the four problems.

1. Type of graph: Directed. Update: edges insertions or deletions. Query: the number of strongly connected components.
2. Type of graph: Directed with one node s specified. Update: edges insertions or deletions. Query: the number of nodes reachable from s.
3. Type of graph: Undirected with one nodes s specified. Update: vertex insertions or deletions. Query: the number of nodes adjacent to s.
4. Type of graph: directed with weights in $\{1, \ldots, n\}$ and two nodes s, t specified. Update: edge insertions or deletions. Query: what is the max flow from s to t.

19.11 Open Problems

Some of the open problems which are closely related to these topics are as follows:
Open Problem 19.17.

- Are DIAM and APSP subcubic equivalent?
- Is there a theorem for approximating Radius and MEDIAN similar to the one given by Roditty and V. Vassilevska Williams [RV13] for DIAM.
- Lastly, the big open problem: is there a sub-cubic time algorithm to the APSP problem?

Chapter 20

Lower Bounds for Online Algorithms

20.1 Introduction

For most of the problems in this book there is an input and an output. More precisely, the program gets an input, a finite string representing a formula or graph or something else, the program reads the string, and outputs YES or NO or something else. And then the computation is done.

But there are problems that are not in this format. For example, when requests for memory come in, the program has to decide how to satisfy the request, but then more requests come in. This is an example of an online problem.

Online algorithms are a class of algorithms that, unlike the classical algorithms, do not have access to the entire input at once. Instead the input is revealed gradually to the algorithm and the algorithm must take action while the input is revealed.

Chapter Summary

1. We define online algorithms and a measure of how well they do: the competitive ration. This is (roughly speaking) the ratio between how well the algorithm does in the worst case and how well an algorithm can do that knows the future. The exact definition is different for a max problem and a min problem.
2. We give examples of online algorithms for bin packing and what their competitive ratio is.
3. We study algorithms and lower bounds (on the competitive ratio) for the following problems: Variants of the secretaries problem, caching, online matching, and online set cover.
4. We discuss Yao's lemma which is used for lower bounds on the competitive ratio for randomized online algorithms.
For online algorithms, information plays a significant role. Hence many of the hardness results for online algorithms focuses solely on the information observed by the algorithm, and not the time complexity of the algorithm.

20.2 Online Algorithms

Online algorithms differ form the classical algorithms that we studied so far in respect to the timing of observing the input and presenting the output. In all of the problems that we have
studied so far (1) the algorithm is given the entire input all at once, and (2) the answer is a static string (e.g., YES or NO or an assignment that satisfies the max number of clauses). However, in an online problem the input is given in pieces gradually. For example the input is a sequence of requests to book flight tickets, a sequence of requests for a ride share, etc. Moreover the answer is a sequence of responses given each time you see one piece of information. Examples of the output would be ticket prices as soon as a booking request is made, or assignment of cars as soon as riders request them.

In analyzing online algorithms, often, we do not care about the running time of the algorithm. The main source of the hardness here is the lack of information, not time complexity assumptions such as $\mathrm{P} \neq \mathrm{NP}$. Since the algorithm does not know the rest of the input when making a decision, it may not be able to make the optimum decisions.

In online problems, we want to find the best solution we can. In order to measure the quality of an online algorithm we compare the outcome of the online algorithm with the best solution given the whole input (aka, best offline solution). This is the notion of competitive ratio, which is defined as follows.

Definition 20.1. Let $\operatorname{OPT}(\sigma)$ be the cost of an optimal solution given the whole input σ, aka, an optimal offline solution. Let Algorithm (σ) denote the cost of our online algorithm on input σ. We say our online algorithm is α-competitive if:

1. (for minimization problems): for all σ, $\operatorname{Algorithm}(\sigma) \leq \alpha \mathrm{OPT}(\sigma)$. Note that $\alpha \geq 1$ and the smaller it is, the better the algorithm is.
2. (for maximization problems): For all σ, $\operatorname{Algorithm}(\sigma) \geq \alpha \mathrm{OPT}(\sigma)$. Note that $\alpha \leq 1$ and the larger it is, the better the algorithm is.

For simplicity in this chapter, when we say "algorithm" we mean an online algorithm.

20.3 Warm-Up: Bin Packing

In this section, as a warm up, we start by providing a simple example of an online problem and a simple lower bound for it.

Bin Packing

Instance: b (the bin size) and then a sequence of natural numbers. We call the natural numbers items.
Output: As soon as an item arrives you must either put it in an existing bin or start a new bin and put it into the new bin. The sum of the items in a bin must be $\leq b$. The goal is to use as few bins as possible while packing all the items.

We give two online algorithms for the above example. In both cases $b=10$.
First Fit If there is a bin that the item will fit into then put the item into the least indexed such bin. If there is no such bin then start a new bin and put the item there.

On input 3, 3, 3, 3, 3, 3, 4, 4, 4 the result is as follows.

1. Bin 1: 3,3,3.
2. Bin 2: 3,3,3.
3. $\operatorname{Bin} 3: 4,4$.
4. $\operatorname{Bin} 4: 4$.

This is not an optimal solution. An optimal solution would be (3,3,4), (3,3,4), (3,3,4) which uses only 3 bins.

Next we consider another online algorithm for this problem.
First Fit with a 1-Rule If there is a bin that the item will fit in, and if it is put there the amount in the item is <9, then put the item in that bin. (We are trying to avoid bins that have just 1 unit of space empty since that might be hard to use.) If there is no such bin then start a new bin and put the item there.

On input 3, 3, 3, 3, 3, 3, 4, 4, 4 the result of the above algorithm is optimal:

1. Bin 1: 3,3,4.
2. Bin 2: 3,3,4.
3. $\operatorname{Bin} 3: 3,3,4$.

However, there are other inputs where this algorithm is not optimal. For example, on input $3,3,3,2,8$ the result is as follows.

1. Bin 1: 3,3,2.
2. Bin 2: 3 .
3. $\operatorname{Bin} 3: 8$.

This is not an optimal solution. An optimal solution would be (3,3,3), (2,8) which uses only 2 bins.

Next we prove that it is indeed impossible to provide any online algorithm for this problem that provides optimal solutions for all inputs. Specifically, we show that there is no online algorithm with competitive ratio better than 1.5 .

Theorem 20.2. There is no online algorithm for Bin Packing with a competitive ratio better than 1.5.

Proof:

Assume there is a fixed online algorithm. We will create an input that is bad for that algorithm. We will take $b=10$.

Consider the following two sequence of inputs: $I_{1}:(4,4,1,1)$ and $I_{2}:(4,4,6,6)$. Note that the first two items of I_{1} and I_{2} are the same, hence, the online algorithm makes the same decisions for the first two items of I_{1} and I_{2}. There are two cases:

1. Case 1: The first two items are assigned to different bins. Now feed in items of size 1 and 1 , so the input is I_{1}. Note that the algorithm has already used 2 bins. The input I_{1} can be done with 1 bin. Hence, in this case the competitive ratio is at least 2 .
2. Case 2: The first two items are assigned to the same bin. Now feed in items of size 6 and 6 , so the input is I_{2}. The first 6 has to go into a second bin, and the second 6 has to go into a third bin. Note that the algorithm has already used 3 bins. The input I_{2} can be done with 2 bins. Hence, in this case the competitive ratio is at least $\frac{3}{2}=1.5$.

Exercise 20.3.

1. Show that First Fit algorithm always has competitive ratio ≤ 2.
2. Johnson et al. [JDU $\left.{ }^{+} 74\right]$ show that the competitive ratio of first fit bin packing is $\frac{17}{10}$.. Either try to obtain their results (or a weaker version) or go read the paper.

20.4 Prophet Inequality, Secretary, and Prophet Secretary

Consider the following problem. We have a sequence of numbers arriving one by one in an online fashion. Upon arrival of each item we need to decide whether we accept that number and stop or reject that number and continue. The goal is to maximize the number that we accept. It is not hard to see that it is not possible to have any online algorithm with a nontrivial competitive ratio for this problem. Say there are two numbers and the first number that we observe is 1 . If we reject this number the next number might be 0 , and the competitive ratio would be 0 . If we accept the first number the next number might be a very large number C and the competitive ratio would be $\frac{1}{C}$. Hence this problem is not that interesting.

We give two classic problems that capture the problem in a more interesting way, and then a third (newish) problem that combines the two problems. Esfandiari et al. [EHLM17] give the history and context for the first two, and is the origin of the third one.

Prophet Inequality

Instance: Distributions D_{1}, \ldots, D_{n} and a sequence x_{1}, \ldots, x_{n} of reals such that x_{i} is drawn using D_{i}.
Output: As soon as a number arrives you either take it and stop the process or let it go. The goal is to maximize the expected value of the selected number.
Note: The problem is called Prophet Inequality since the point of it is to compare a prophet, who sees the future, with an onlooker, who does not.

Secretary Problem
Instance: A sequence x_{1}, \ldots, x_{n} of distinct reals. They are in a random order. So the probability of (say) the numbers being in increasing order is $\frac{1}{n!}$.
Output: As soon as a number arrives you either take it and stop the process or let it go. The goal is to maximize the probability of getting the largest number.
Note: The problem is called The Secretary Problem since it comes from the following scenario: You want to interview n candidates for a job (as a secretary). You interview them one by one. As soon as a candidate is interviewed you either hire them and stop the process or let them go. The goal is to maximize the probability of hiring the best candidate.
After you see one you can compare them to the ones you have already seen and must right away hire them or not. Once you turn someone down you cannot later hire them. If you turn down the first $n-1$ then you must hire the n th. The goal is to maximize the probability of getting the best one.

Exercise 20.4. Give a strategy for The Secretary Problem that maximizes the probability of hiring the best candidate. What is that probability?

Prophet Secretary

Instance: Distributions D_{1}, \ldots, D_{n} and a sequence x_{1}, \ldots, x_{n} of reals such that x_{i} is drawn from $D_{\sigma(i)}$ where σ is some unknown permutation chosen uniformly at random.
Output: As soon as a number arrives you either take it and stop the process or let it go. The goal is to maximize the expected value of the selected number.
We need to define competitive ratio carefully.
Definition 20.5. Let Algorithm be an algorithm for either Prophet Inequality or Prophet Secretary. The competitive ratio of Algorithm is

$$
\frac{E[\text { Algorithm }]}{E\left[\max \left\{x_{1}, \ldots, x_{n}\right\}\right]} .
$$

where Algorithm is a random variable that indicates the outcome of the online algorithm and the expectation is taken over the randomness of the input.

We give two simple hardness results: one for Prophet Inequality and one for Prophet Secretary.

Krengel and Sucheston [KS46] proved the following (using a different notation).
Theorem 20.6. There is no algorithm for Prophet Inequality with competitive ratio better than 0.5 .

Proof:
We prove this by contradiction. Assume that there exists an algorithm for Prophet inequalITY with competitive ratio $0.5+\varepsilon$. We will use the following two distributions:
D_{1} : Always return 1.
D_{2} : Return $\frac{1}{\varepsilon}$ with probability ε, and 0 otherwise.
The algorithm can only be one of the following:

- See the first input is 1 . Take it. Then the E [Algorithm] $=1$.
- See the first input is 1 . Ignore it. Then the second input is taken. Then E [Algorithm] $=$ $\varepsilon \times \frac{1}{\varepsilon}=1$.

Hence $E[$ Algorithm $=1$.
On the other hand we have

$$
E\left[\max \left\{x_{1}, x_{2}\right\}\right]=\frac{1}{\varepsilon} \times \varepsilon+1 \times(1-\varepsilon)=2-\varepsilon .
$$

Hence the competitive ratio is at most $\frac{1}{2-\varepsilon}<0.5+\varepsilon$, which is a contradiction.

Esfandiari et al. [EHLM17] showed the following.
Theorem 20.7. There is no algorithm for Prophet Secretary with a competitive ratio better than 0.75 .

Exercise 20.8. Proof Theorem 20.7.

20.5 Caching Problem

In this section we consider the caching problem. The main memory (RAM) and the cache are decomposed into pieces called pages. There are n pages in RAM and k pages in cache. When a page from the RAM is requested if it exists in the cache it will be read from there. Otherwise it is read from the RAM and it is put into the cache. However, when we want to put a page in the cache, another page from the cache has to be kicked out and put back into the RAM. Roughly speaking we want the pages in the cache to be ones that are going to be requested either soon or a lot.

For simplicity, we assume that the first k pages have already been requested and are in the cache. Next we formally define the problem.

Cache
Instance: A sequence of requests for pages from RAM. The cache has size k and initially there are k pages in the cache.
Output: Every time a request is made we first check if the page is already in the cache. If so then the cost is 0 and we do not need to do anything (though we may keep track of the fact that the request was made). If the page is not in the cache then we bring it into the cache and put some page that was in the cache back into the main memory. In this case the cost is 1 . The goal is to minimize the total cost, or equivalently minimize the number of times that a requested page is not in cache.

Definition 20.9. A fault is when a request is made that is not in the cache.
There are several basic algorithms that one may consider for the caching problem such as:

1. FIFO: First In, First Out. Remove from cache the element that has been there the longest.
2. LIFO: Last In First Out. Remove from cache the element that has been there the shortest.
3. LRU: Least Recently Used. Remove from cache the element that has been requested the longest ago.
4. LFFO: Least Frequency First Out. Remove from cache the element that has had the least requests.

We show that the LRU algorithm is k-competitive.
Theorem 20.10. LRU is k-competitive.

Proof:

Let $S=\sigma_{1}, \ldots, \sigma_{N}$ be a sequence of requests. We need to show that, for every k faults, that LRU makes, the optimal algorithm would make at least 1 fault.

We assume that the first k different page requests are put into the cache by both the optimal algorithm and LRU. We only consider the page requests after the first k.

We partition S (except for the first k distinct requests) as $\Sigma_{1}, \ldots, \Sigma_{L}$ where for all $i \geq 1$, in Σ_{i} LRU makes exactly k faults. We show that, for all $i \geq 1$, each Σ_{i} can be mapped to a fault of the optimal algorithm.

Let $1 \leq i \leq L$. Let σ be the last request made in Σ_{i-1}. There are three cases.

1. Case 1: The k page requests in Σ_{i} are distinct from each other and from σ. Hence σ together with the requests in Σ_{i} have $k+1$ distinct page requests. Hence the optimal algorithm will have a fault.
2. Case 2: There is some page τ that LRU faults on twice in Σ_{i}. Say $\sigma_{i}=\tau$ and $\sigma_{j}=\tau$. Then when the σ_{i} request is made τ is brought into cache; however, by the time the σ_{j} request is made, τ has been evicted. When it was evicted it was the Least Recently Requested page. Hence between σ_{i} and τ being evicted, there must have been $k+1$ distinct requests. Hence the optimal algorithm will have a fault.
3. Case 3: All of the faults in Σ_{i} are distinct from each other but one of them is σ. Hence σ must have been evicted. From here the reasoning is as in Case 2.

Now that we have an online k-competitive algorithm, the question arises, is there a better one? Sadly no.

Theorem 20.11. There is no deterministic algorithm with competitive ratio better than k for the caching problem.

Proof:

Let Algorithm be a deterministic online algorithm for the cache problem. We use an adversarial argument. That is, we feed the algorithm a sequence of page requests that will force it to have competitive ratio $\sim k$. We denote what we feed it $\sigma_{1}, \ldots, \sigma_{N}$. We will think of N as large, much larger than k. We will assume k divides N.

1. Initially request $k+1$ distinct pages. This will cause a fault. Let τ_{1} be the evicted page.
2. Ask for τ_{1}. Let τ_{2} be the evicted page.
3. Ask for τ_{2}. Let τ_{3} be the evicted page (it could be that $\tau_{1}=\tau_{3}$).
4. Ask for τ_{3}. Let τ_{4} be the evicted page.
5. Do this N times.

If there are N requests then there will be N faults (after the first k which we do not count).
The optimal would have been to evict the page that will be requested furthest in the future. Realize that this means that after a fault there will not be another fault for at least k requests. Hence OPT causes $\leq \frac{N}{k}$ requests.

Since Algorithm causes $\sim N-k$ faults and OPT causes $\frac{N}{k}$ faults, the competitive ratio is bounded by:

$$
\frac{N-k}{N / k} \sim k
$$

The above technique to prove lower bounds on deterministic algorithms is typical: for every deterministic algorithm construct a sequence of requests that cause many faults for that algorithm (which cannot see the future) but fairly few faults for the optimal algorithm (which can see the future).

But what about randomized algorithms? Fiat et al. [FKL+ ${ }^{+}$1] showed the following
Definition 20.12. For all k, H_{k} is $\sum_{i=1}^{k} \frac{1}{i}$ which is $\ln k+\Theta(1)$.
Theorem 20.13. Let k be the size of the cache.

1. There is a randomized paging algorithm, namely The Marking Algorithm, with competitive ratio $2 H_{k}=2 \ln k+O(1)$.
2. If Algorithm is any randomized paging algorithm then the competitive ratio is $\geq H_{k}=$ $\ln k-O(1)$.

We present the Marking Algorithm but omit the proof that it is optimal.

1. Initially there are k pages in cache. They are not marked.
2. Whenever a request is made, whether or not it is in cache, it is marked.
3. If a request is made for a page not in cache then a page is chosen uniformly at random from the unmarked pages to be evicted.
4. When all k pages in cache are marked, all marks except the most recent one are removed.

20.6 Yao's Lemma

Proving a lower bound on the expected runtime of an randomized algorithms seems hard! An adversary argument won't work since that just gives one input that the algorithm is bad at.

Yao's lemma [Yao77] allows us to obtain lower bounds on the expected runtime of a randomized algorithm by looking at lower bounds on deterministic algorithms.

Assume you have some problem (e.g., CACHE). There is an associated cost that we are trying to minimize. Picture the following two scenarios:

1. Let \mathcal{A} be a set of deterministic algorithms. Let q be a distribution over a set of inputs.

Fix an $a \in \mathcal{A}$. Use q to pick the input x. We denote the expected cost $E[c(a, x)]$. We pick the a that minimizes this. Hence we have the quantity $\min _{a \in \mathcal{A}} E[c(a, x)]$.
2. Let \mathcal{X} be a set of inputs. Let p be a distribution over a set of algorithms.

Fix an $x \in \mathcal{X}$. Use p to pick the algorithm a. We denote the expected cost $E[c(a, x)]$. We pick the x that maximizes this. Hence we have the quantity $\max _{x \in X} E[c(a, x)]$.

The following is Yao's Lemma:
Lemma 20.14. $\max _{x \in X} E[c(a, x)] \geq \min _{a \in \mathcal{A}} E[c(a, x)]$.
To get the intuition we recap what each side of the equation is.

- $\max _{x \in X} E[c(a, x)]$. We are picking the input x to make the expected cost (picking the algorithm via distribution p) as high as possible.
- $\min _{a \in \mathcal{A}} E[c(a, x)]$. We are picking the algorithm a to make the expected cost (picking the input via distribution q) as low as possible.

20.7 Online Matching

Online Matching

Instance: A bipartite graph $((U, V), E)$ is going to be the final input. Initially we have the set V in advance, which are called offline vertices. The vertices in U arrive one by one, which are called online vertices. At the time we get u_{i}, we get all of its neighbors as well.
Output: When we receive an online vertex u_{i}, we need to match u_{i} to one of its neighbors (which will be an offline vertex) that has not already been matched, if there is one. This decision is irrevocable. The goal is to maximize the number of matches.

The greedy algorithm for this problem will, given a new u_{i}, match it to the least indexed, still available, $v \in V$ such that $\left(u_{i}, v\right) \in E$. (This algorithm does not look particularly greedy. We discuss a truly greedy algorithm for the weighted case in the exercises.)

Exercise 20.15. Let $G=((U, V), E)$ be a bipartite graph. We will assume here and throughout this paper that $|U|=|V|$.

1. Show that the greedy algorithm for online matching always returns a maximal matching. Note that this is maximal, meaning that no edge can be added.
2. Show that for any bipartite graph a maximal matching is $\geq \frac{1}{2}|V|$.
3. For all n give an example of a graph where $|U|=|V|=n$ and an arrival order for U where (1) the graph has a matching of size n, but (2) the greedy algorithm produces a matching of size $\frac{n}{2}$.
Hint: Use the bipartite graph where (a) for $1 \leq i \leq \frac{n}{2}$ there are edges (u_{i}, v_{i}) and $\left(u_{i}, v_{i+(n / 2)}\right)$, and (b) for $\frac{n}{2}+1 \leq i \leq n$ there is an edge $\left(u_{i}, v_{i-(n / 2)}\right)$. See Figure 20.1.
4. Show that the greedy algorithm has competitive ratio $\frac{1}{2}$. (This follows from the Parts 2 and 3).
5. Show that any deterministic algorithm will have competitive ratio $\leq \frac{1}{2}$.

Hint: Use an adversary argument.

Figure 20.1: Greedy online matching has competitive ratio at most $\frac{1}{2}$.
We now consider a promising randomized algorithm, just to show that it does not do well after all.

Theorem 20.16. Consider the randomized algorithm which picks a match for u_{i} at random from the vertices that are available.

1. If you run this algorithm on the graph from Exercise 20.15.3 the expected competitive ratio is $\frac{3}{4}$.
2. Let $G=(V, U, E)$ be the following bipartite graph (see Figure 20.2). $V=\left\{v_{1}, \ldots, v_{n}\right\}$. $U=$ $\left\{u_{1}, \ldots, u_{n}\right\}$. For all i there is an edge $\left(u_{i}, v_{i}\right)$. For all $1 \leq i \leq \frac{n}{2}$ for all $\frac{n}{2}+1 \leq j \leq n$ there is an edge (u_{i}, v_{j}). If you run the algorithm on this graph then the expected competitive ratio is $\frac{1}{2}$.

Proof:

1) For $1 \leq i \leq \frac{n}{2}$ when u_{i} arrives the probability that it will match to $v_{i+(n / 2)}$ is $\frac{1}{2}$. Hence the expected number of $v_{n / 2}, \ldots, v_{n}$ that are available for $u_{n / 2}, \ldots, u_{n}$ is $\frac{n}{4}$. So the expected number of matches is $\frac{n}{2}+\frac{n}{4}=\frac{3 n}{4}$. The optimal is n. Hence the competitive ratio is $\frac{3}{4}$.
2) The vertices $u_{1}, u_{2}, \ldots, u_{n}$ arrive in that order. For $1 \leq i \leq \frac{n}{2}$ if u_{i} gets matched to v_{i} thats good (in terms of maximizing matches) since it does not take take a vertex that is the only neighbor of some u_{i} with $i \geq \frac{n}{2}+1$. Hence we call such a vertex good.

$$
\begin{aligned}
& \operatorname{Pr}\left[u_{1} \text { is good }\right]=\frac{1}{n / 2+1} \\
& \operatorname{Pr}\left[u_{2} \text { is good }\right]=\operatorname{Pr}\left[u_{1} \text { is good }\right] \frac{1}{n / 2+1}+\operatorname{Pr}\left[u_{1} \text { is bad }\right] \frac{1}{n / 2} \leq \frac{1}{n / 2}
\end{aligned}
$$

We leave it as an exercise to show that

$$
\operatorname{Pr}\left[u_{i} \text { is good }\right]=1 /(n / 2-i+2)
$$

Thus we have:

$$
E(\text { Algorithm }) \leq \sum \frac{1}{n / 2-i+2}+n / 2=O(\log n)+n / 2 .
$$

Note that there is a matching of size n. Hence the competitive ratio is

$$
\frac{O(\log n)+(n / 2)}{n} \sim \frac{1}{2} .
$$

To recap: any deterministic greedy algorithm, and the simple randomized algorithm, have competitive ratio 2. Is there a randomized algorithm with compete ratio <2. Yes! Karp et al. [KVV90] (see also Birnbaum \& Mathieu [BM08], and Plotkin [Plo13]) showed the following.

Theorem 20.17. Let e be Euler's number, roughly 2.7185.

1. There is a randomized algorithm for online matching with competitive ratio $\frac{e-1}{e} \sim 0.632$.
2. All randomized algorithm for online matching have competitive ratio $\leq \frac{e-1}{e} \sim 0.632$.

20.8 Online Set Cover

In this section we consider the online set cover problem. We first recall the standard offline Set Cover Problem.

[^6]

Figure 20.2: Random online matching has competitive ratio at most $\frac{1}{2}$.

Next we define the online set cover problem (OLS).
OLS
Instance: $n \in \mathbb{N}$ that is known ahead of time. E, a collection of subsets of $\{1, \ldots, n\}$. E is known ahead of time. We will let $m=|E|$. Elements of $\{1, \ldots, n\}$, together with a list of which sets in E cover them, arrive one by one.
Output: When we receive an elements $x \in F$ and a set of subsets E_{1}, \ldots, E_{k} that each cover x, pick one. This decision is irrevocable. The goal is to minimize the number of sets in E that are used to cover all of the elements received. (Note that we may well not receive all of the elements.)

This online problem is very different from both Cache and Online Matching. For those two problems the offline version was in P. For Set Cover the offline version is NP-hard.

We can obtain an easy lower bound on OLS by assuming $P \neq N P$.
Theorem 20.18. Assume $P \neq N P$. The competitive ratio for any deterministic polynomial time algorithm for $O L S$ is $\geq(1-o(1)) \ln n$ when $m \sim n$.

Exercise 20.19. Proof Theorem 20.18. (
Hint: Use the lower bound on approximate Set Cover.)
We state the known lower bounds on the competitive ratio for OLS. Note that there are both results with and without assumptions.

Theorem 20.20.

1. (Alon et al. $\left.\left[A A A^{+} 09\right]\right)$ There exists an deterministic algorithm for OLS with competitive ratio $O(\log n \log m)$.
2. (Alon et al. $\left.\left[A A A^{+} 09\right]\right)$ Any deterministic algorithm for OLS has competitive ratio $\Omega\left(\frac{\log n \log m}{\log \log m+\log \log n}\right)$. Note that this does not use any assumption such as $P \neq N P$. (The bound needs the condition $\log n \leq m \leq e^{n^{1 / 2-\delta}}$.)
3. (Korman [Kor04]) Assume either $P \neq N P$ or $N P \nsubseteq B P P$. There exists a constant d such that there is no polynomial time randomized algorithm for OLS with competitive ratio $\leq d \lg n \lg m$.

20.9 Further Results

1. In Section 20.7 we looked at online matching for bipartite graphs where the vertices arrive. We found that (a) deterministic algorithms always have competitive ratio $\leq \frac{1}{2}$, (b) there is a randomized algorithms with competitive ratio $\frac{e-1}{e}$, and (c) $\frac{e-1}{e}$ is the best one can do.
What about general graphs? What if edges arrive? Gamlash et al. [GKM ${ }^{+}$19] showed that (a) for vertex arrivals in general graphs there is a randomized algorithm with competitive ratio $\frac{1}{2}+\Omega(1)$, and (b) for edge arrivals randomization does not help.
2. Role-matchmaking is a problem where players of different skills levels arrive and must be assigned to a team as soon as they arrive. The goal is to have the teams be balanced so that no team dominates. This can get very complicated since different skills is not 1-dimensional. For example, in soccer a team may need a good Goalkeeper more than a great midfielder. This problem has immediate applications to many popular online video games where such as League of Legends and Dota 2. Alman \& McKay [AM17] view this as a dynamic data structures problem. The show (a) assuming the 3SUM-Conjecture conjecture, any data structure for this problem requires $n^{1-o(1)}$ time per insertion or $n^{2-o(1)}$ time per query, and (2) there is an approximation algorithm that takes $O(\log n)$ per operation.

Chapter 21

Lower Bounds on Streaming Algorithms

21.1 Overview

The following problem is easy in the standard model of computation: Given a graph G ana a number k, does G have a connected component of size $\geq k$? But what if the following hold:

1. The graph is given to you by a stream of edges from G in a random order (n is known).
2. n is large so we want to avoid storing the entire graph. Our main complexity measure will be how much space you need.

We wil later see that this problem requires $\Omega(n)$ space.
This is an example of a streaming problem.

Chapter Summary

1. We will define several types of streaming models and give examples of streaming algorithms for these models.
2. We will introduce communication complexity which is the main tool used for lower bounds on space for streaming problems.
3. We will obtain lower bounds on space for several streaming problems.

21.2 Streaming Algorithms

Informally, streaming algorithms take a large set of data and process it without seeing the entire stream, and with limited space. The study of this field was initiated by a seminar paper of Alon et al. [AMS99].

Streaming algorithms are used to process very long data streams. Online social networks such as Facebook and Twitter produce such streams.

Definition 21.1. Streaming Algorithms are algorithms for processing data streams in which the input is presented as a sequence of items (often numbers or edges of a graph) and can be examined in only a few passes (typically just one) by using relatively little space (much less than
the input size), and also limited processing time per item. We often produce approximate answers based on a summary or "sketch" of the data stream in memory. A common technique for creating a "sketch" is sampling at random.

Example 21.2. This problem is called Missing 1. The input will be all of the numbers in $\{1, \ldots, n\}$ appearing once except there is one number that will not appear. The output will be that one number. Space is $O(\log n)$ and there is only one pass through the data. Because of the space limitation you cannot keep all or even most of the stream in memory.

Here is the algorithm: as the numbers come in keep a running sum s of them. This sum will take only $O(\log n)$ space. Once you have the sum s compute $\frac{n(n+1)}{2}-s$. That's your number!

Exercise 21.3.

1. Show that Missing 1 requires $\Omega(\log n)$ space.
2. Define Missing k in the obvious way. Get upper and lower bounds on how much space is needed to solve Missing k.
3. For Missing k (including $k=1$) can you use less space if you allow more passes through the stream.

The data stream of the input can be a sequence of items such as integers or edges of a graph. If they are integers then there are two common models: (1) in the Turnstile Model we allow the integers to be negative, and (2) in the Cash Register Model the inputs must be positive.

In many cases when the streaming data are items, a vector $\vec{a}=\left(a_{1}, \ldots, a_{n}\right)$ is initialized to the zero vector \vec{o} and the input is a stream of updates in the form of $\langle i, c\rangle$, in which a_{i} is incremented by an integer c, i.e. $a_{i}=a_{i}+c$. Note that c can be negative here. Below are four examples of streaming problems for items based on the vector \vec{a}.

1. Evaluate the $k^{t h}$ frequency moment: $F_{k}(\vec{a})=\sum_{i=1}^{n} a_{i}^{k}$.
2. Find heavy hitters, which is to find all the elements i with frequency $a_{i}>T$.
3. Count the number of distinct elements.
4. Calculate entropy: $E(\vec{a})=\sum_{i=1}^{n} \frac{a_{i}}{m} \log \frac{a_{i}}{m}$, where $m=\sum_{i=1}^{n} a_{i}$.

Note here in all streaming algorithms, we want to minimize space, and then update time, even through multiple passes. The accuracy of the algorithm is often defined as an $(\boldsymbol{\varepsilon}, \boldsymbol{\delta})$-approximation. It means the algorithm achieves an error of less than ε with probability $1-\delta$.

We will need the following notation.
Notation 21.4. $f=\tilde{O}(g)$ if there exists c, n_{0}, k such that for all $n \geq n_{0}, f(n) \leq c(\log n)^{k} g(n)$.

21.3 Streaming for Graph Algorithms

There are two main versions of graph streaming:

1. Insertion only. Edges are added to the graph over time.
2. Dynamic. Edges are added to the graph but can also be deleted. If (i, j) appears twice then the first time means to add it and the second time means to delete it. We will not be discussing this model.

Here we present four models of graph streaming algorithms:

1. Streaming: In this model the input is a stream of edges. The algorithm knows how many vertices there are but does not get to store them (in contrast to Semi-streaming). Typically the number of vertices is n and we want to prove an $\Omega(n)$ lower bound. Unless we specify otherwise, assume that a theorem is about the streaming model.
2. Semi-streaming: In this model the input is a stream of edges. Hence the vertices are already in storage. Since these algorithms are using $\tilde{O}(n)$ space for the edges, the main concern is that these algorithms take $\ll \tilde{O}\left(n^{2}\right)$ space. There are variants where an edge can be removed.
3. Parameterized streaming: This model is a combination of fixed-parameter tractable algorithms and streaming algorithms. There is a parameterized problem (e.g., Vertex Cover with parameter k). You want a streaming algorithm for it where the space is a function of the parameter (e.g., $\tilde{O}(k)$) or involves the parameter in some way (e.g.,) kpolylog n).
4. Sliding window: This model is a more generalized one, in which the function of interest is computing over a fixed size window of the stream according to the time and the update. Note that when new items are added to the window, items from the end of window are deleted.

In fact, there are lots of interesting lower bounds for massive graph problems, especially in the semi-streaming model where edges E are streaming in as inputs (often in adversarial order, but sometimes in a random order) with the bounded storage space, which is $\tilde{O}(n)=O(n \cdot$ polylog $n)$, where $n=|V|$.

21.4 Semi-Streaming Algorithm for Maximum Matching

```
Maximum Matching
```

Instance: $G=(V, E)$, a graph.
Output: The largest set of disjoint edges in G. (Any set of disjoint edges is called \boldsymbol{a} matching.)

We will look at semi-streaming algorithms for Maximum Matching with regard to (a) number of passes, (b) space used, and (c) approximation factors.

We look at an easy streaming algorithm to establish a baseline.

Theorem 21.5. There is a semi-streaming algorithm for MAXIMUM MATChing where (a) as soon as an edge comes in you need to decide whether or not to put it in the matching, and you can't change your mind; (b) there is only one pass through the data; (c) the space used is $\tilde{O}(n) ;(d)$ the algorithm has approximation factor $\frac{1}{2}$ i.e. Alg(worst case) $\geq 1 / 2 \cdot$ Opt.

Proof:

1. The vertices are stored. Each vertex requires $O(\log n)$ bits to store, so the total storage is $\tilde{O}(n)$. Initially all vertices are unmarked and the set M is empty.
2. Whenever a new edge $e=(x, y)$ comes in, if both x and y are unmarked, add e to M and mark both end vertices.

Since each selected edge ruins at most two edges in the optimal solution, the approximation factor of this algorithm is 2, i.e. $A l g$ (worst case) $=1 / 2 \cdot O p t$.

Better results are known. Farhadi $\left[\mathrm{FHM}^{+} 20\right]$ showed the following:

1. There is a semi-streaming algorithm for maximum matching in bipartite graphs that uses
(a) 1 pass, (2) $\tilde{O}(n)$ space, and (3) has approximation factor 0.6 .
2. There is a semi-streaming algorithm for maximum matching in general graphs that uses (a) 1 pass, (2) $\tilde{O}(n)$ space, and (3) has approximation factor 0.545 .

Before going into some hardness proofs, let's get insight into communication complexity, which is used as the most common technique for computing lower bounds in streaming algorithms.

21.5 Communication Complexity

In this section we present just the communication complexity we need for our lower bounds. An excellent reference that includes proofs of all the theorems in this section, is the book by Kushilevitz \& Nisan [KN97].

Assume Alice has $x \in\{0,1\}^{n}$ and Bob has $y \in\{0,1\}^{n}$. They want to know whether $x=y$. Alice could just send Bob the entire string x, and then Bob could send back 0 if $x \neq y$ and 1 if $x=y$. The entire protocol takes $n+1$ bits. Can they accomplish this with less bits? What if we allow randomization and a small probability of error? This is the beginning of communication complexity.

Exercise 21.6.

1. Show that any deterministic protocol for determining whether $x=y$ requires $\geq n$ bits.
2. Show that there is a randomized protocol for determining whether $x=y$ that uses private coins, $O(\log n)$ bits, and has probability of error $\leq \frac{1}{n}$.
Hint: View the sequence $a_{n-1} \cdots a_{0}$ as the polynomial $a_{n-1} x^{n-1}+\cdots+a_{0}$ over $\bmod p$ for a suitably chosen prime p.

Definition 21.7. Let $f: X \times Y \rightarrow Z$ be a function. The 2-party communication model consists of two players, Alice and Bob. Alice is given an input $x \in X$ and Bob is given an input $y \in Y$. Their goal is to compute $f(x, y)$. Neither knows the other players input. We will be concerned with how many bits they need to communicate in order to compute f.

1. A protocol for f is just what you think it is: an algorithm for Alice and Bob to compute f. Formally it is a decision tree where what a player sends is based on what they have already seen and their own input.
2. The best protocol for f is the one with the smallest worst case for number of bits needed.
3. The communication complexity of f is the worst case of the best protocol.
4. There are many types of protocols. (1) Deterministic, (2) Randomized with a small probability of error, (3) One-way protocol means only one player sends information and the other one receives information, where both roles, sender and receiver, needed to be specified and only the receiver needs to be able to compute f.

Index, Index-Same, and Disj (short for disjointness) are three well-known problems in the area of communication complexity.

Index

Instance: Alice has a string $x \in\{0,1\}^{n}$ and Bob has a natural number $i \in[n]$.
Outcome: Bob wants to know x_{i}. We use the one-way model so Alice sends Bob a string and just from that Bob needs to find x_{i}.

Index-sAME

Instance: Alice has a string $x \in\{0,1\}^{n}$ and Bob has a natural number $i \in[n-1]$.
Outcome: Bob wants to know whether $x_{i}=x_{i+1}$. We use the one-way model so Alice sends Bob a string and just from that Bob needs to determine whether $x_{i}=x_{i+1}$.

Disj

Instance: Alice has a string $x \in\{0,1\}^{n}$ and Bob has a string $y \in\{0,1\}^{n}$.
Outcome: They both want to know whether the sets that x and y represented (as bit vectors) are disjoint. The communication is 2-way and they can have as many rounds as they want.

Definition 21.8. A Randomized Protocol randomized protocol is one that uses public coins and has probability of correctness $\geq \frac{2}{3}$.

Theorem 21.9.

1. (Kremer et al. [KNR99]) INDEX requires $\Omega(n)$ bits (in the 1-way communication model). This lower bound also holds for both deterministic and randomized protocols.
2. (Follows from Part 1) Index-SAME requires $\Omega(n)$ bits (in the 1-way communication model). This lower bound also holds for both deterministic and randomized protocols.
3. (Kalyanasundaram \& Schintger [KS92] but see Razborov [Raz92] for a different approach) DISJ requires $\Omega(n)$ bits (even though Alice and Bob may use many rounds of communication). This lower bound holds for both deterministic and randomized protocols. The lower bound still holds when restricted to (x, y) where $\sum x_{i}=\sum y_{i}=\lfloor n / 4\rfloor$.

Exercise 21.10.

1. Prove that Index requires $\geq n$ bits in the 1-way deterministic model.
2. Prove that if Index-same can be done with $o(n)$ bits then Index can be done with $o(n)$ bits. Hint: Given (x, i), an instance of Index, create $\left(x^{\prime}, 2 i-1\right)$ an instance of Index-same so that $x_{i}=1$ if and only if $x_{i}^{\prime}=x_{i+1}^{\prime}$. Do this by letting replacing $x_{i}=0$ with 01 and $x_{i}=1$ with 11 .
3. Prove that Index-same cannot be done with $o(n)$ bits. (This is just the contrapositive of Part 2. We list it here so we can refer to it.)

21.6 Lower Bounds on Graph Streaming Problems

In this section we reduce communication problems to several streaming graph problems. Since the communication problems have unconditional lower bounds (see Theorem 21.9) we obtain unconditional lower bounds on the space needed for the streaming graph problems.

We only use the lower bounds on the deterministic communication complexity. However, in all cases, there is a lower bound on the randomized communication complexity. Hence we really obtain lower bounds on the space needed for randomized streaming algorithms for graph problems.

All of the results in this chapter are due to Tiseanu [Tis13].

21.6.1 Lower Bound Using Index: Max-Conn-Comp

$$
\operatorname{MAX}-\operatorname{Conn}-\operatorname{Comp}(k), k \geq 3
$$

Instance: A forest $G=(V, E)$.
Question: Is there a connected component of size $\geq k$? Note that k is not part of the input.

Theorem 21.11. Let $k \geq 3$. Any single-pass streaming graph algorithm that solves the MAX-CONN$\operatorname{Comp}(k)$ problem on a forest needs $\Omega(n)$ space.

Proof:

Proved by reduction from Index to Max-Conn-Comp (k).
Assume there is an $o(n)$ space streaming algorithm ALG for Max-Conn-Comp (k). Note that it works for any arrival order of edges. We use ALG in the following protocol for Index. The protocol will take $o(n)$ space. which contradicts Theorem 21.9.1. Hence we will have that no such ALG exists.

1. Alice has $x_{1} \cdots x_{n} \in\{0,1\}^{n}$ and Bob has $i \in[n]$. Our goal is that Alice gives Bob a string of length $o(n)$ and then Bob knows if $x_{i}=1$.
2. Alice and Bob construct different parts of a graph. The vertices are $V_{l} \cup V_{r} \cup V_{d}$ where $V_{l}=\left\{l_{1}, l_{2}, \ldots, l_{n}\right\}$
$V_{r}=\left\{r_{1}, r_{2}, \ldots, r_{n}\right\}$
$V_{d}=\left\{d_{1}, d_{2}, \ldots, d_{k-2}\right\}$
(a) Alice constructs the graph on vertices $V_{l} \cup V_{r}$ by letting

$$
E_{A}=\left\{\left(l_{j}, r_{j}\right): x_{j}=1\right\} .
$$

(b) Bob constructs the graph on vertices $\left\{r_{i}\right\} \cup V_{d}$ by letting

$$
E_{B}=\left\{\left(r_{i}, d_{1}\right)\right\} \cup\left\{\left(d_{i}, d_{i+1}\right): 1 \leq i \leq k-3\right\} .
$$

(See Figure 21.1 for an example when $x=1011$ and $k=4$.)
3. Alice runs E_{A} through the streaming algorithm ALG. Since it is an $o(n)$ space algorithm, when she is done there is $o(n)$ bits in memory. She tells Bob these bits. Note that this is just $o(n)$ bits.
4. Bob initializes the memory to those bits and then runs the streaming algorithm on E_{B}.
5. (Comment, not part of the algorithm.) If $x_{i}=1$ then the path $l_{i}-r_{i}-d_{1} \cdots-d_{k-3}$ is a connected component of size k. If $x_{i}=0$ then the longest connected component is of size $k-1$.
6. If when Bob finishes the streaming algorithm the answer is YES, then he knows that $x_{i}=1$; if the answer is NO, then he knows that $x_{i}=0$. The total 1-way communication is $o(n)$.

- are Alice's edges. $=$ are Bob's edges.

Figure 21.1: Instance of Max-Conn-Comp(k) based on $\operatorname{INDEX}(1011,3)$.

21.6.2 Lower Bound Using Index-same: Is-Tree

```
Is-Tree
Instance: A graph G
Question: Is G a Tree?
```

Theorem 21.12. Any single-pass streaming algorithm solving Is-Tree needs Ω (n) space.

Proof:

Essentially we use a similar proof strategy to the proof of Theorem 21.11: prove by reduction of Index-same to Is-Tree. Assume there is an $o(n)$ space streaming algorithm ALG for Is-Tree. We use ALG in the following protocol for Index-same. The protocol will take $o(n)$ space which contradicts Theorem 21.9.2. Hence we will have that no such ALG exists.

1. Alice has $x_{1} \cdots x_{n} \in\{0,1\}^{n}$ and Bob has $i \in[n-1]$. Our goal is that Alice gives Bob a string of length $o(n)$ and then Bob knows if $x_{i}=x_{i+1}$ or not.
2. Alice and Bob construct different parts of a graph. The vertices are

$$
V=\{\text { zero }, \text { one }, 1,2, \ldots, n\}
$$

(The above list is not a typo. We really do use zero and one for vertices.)
(a) Alice constructs the graph on vertices V

$$
E_{A}=\left\{(\text { zero }, i): x_{i}=0\right\} \cup\left\{(\text { one }, i): x_{i}=1\right\} .
$$

(b) Bob constructs the graph with just one edge $E_{b}=\{(i, i+1\})$. (See Figure 21.2 for an example when $x=01011$ and $k=2$.)
3. Alice runs E_{A} through the streaming algorithm ALG. Since it is an $o(n)$ space algorithm, when she is done there is $o(n)$ bits in memory. She tells Bob these bits. Note that this is just $o(n)$ bits.
4. Bob initializes the memory to those bits and then runs the streaming algorithm on E_{B}.
5. (Comment, not part of the algorithm.) If $x_{i}=x_{i+1}=0$ then $\left(z e r o, x_{i}\right),\left(x_{i}, x_{i+1}\right)$, and $\left(x_{i+1}\right.$, zero $)$ are all edges so the graph is not a tree. Similar for $x_{i}=x_{i+1}=1$. If $x_{i} \neq x_{i+1}$ then there are no cycles (exercise) so G is a tree.
6. If when Bob finishes the streaming algorithm the answer is YES (G is a tree) then he knows that $x_{i} \neq x_{i+1}$, if NO then he knows that $x_{i}=x_{i+1}$. The total 1-way communication is $o(n)$.

-are Alice's edge. $=$ are Bob's edge.
Figure 21.2: Instance of $\operatorname{IsTree}(G)$ based on $\operatorname{INDEX}-\operatorname{SAME}(01011,2)$.

21.6.3 Lower Bound Using Index: PerfMat

PerfMat

Instance: A graph G.
Question: Does G have a perfect matching? (A disjoint set of edges such that every vertex is in one of the edges.)

Theorem 21.13. Any single-pass streaming algorithm for PERFMAT needs $\Omega(m)=\Omega\left(n^{2}\right)$ space.

Proof:

We prove this by reduction from Index to PerfMat.
We assume that the string x in Index is an $n \times n$ array and Bob wants to compute $x_{i j}$. Then an instance of Index can be written as (x, i, j). Then we need space $\Omega\left(n^{2}\right)$ to solve this $\operatorname{Index}(x, i, j)$ problem.

Assume there is an $o\left(n^{2}\right)$ space streaming algorithm ALG for PerfMat. We use ALG in the following protocol for Index. The protocol will take $o(n)$ space which contradicts Theorem 21.9.1. Hence we will have that no such ALG exists.

1. Alice has the doubly indexed string x (so all of the $x_{i j}$ as $1 \leq i, j \leq n$). Bob has $(i, j) \in$ $[n] \times[n]$. Our goal is that Alice gives Bob a string of length $o(n)$ and then Bob knows if $x_{i j}=1$.
2. Alice and Bob construct different parts of a graph. The vertices are

$$
V=\left\{l_{1}, l_{2}, \ldots, l_{n-1}\right\} \cup\left\{r_{1}, r_{2}, \ldots, r_{n-1}\right\} \cup\{1,2, \ldots, n\} \cup\left\{1^{\prime}, 2^{\prime}, \ldots, n^{\prime}\right\} .
$$

They will be arranged as seen in Figure 21.3
(a) Alice constructs the graph on vertices V

$$
E_{A}=\left\{\left\{i, j^{\prime}\right\}: x_{i, j}=1\right\} .
$$

(b) Bob constructs the graph on vertices V

$$
\begin{aligned}
E_{B}= & \left\{\left\{l_{k}, k\right\} \mid 1 \leq k<i\right\} \cup\left\{\left\{l_{k}, k+1\right\} \mid i \leq k \leq n-1\right\} \cup \\
& \left\{\left\{r_{k}, k\right\} \mid 1 \leq k<j\right\} \cup\left\{\left\{r_{k}, k+1\right\} \mid j \leq k \leq n-1\right\}
\end{aligned}
$$

(See Figure 21.3 for an example where

$$
x=\begin{array}{llllll}
0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}
$$

and Bob's has $(3,5)$.)
3. Alice runs E_{A} through the streaming algorithm ALG. Since it is an $o\left(n^{2}\right)$ space algorithm, when she is done there is $o\left(n^{2}\right)$ bits in memory. She tells Bob these bits. Note that this is just $o\left(n^{2}\right)$ bits.
4. Bob initializes the memory to those bits and then runs ALG on E_{B}.
5. (Comment, not part of the algorithm.) We leave the argument that

$$
x_{i j}=1 \text { if and only if } G \text { has a perfect matching }
$$

to the reader.
Hint: all connected components of the graph are of length 2 or 4 except for the nodes i and j^{\prime}. There status depends on $x_{i j}$.
6. If when Bob finishes the streaming algorithm the answer is YES (G has a matching) then he knows that $x_{i j}=1$ if NO then he knows that $x_{i j}=0$. The total 1-way communication is $o\left(n^{2}\right)$.

= are Alice's edges. - are Bob's edge.

Figure 21.3: Instance of $\operatorname{PerfMat}(\mathrm{G})$ based on $\operatorname{INDEX}(\mathrm{x}, 3,5)$.

21.6.4 Lower Bounds Using Index: Shortest-Path

Shortest Path

Instance: An unweighted graph G and two vertices v, w.
Question: What is the length of the shortest path from v to w ?
We show that not only does any 1-pass streaming algorithm for this problem require $\Omega\left(n^{2}\right)$ space, even approximating the problem requires $\Omega\left(n^{2}\right)$ space.

Theorem 21.14. Any single pass streaming algorithm that approximates Shortest Path with factor better than $\frac{5}{3}$ needs $\Omega\left(n^{2}\right)$ space. (So the algorithm produces a number that is $<\frac{5}{3} \times$ the length of the shortest path.)

Proof:

The proof here is similar to the same with the proof of PerfMat problem. We prove this by reduction from Index to Shortest-Path.

We assume that the string x in Index is an $n \times n$ array and Bob wants to compute $x_{i j}$. Then an instance of Index can be written as (x, i, j). Then we need space $\Omega\left(n^{2}\right)$ to solve this $\operatorname{Index}(x, i, j)$ problem.

Assume there is an $o\left(n^{2}\right)$ space streaming algorithm ALG for a better than $\frac{5}{3}$ approximation to shortest-path (note that it is strictly better than $\frac{5}{3}$ optimal).

We use ALG in the following protocol for Index. The protocol will take $o(n)$ space. which contradicts Theorem 21.9. Hence we will have that no such ALG exists.

1. Alice has x which is an $n \times n$ matrix of 0 's and 1 's. Bob has $(i, j) \in[n] \times[n]$. Our goal is that Alice gives Bob a string of length $o(n)$ and then Bob knows if $x_{i j}=1$.
2. Alice and Bob construct different parts of a graph $G . v$ and w will be vertices of G and (G, v, w) will be in the input to the shortest-path problem. The vertices are

$$
V=\{i, j, v, w\} \cup\{1, \ldots, n\} \cup\left\{1^{\prime}, \ldots, n^{\prime}\right\} .
$$

They will be arranged as seen in Figure 21.4.
(a) Alice constructs the graph on vertices V

$$
E_{A}=\left\{\left\{i, j^{\prime}\right\}: x_{i, j}=1\right\} .
$$

(b) Bob constructs the graph on vertices V

$$
E_{B}=\{(v, i),(j, w)\} .
$$

(See Figure 21.4 for an example where

$$
x=\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 1
\end{array}
$$

and Bob's has $(2,5)$.)
3. Alice runs E_{A} through the streaming algorithm ALG. Since it is an $o\left(n^{2}\right)$ space algorithm, when she is done there is $o\left(n^{2}\right)$ bits in memory. She tells Bob these bits. Note that this is just $o\left(n^{2}\right)$ bits.
4. Bob initializes the memory to those bits and then runs the streaming algorithm on E_{B}.
5. (Comment, not part of the algorithm.)

If $x_{i j}=1$ then there is a path from v to w of length $3:(v, i),(i, j),(j, w)$. Hence $\mathrm{a}<\frac{5}{3}$ approximation algorithm will return a number $<3 \times \frac{5}{3}=5$.
If $x_{i j}=0$ then the shortest path from v to w is at least 5 : the path begins with (v, i). The next edge must be of the form $\left(i, j^{\prime}\right)$. Since $j^{\prime} \neq j, j^{\prime}$ is not adjacent to w. So the next edge must be of the form $\left(j^{\prime}, k\right)$. From node k the shortest distance possible to w is 2 . Hence the shortest path is ≥ 5. Therefore a $<\frac{5}{3}$-approximation algorithm will return a number ≥ 5.
6. If when Bob finishes the streaming algorithm the answer is α. If $\alpha<5$ then Bob knows $x_{i j}=1$. If $\alpha \geq 5$ then Bob knows $x_{i j}=0$. The total 1-way communication is o(n^{2}).

$=$ are Alice's edges. - are Bob's edges.

For the next exercise we will consider the following streaming problem.

Tree Diameter

Instance; A number $k \geq 3$ and a tree T. Note that the number is given first and can be easily stored, while the tree will be streamed.
Question: Is the diameter of T at least k ?

Exercise 21.15. Find $k_{0}, k_{1} \in \mathbb{N}$ such that the following hold.

1. If $k \leq k_{0}$ then TD has a single-pass $O(\log n)$ space algorithm.
2. If $k \geq k_{1}$ then any single-pass streaming algorithm for TD requires at least $\Omega(n)$ space.

Try to make k_{0} and k_{1} close together.

21.7 Further Results

21.7.1 Graph Problems

For all of the problems listed the model is streaming with edge arrivals and n is the number of vertices.

1. For the MaximalMat Esfandiari et al. [EHL $\left.{ }^{+} 18\right]$ gives an algorithm that, with high probability, approximates the size of a maximum matching within a constant factor using $\tilde{O}\left(n^{2 / 3}\right)$ space.
2. For the Weighted Maximal Matching Problem Crouch \& Stubbs [CS14] gives a $(4+\varepsilon)$ approximation algorithm which applies in semistreaming, sliding window, and MapReduce models. Chen et al. [CHK $\left.{ }^{+} 21\right]$ looked at the problem where you want to have a matching of size k. They showed a lower bound in the 1-pass streaming model of $\Omega\left(k^{2} W \log (W)\right)$ where W is the number of distinct weights.
3. The Parameterized Vertex Cover with parameter k was studied by Chitnis et al. [CCHM15]. They proved a tight lower bound on the space of $\Omega\left(k^{2}\right)$ for randomized streaming algorithm.
4. Minimum Spanning Tree estimation: Given a weighted undirected graph and ε, find a spanning tree that has weight $\leq(1+\varepsilon)$ OPT where OPT is the weight of the minimal spanning tree. Assadi \& N [AN21] proved that any algorithm for this problem that use $n^{o(1)}$ space requires $\Omega(1 / \varepsilon)$ passes. The result still holds if the weights are constant. Assadi \& N [AN21], Assadi [Ass22], and Aassadi \& Raz [AR20] have studied the streaming complexity of other graph problems as well.
5. The Gap Cycle Counting Problem: Let k be small. A graph G is streamed which is either a disjoint union of $\frac{n}{k} k$-cycles or a disjoint union of $\frac{n}{2 k} 2 k$-cycles. Determine which is the case. Assadi [Ass22] showed that any p-pass streaming algorithm requires $n^{1-1 / k^{\Omega(1 / p)}}$ space.
6. Assadi \& Raz [AR20] show that two-pass graph streaming algorithm for the s - t reachability problem for directed graphs requires space $n^{2-o(1)}$.
7. Goel et al. [GKK12] consider the maximum matching problem. They show that any onepass algorithm cannot achieve better than $2 / 3$ approximation. There have been improvements to the bound since this work and most recently, [Kap21] showed that no algorithm can do better than a $\frac{1}{1+\ln 2}$ approximation.

21.7.2 Non-Graph Problems

1. The Longest Increasing Subsequence: Given an ordered sequence of numbers $\vec{x}=\left(x_{1}, \ldots, x_{n}\right)$, find an increasing subsequence that is of maximal length. This is a streaming problem if, as the x_{i} 's arrive, you decide if they will be in the increasing subsequence or not. Saks \& Seshadhri [SS13] showed that, for all $\delta>0$, a deterministic, single-pass streaming algorithm for additively approximating this problem to within an additive δn requires $O\left(\log ^{2} n / \delta\right)$ space. They also considered the Longest Common Subsequence problem (Given \vec{x} and \vec{y} find a maximal sequence that is a subsequence of both strings.) and gave an analogous result for that one as well.
2. Maximum Coverage: Given n, k and a set of m sets $S_{i} \subseteq\{1, \ldots, n\}$, find the k subsets that maximize the size of their union. There is a straightforward greedy $\left(1-e^{-1}\right)$-approximation algorithm that runs in polynomial time. McGregor \& Tu [MV19] give two single-pass streaming algorithms and one multi-pass streaming algorithm for approximations to this problem. For the multi-pass case they also have some lower bounds.
3. Basic Counting: given $0<\varepsilon<1$ and then stream of bits, maintain a count of the number of 1's in the last N elements within a factor of $(1+\varepsilon)$. Datar et al. [DGIM02] showed this problem requires $\Omega\left(\varepsilon^{-1} \log ^{2} N\right)$ space for any randomized algorithms.
4. The approximate null vector problem: given $x_{1}, \ldots x_{d-1}$ vectors in \mathbb{R}^{d} output a vector that is approximately orthogonal to all of them. Dagan et al. [DKS19] show that any onepass streaming algorithm for this problem requires $\Omega\left(d^{2}\right)$ space.

21.7.3 Frequency Moments

Frequency Moments

Instance: A data stream of numbers from $[m]: y_{1}, y_{2}, \ldots, y_{n}$
Output: There are several.
For $k \in[m]$ the frequency of $k \in[m]$ is $x_{k}=\left|\left\{j: y_{j}=k\right\}\right|$.
The frequency vector is the vector $x=\left(x_{1}, x_{2}, \ldots, x_{m}\right)$.
Let $p \in \mathbb{N} \cup\{\infty\}$. The $\boldsymbol{p}^{\text {th }}$ frequency moment of the input stream is defined as follows:

$$
F_{p}= \begin{cases}\sum_{i=1}^{m} x_{i}^{p} & \text { if } p \in \mathbb{N} \\ \max _{i} x_{i} & \text { if } p=\infty\end{cases}
$$

Note that F_{0} is the number of distinct elements of the input. F_{1} is the number of elements (with repetition).

Indyk \& Woodruff [IW05] proved (among other things) the following.
Theorem 21.16. Let $p>2$.

1. There exists a randomized streaming algorithm which $1+\varepsilon$-approximates F_{p} in space $O\left(m^{1-(2 / p)}\right)$.
2. Any randomized streaming algorithm that $1+\varepsilon$-approximates F_{p} requires $\Omega\left(m^{1-(2 / p)}\right)$ space.

Chapter 22

Parallel Algorithms: The MPC and AMPC Models

22.1 Introduction

Throughout this book we have dealt with sequential computations. In this chapter we look at parallel computations.

Chapter Summary

1. We give an overview of various models of parallel computation and how they relate to each other.
2. We define the Massively Parellel Computing Model (MPC) and give examples of algorithms in this model.
3. We discuss unconditional lower bounds on how well certain problems can be done in parallel on the MPC model. These lower bounds are unconditional in that they do not depend on any hardness assumption.
4. We discuss conditional lower bounds on how well certain problems can be done in parallel on the MPC model. These depend on a hardness assumption that the 1vs2-Cycle problem is hard to do on the MPC model.
5. We define the Adaptive Massively Parallel Model (AMPC). The 1vs2-Cycle problem is easy on the AMPC model, hence it cannot be used as a hardness assumption
6. We discuss some unconditional lower bounds for problem on the AMPC model.

22.2 An Overview of Models of Parallelism

There are many models of parallelism. We briefly discuss several models before we explore two recent models: MPC and AMPC.

The PRAM (Parallel Random Access Machine) model allows the machines to have access to a shared memory. This feature (or bug) leads to the need for subcategories of PRAM depending on
if concurrent reads or concurrent writes are allowed. There is a vast literature on both algorithms and lower bounds for PRAMs. For algorithms we recommend the survey by Karp \& Ramachandran [KR88] and the papers it references. For lower bounds we recommend the papers of Cook \& Dwork [CDR86] and Li \& Yesha [LY89] and the papers they reference.

The model NC (Nick's class after Nick Pippenger) works as follows. A decision problem A is in NC if it can be solved by a PRAM with a poly number of machines in polylog time. The details of which type of PRAM do not matter as they are all poly-time equivalent. There are two versions of NC.

1. Non-Uniform: There is a polynomial $p(n)$ and a polylog function $d(n)$ such that, for all n, there exists a PRAM with $\leq s(n)$ machines that runs in $\leq d(n)$ time. Note that we do not say how we actually produce the PRAM, just that it exists.
2. Uniform: There is a polynomial $p(n)$ and a polylog function $d(n)$ such that, and a polynomial time algorithm A such that A on input 1^{n} produces a PRAM with $\leq s(n)$ machines and $\leq d(n)$ time. Virtually all known PRAM algorithms are uniform.

If the parallelism is uniform then $N C \subseteq P$. There are some problems in P that are thought to be inherently sequential. There is a notion of P -completeness and an analog of the Cook-Levin theorem. The basic P -complete problem is the following: Given a poly time Turing machine M and an input x, what is $M(x)$. Other (more natural) P -complete problems are (a) the circuit value problem: given a circuit and an n-bit input, is the output 1 , (b) linear programming: maximize a linear function of n variables relative to a set of linear constraints, where the all the coefficients are integers and the desired output is a vector of rationals. For more on NC and P-completeness see the book by Greenlaw et al. [GHR95].

A more recent, and more realistic, model of parallel computing is the binary-forking model. This was originally defined informally in the textbook by Cormen et al. [CLRS03] in the chapter on parallel algorithms. A formal model was later developed by Blelloch et al. [BFGS20]. Goodrich et al. [GJS21] did follow-up work on both (1) low-depth algorithms (2) lower bounds (especially of interest with respect to algorithmic lower bounds).

We study two more recent models: Massively Parallel Computation (MPC) and Adaptive Massively Parallel Computation (AMPC). We will define it, give examples of problems it solves well, and then discuss lower bounds on it. We will note some relations to the PRAM when they come up. When we refer to PRAMs we will mean those that allow concurrent reads and writes. We omit details about how they resolve contentions.

We state some open problems about comparing the old models to the new models. They will make more sense later when you have read about the new models.

Open Problem 22.1.

1. How do the different types of PRAM compare to the MPC and AMPC models?
2. How does NC compare to MPC or AMPC?
3. Can any P-complete problems be solved in polylog rounds by an MPC or AMPC?

22.3 The Massively Parallel Computing Model (MPC)

Beame et al. [BKS17] invented the following model.
Definition 22.2. The Massively Parallel Computation model (MPC) consists of the following:

- The input data size N. (For a graph $G=(V, E)$ this is $\max \{|V|,|E|\}$ which is usually $|E|$.)
- The number of machines M available for computation. The machines will communicate with each other in rounds (we elaborate on this later).
- The memory size, s words, each machine can hold.

A reasonable assumption here is that a single word stores a constant number of bits. Thus in practice, each machine is capable of storing $\Theta(s)$ number of bits. Moreover, in the literature, it is most often assumed that

$$
\begin{equation*}
M \cdot s=\Theta(N) \tag{22.1}
\end{equation*}
$$

This is the most interesting scenario since the number of available resources for the algorithm ($M \cdot s$) is asymptotically equal to the size of the input data.

Input and output work as follows.

1. The input data is split across the M machines arbitrarily. If the input is a graph then initially each edge is given to some machine. Note that a machine may well have many edges.
2. There will be some machines designated as output machines. At the end of the computation the answer will be stored at the output machines. We give an example. If the problem is connected components then we want to assign to every vertex v a number n_{v} such that two vertices are in the same component if and only if they are assigned the same number. We want to store all the pairs $\left(v, n_{v}\right)$. Since the number of nodes may be much larger than the number of processors the output machines will each store many (though that is bounded by the space s) $\left(v, n_{v}\right)$ pairs.

Computation is performed in synchronous rounds. In each round, every machine performs some computation on the data that resides locally, then sends/receives messages to any other machine. Since the local memory of each machine is bounded by s words, we assume that a single machine can send and receive at most s words per round; however, each of these words can be addressed to or received from different machines. The three main parameters that are investigated in this model are:

- The number of machines. We often omit this since it will be roughly the ratio of the size of the input and the local memory.
- The number of communication rounds it takes for an algorithm to solve a problem, often called running time. The local computations are ignored in the analysis of the running time of MPC algorithms because communication is the bottleneck. In practice, these local computations frequently run in linear or near-linear time, however, there is no bound on their length formally.
- The size of local memory s. Problems are easier to solve with larger s. In the extreme when $s \gg N$, one can just put the entire input on a single machine and solve it locally. Typically, s is polynomially smaller than N, e.g. $s=N^{\varepsilon}$ for some constant $\varepsilon<1$.

If one of the machines had most of the input then, since we allow machines unlimited power, the problem could likely be done rather quickly. This is not what we want to model. We want to model problems where the input is so large that no machine can have most of it. Hence we have the following definition.

Definition 22.3. An MPC algorithm is sublinear if each machine gets space $s \ll N$. So the space is much less than the input size. For graph problems (on dense graphs) it will mean that there exists $\delta<1$ such that $s \leq n^{1+\delta}$. We will often use the term sublinear rather than specify the space precisely.

Note the following

Fact 22.4.

1. The MPC algorithm is non-uniform. For every N we have a different MPC algorithm for input length N. These algorithms will be very similar.
2. An MPC-computation can be viewed as a directed graph in layers. The first layer has the input machines. The second layer has the machines that the first layer communicates with. Put a directed edge between a machine in the first layer and a machine that it sends to. Keep doing this for layers $2,3, \ldots, R+1$. In Section 22.6 we use this viewpoint. The layers are a mental construct-in reality one machine is on many, perhaps all, of the layers.
3. Any PRAM algorithm working in time t can be simulated by an MPC algorithm in $O(t)$ rounds and with sublinear memory per machine. See Goodrich et al. [GSZ11] for a simulations of one of the PRAM models.

22.4 Some Algorithms in the MPC Model

22.4.1 Connected Components

Connected Components (Conn Comp)
Instance: An undirected graph $G=(V, E)$.
Question: Which vertices are in the same connected component? A solution is a labeling of vertices $\ell(v)$ such that $\ell(u)=\ell(v)$ if and only if vertices u and v are in the same connected component.

The running time of an algorithm for Conn Comp will depend on the number of vertices n, the number of edges m, and the diameter of the graph D. We saw this concept in Section 19.4; however, we include it here for your convenience.

Definition 22.5. Let G be a graph. The diameter D of G is the length of the longest shortest path between two vertices. Formally:

$$
D=\max _{u, v \in V} \text { The length of the shortest path from } u \text { to } v \text {. }
$$

Behnezhad et al. [$\mathrm{BDE}^{+} 19 \mathrm{a}$] proved the following theorem.
Theorem 22.6. For all ε the following holds. There is a randomized sublinear MPC algorithm for Conn Comp such that, on a graph $G=(V, E)(|V|=n,|E|=m$, Diameter $D)$:

1. The total space used is $O(m)$. Since the algorithm is sublinear each machine gets $n^{1+\delta}$ bits. Hence there are $\frac{m}{n^{1+\delta}}$ machines.
2. The number of rounds is $O\left(\log D+\log \log _{m / n}(n)\right)$.
3. The algorithm succeeds with high probability.
4. The algorithm does not need to know D.

We will not provide a proof of Theorem 22.6. Instead, we will give a short overview of a slightly weaker result due to Andoni et al. [ASS ${ }^{+} 18$].
Theorem 22.7. There is a randomized sublinear MPC algorithm for ConN COMP such that, on a graph $G=(V, E)(|V|=n,|E|=m$, Diameter $D)$:

1. The total space used is $O(m)$. Since the algorithm is sublinear each machine gets $n^{1+\delta}$ bits. Hence there are $\frac{m}{n^{1+\delta}}$ machines.
2. The algorithm takes $O\left(\log D \cdot \log \log _{m / n}(n)\right)$ rounds.
3. The algorithm succeeds with high probability.
4. The algorithm does not need to know D.

Behnezhad et al. $\left[\mathrm{BDE}^{+} 19 \mathrm{a}\right]$ write the following about the ideas which lead to Theorem 22.7: Graph exponentiation.

Consider a simple algorithm that connects every vertex to vertices within its 2-hop (i.e., vertices of distance 2) by adding edges. It is not hard to see that the distance between any two vertices shrinks by a factor of 2 . By repeating this procedure, each connected component becomes a clique within $O(\log D)$ steps. The problem with this approach, however, is that the required memory of a single machine can be up to $\Omega\left(n^{2}\right)$, which for sparse graphs is much larger than $O(m)$.

Solution to Conn Comp Built off the Graph Exponentiation Technique.

Suppose that every vertex in the graph has degree at least $d \gg \log n$. Select each vertex as a leader independently with probability $\Theta\left(\frac{\log n}{d}\right)$. Then contract every nonleader vertex to a leader in its 1-hop (which w.h.p. exists). This shrinks the number of vertices from n to $O(n / d)$. As a result, the amount of space available per remaining vertex increases to $\Omega\left(\frac{m}{n / d}\right)=\Omega\left(\frac{n d}{n / d}\right)=d^{2}$. At this point, a variant of the aforementioned graph exponentiation technique can be used to increase vertex degrees to d^{2} (but not more), which implies that another application of leader contraction decreases the number of vertices by a factor of $\Omega\left(d^{2}\right)$. Since the available space per remaining vertex increases doubly exponentially, $O(\log \log n)$ phases of leader contraction suffice to increase it to n per remaining vertex. Moreover, each phase requires $\Omega(\log D)$ iterations of graph exponentiation, thus the overall round complexity is $O(\log D \cdot \log \log n)$.

22.4.2 Maximal Ind. Set

```
Maximal Ind. Set
Instance: A graph G = (V,E).
Output: An independent set I such that no independent set is a proper superset of
    I.
```

Note the following:

- Maximal Ind. Set is very different from the Maximum Ind Set. Maximal Ind. Set is in P by a simple greedy algorithm. Maximum Ind Set is NP-complete.
- The greedy algorithm for Maximal Ind. Set is inherently sequential. Hence it is not obvious that there is a fast parallel algorithm for Maximal Ind. Set. However, there is.

Luby [Lub86] gave a framework for Maximal Ind. SET algorithms for the PRAM.

Luby's algorithm for Maximal Ind. Set:

1. Fix a random permutation $\pi:[n] \rightarrow[n]$ of vertices.
2. A vertex v adds itself to I if, for all neighbors u of $v, \pi(v)<\pi(u)$.
3. Remove selected vertices and their neighbors.
4. Repeat until reaching an empty graph.

The following theorem comes from a simple analysis of the above method. The details can be found in Luby's paper.

Theorem 22.8. There exists an algorithm in the PRAM model which, given a graph G on n vertices and m edges, will, with high probability, solve MAXImal Ind. SET in $O(\log n)$ depth and $O(n)$ machines. The algorithm will always solve the problem, though it may (quite rarely) take more time or more work than specified.

Ghaffari \& Uitto [GU19] showed that the local nature of the Maximal Ind. Set problem can be efficiently exploited in the MPC model. Namely they proved the following.

Theorem 22.9. Let $\varepsilon \in(0,1)$. There is a randomized MPC algorithm for Maximal Ind. Set with the following properties:

1. Each machine uses $O\left(n^{\varepsilon}\right)$ memory.
2. The number of rounds is $O(\sqrt{\log n} \cdot \log \log n)$ (the constant on the O depends on ε).
3. The probability that an MAXimal Ind. SET is found is $\geq 1-\frac{1}{10 n}$

Theorem 22.9 is the best-known result for general graphs. Ghaffari, Grunau, Jin [GGJ20] showed that the Maximal Ind. Set problem, restricted to some specific class of graphs (i.e. trees or graphs with bounded arboricity), has a randomized sublinear MPC algorithm working in $O(\log \log n)$ rounds. Ghaffari, Kuhn, Uitto [GKU19] showed a (conditional) lower bound on the Maximal Ind. Set problem in the MPC model of $\Omega(\log \log n)$ rounds. This is the best known lower bound on Maximal Ind. Set in the MPC model.

22.4.3 Fast Fourier Transform and Pattern Matching

Hajiaghayi et al. [HSSS21] obtained a constant-round MPC-algorithm for Fast Fourier Transform and used that to get a constant-round MPC-algorithm for pattern matching (with wildcards). Everything in this section is from that paper.

Fast Fourier Transform (FFT)
Instance: Complex numbers x_{0}, \ldots, x_{n-1}. (These will have rational real and complex parts so they are finite length.)
Output: The n complex numbers X_{0}, \ldots, X_{n-1} where

$$
X_{k}=\sum_{n=0}^{N-1} x_{n} e^{-i 2 \pi k n / N} \quad k=\{0, \ldots, N-1\} .
$$

(We can either use an approximation or keep the roots of unity in symbolic form so that the length is manageable.)

Theorem 22.10. Let $\varepsilon>0$. There is a deterministic MPC algorithm for FFT with local memory $O\left(n^{\varepsilon}\right)$, total memory O (npolylogn), and $O\left(\frac{1}{\varepsilon}\right)$ rounds.

Pattern Matching and Variants
Instance: A text T and a pattern P. They are both over an alphabet Σ. The text is usually much longer than the pattern. We describe three types of patterns in the OUTPUT part.
Output:

- $P \in \Sigma^{*}$. Return all occurrences of P in T.
- $P \in\{\Sigma U \text { ? }\}^{*}$. The pattern occurs if it matches all of the characters in Σ. We do not care what happens at the ? spot. For example, acb?a occurs in acbaabbbbbacbba as shown. Return all matches of this type.
- $P \in\{\Sigma \cup+\}^{*}$. The pattern occurs if it matches all of the characters in Σ. At the + spots a single character can appear many times. For example, acb+a occurs in

acbaaaaaaaaa bbbbb acbbbbbbbbbbbbbbbbbbbbba

as shown. Return all matches of this type.

- $P \in\{\Sigma \cup *\}^{*}$. The pattern occurs if it matches all of the characters in Σ. At the $*$ spots any string can appear. For example, acb*a occurs in
acbabbcaabba bbbbb acabaaaccabbaaadaacadaa
as shown. Return all matches of this type.

Theorem 22.11. Let $0<\varepsilon<1$.

1. There exists an MPC algorithm for string matching with pattern $P \in \Sigma^{*}$ with $M=O\left(n^{\varepsilon}\right)$, $s=O\left(n^{1-\varepsilon}\right)$, and $r=O(1)$.
2. There exists an MPC algorithm for string matching with $P \in\{\Sigma \cup \text { ? }\}^{*}$ with $M=O\left(n^{\varepsilon}\right.$ polylogn $)$, $s=O\left(n^{1-\varepsilon}\right.$ polylogn $)$, and $r=O(1)$.

It is not known if pattern matching with $P \in\{\Sigma \cup *\}^{*}$ has a polylog round MPC algorithm with sublinear M and s.

22.5 Unconditional MPC Lower Bounds

In this section, we are going to sketch an approach to find unconditional lower bounds for problems on the MPC model. This approach was introduced by Roughgarden et al. [RVW18]. They did the following.

1. Define the s-Shuffle model.
2. Gave a relation between the MPC model and the s-Shuffle model.
3. Show that an s-Shuffle computation can be represented by polynomials.
4. Obtain lower bounds on the s-Shuffle model for some problems by looking at polynomials.
5. Use these lower bounds and the relation between the MPC model and the s-Shuffle model to get lower bounds on the MPC model.

The lower bounds are not tight; however, they are important because they are unconditional. We will skip right to a theorem that relates MPC to polynomials, and gets lower bounds using those polynomials.

22.5.1 Polynomials

Definition 22.12.

1. We will be using polynomials on many variables. We will only care about what they output when the variables are replaced by 0's and 1's. Hence the polynomials will not have any exponents. Moreover, when we say $p \in \mathbb{Z}\left[x_{1}, \ldots, x_{m}\right]$ we will implicitly mean that there are no exponents.
2. The degree of a polynomial is the number of variables in the largest monomial.
3. Let $f:\{0,1\}^{m} \rightarrow\{0,1\}$. Let $p \in \mathbb{Z}\left[x_{1}, \ldots, x_{m}\right]$. \boldsymbol{p} represents $f \boldsymbol{p}$ represents \boldsymbol{f} if, for all $\vec{b} \in\{0,1\}^{m}, f(\vec{b})=p(\vec{b})$.
4. If f is a graph property on graphs with n vertices then the variables are $x_{i, j}$ (with $1 \leq i<$ $j \leq n$) and represent edges.

Theorem 22.13. For every $f:\{0,1\}^{m} \rightarrow\{0,1\}$ there exists $p \in \mathbb{Z}\left[x_{1}, \ldots, x_{m}\right]$ of degree m such that f represents g.

Proof:

For every $\vec{b} \in\{0,1\}^{m}$ create a polynomial that is 1 if and only if the input is \vec{b}. For example, if $n=4$ and the bit sequence is 0110 then we associate the polynomial

$$
\operatorname{Poly}(\vec{b})=\left(1-x_{1}\right) x_{2} x_{3}\left(1-x_{4}\right) .
$$

The polynomial p is

$$
p\left(x_{1}, \ldots, x_{m}\right)=\sum_{\vec{b}: f(\vec{b})=1} \operatorname{Poly}(\vec{b}) .
$$

Note We will connect the smallest degree of a polynomial that represents f to the complexity of f.

Exercise 22.14. Let AND_{n} be the function $x_{1} \wedge \cdots \wedge x_{n}$. Let OR_{n} be the function $x_{1} \vee \cdots \vee x_{n}$.

1. Give a polynomial of degree n that represents AND_{n}. Same for OR_{n}.
2. Show that any polynomial that represents AND_{n} has degree $\geq n$. Same for OR_{n}.
3. Show that any s-space MPC for AND_{n} needs at least $\left\lceil\log _{s} n\right\rceil$ rounds. Same for OR_{n}.

Now, we are going to show that the output of an s-space MPC computation with n input bits, and k output bits, running in R rounds, can be produced by k polynomials with degree of at most s^{R} such that each polynomial produces one of the s outputs.

Theorem 22.15. Let $f:\{0,1\}^{n} \rightarrow\{0,1\}^{k}$.

1. If there is an r-round s-space MPC for f, then there are k polynomials $\left\{p_{i}\left(x_{1}, \ldots, x_{n}\right)\right\}_{i=1}^{k}$ of degree at most s^{r} such that, for all $x \in\{0,1\}^{n}$, for $1 \leq i \leq k, p_{i}(x)=f(x)_{i}$.
2. If f cannot be represented by a polynomial with degree less than d, then any s-space MPC that computes f has least $\left\lceil\log _{s} d\right\rceil$ rounds. (This follows from Part 1).

22.5.2 Lower Bounds in the MPC Model for Monotone Graph Properties

We will use two known results to obtain a lower bound on s-space MPC's for monotone graph properties.

Definition 22.16.

1. A monotone graph property is a property of graphs such that if more edges are added then the property still holds. Examples: connectivity, non-planarity.
2. A Decision Tree for a graph property is a decision tree for the property where the queries are " $(i, j) \in E$?".
3. In this section (and only this section) a polynomial is over $\mathbb{Z}\left[x_{1}, \ldots, x_{m}\right]$.

Theorem 22.17. Let P be a monotone graph property.

1. Rosenberg [Ros73] proved that any decision tree for P requires $\Omega\left(n^{2}\right)$ depth. (The constant for the Ω was increased by Rivest \& Vuillemin [RV78] and Kahn et al. [KSS84]. See also C. Miller [Mil13].)
2. Buhrman \& de Wolf [BdW02] proved that the decision tree complexity of a polynomial in $\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ of degree d is at most $O\left(d^{4}\right)$.
3. The degree of a polynomial representing a monotone graph property is at least \sqrt{n}. (This follows from Parts 1 and 2.)
4. Anys-space MPC for P requires $\Omega\left(\log _{s} n\right)$ rounds. (This follows from Part 3 and Theorem 22.15.)

With more effort, the following has also been proved.
Theorem 22.18. For the problem of graph connectivity the following hold.

1. Every MPC algorithm with spaces needs at least $\left\lceil\log _{s}\binom{n}{2}\right\rceil$ rounds.
2. If $s=N^{\varepsilon}$ (a realistic choice) then the number of rounds needed is $\Omega(1)$.

22.6 Conditional MPC Lower Bounds

The unconditional lower bound in Theorem 22.18 .3 was that if $s=N^{\varepsilon}$ (which is a realistic value of s) then the number of rounds is $\Omega(1)$. This is a weak lower bound. Hence we now turn to conditional lower bounds.

The framework for these lower bounds was introduced by Ghaffari et al. [GKU19]. Everything in this section is from that paper unless otherwise noted. We will do the following:

1. Define the 1vs2-Cycle problem and formally state the conjectured lower bound for it in the MPC model.
2. Assuming the conjectured lower bound for the 1vs2-Cycle, and additional assumptions, we will state lower bounds for other problems in the MPC model.

1vs2-Cycle

Instance: An undirected graph $G=(V, E)$. We are promised that it is either one cycle or the union of two cycles.
Question: Is the graph one cycle or the union of two cycles?
The following conjecture is widely believed:
Conjecture 22.19. The 1vs2-Cycle Conjecture Any MPC algorithm for the 1vs2-Cycle problem using machines with $s=n^{\varepsilon}$ requires $\Omega(f(\varepsilon) \log n)$ rounds for some f. (Note that since the input is one cycle or two cycles, $m=O(n)$ so sublinear now means $s=n^{\varepsilon}$.)

The lower bound is conjectured to hold even for the simpler promise problem of distinguishing whether an input graph is a cycle of length n or two cycles of length $n / 2$.

Theorem 22.20. Assume the 1vs2-Cycle conjecture. Any sublinear MPC for undirected connectivity requires $\Omega(\log n)$ rounds.

Proof:

It is clear that if we have one cycle, the graph is connected, otherwise, the graph is unconnected. Thus, if we find an algorithm for undirected connectivity in $o(\log n)$ rounds, then we will have an algorithm in $o(\log n)$ rounds for 1 vs 2 -Cycle, which contradicts the 1vs2-Cycle conjecture.

We can try to find conditional lower bounds for other problems by making a reduction from 1vs2-Cycle or other problems that have a known conditional lower bound. But, alas, we need to introduce a restriction on the type of algorithms we can get lower bounds on.

We informally discuss component-stable MPC algorithms. Imagine an MPC algorithm for maximal matching on bipartite graphs. Imagine that the graph G has connected components G_{1} and G_{2}. Let x_{1} be a vertex of G_{1} and x_{2} be a vertex of G_{2}. Imagine running the algorithm; x_{1} is matched with y_{1}, and x_{2} is matched with y_{2}. What if we then replace G with a $G_{1} \cup H$ for some $H \neq G_{2}$. Run the algorithm on $G_{1} \cup H$. You would expect that x_{1} would still be matched to y_{1}. But this is not guaranteed! Intuitively, component-stable MPC algorithm for matching would be one where, in the above example (and more complex examples with more components), x_{1} still gets matched with y_{1}. More generally, a component-stable MPC algorithm for a graph problem is one where the output of each node x (e.g., what a node is matched with) depends only on the connected component that x is in, and not on other connected components. For a formal (though complicated) definition of component-stable MPC algorithms see Czumaj et al. [CDP21]. We will not give a definition.

Virtually all MPC algorithms on graphs are component-stable. Hence it makes sense to get lower bounds on such algorithms. Also, there are techniques (beyond the scope of this book) to get lower bounds on such algorithms. We present three problems and and then three conditional lower bounds on component-stable algorithms for them.

Maximal Matching

Instance: An undirected graph $G=(V, E)$
Output: Return an independent set I such that no independent set is a proper superset of I.
Output: For every $v \in V$ there is an output machine. At the end of the computation the machine will have either a 1 (for $v \in I$) or a $0($ for $v \notin I)$.

Sinkless Orientation

Instance: An undirected graph $G=(V, E)$
Output: Return an orientation of the graph (a direction for every edge) so that the graph has no vertices of out-degree 0 . (Such vertices are called sinks.)
Output: For every $\{u, v\} \in E$ there is an output machine. At the end of the computation the machine will have either (u, v) or (v, u) to indicate the orientation.
($\Delta+1$)-Graph Coloring
Instance: An undirected graph $G=(V, E)$ and its max degree Δ.
Output: Return a proper $(\Delta+1)$-coloring of G (such always exists). Colors are $\{1, \ldots, \Delta+1\}$.
Output: For every $v \in V$ there is an output machine. At the end of the computation the machine will have the color of v.

The only known MPC algorithms for Maximal Matching, Sinkless Orientation, Δ-Graph Coloring, and many other graph problems are component-stable. Hence it is of interest to get lower bounds on component-stable MPC algorithms for these and other problems.

Theorem 22.21. Assume the 1vs2-Cycle conjecture. Assume that all MPC's discussed in this theorem are sublinear and use a component stable algorithm.

1. Maximal Matching requires $\Omega(\log \log n)$ rounds. (Same holds for a constant approximation for Maximal Matching. This lower bound holds even when restricted to trees.)
2. Sinkless Orientation requires $\Omega(\log \log \log n)$ rounds.
3. Let c be a constant. c-coloring a cycle requires $\Omega\left(\log \log ^{*} n\right)$ rounds.
4. Any constant approximation for VERTEX COVER requires $\Omega(\log \log n)$ rounds.
5. (Using additional assumptions) ($\Delta+1$)-coloring a graph requires $\Omega(\sqrt{\log \log n})$ rounds.

22.7 The Adaptive Massively Parallel (AMPC) Model

The Adaptive Massively Parallel (AMPC) Model was introduced by Behnezhad et al. [$\mathrm{BDE}^{+} 21$]. It is essentially the MPC model but with shared memory. We quote their motivation:

Our model is inspired by the previous empirical studies of distributed graph algorithms [BBD ${ }^{+} 17$, $\left.K L M^{+} 14\right]$, using MapReduce and a distributed hash table service [CDG ${ }^{+}$08].

We proceed informally.
In the AMPC model the machines have access to a shared memory. This model assumes that all messages sent in a single round are written to a distributed data storage, which all machines can read from within the next round. More specifically, the computation consists of rounds. In the i-th round, each machine can read data from a random access memory D_{i-1} and write to D_{i} (both D_{i-1} and D_{i} are common for all machines). Within a round, each machine can make up to S reads (henceforth called queries) and S writes and can perform arbitrary computation. (Note that this S is different from the s parameter for the MPC model.)

Clearly, every MPC algorithm can be easily simulated in the AMPC model. However, the opposite direction is not usually the case. Furthermore, due to known simulations of PRAM algorithms by MPC, the AMPC model can also simulate existing PRAM algorithms. The key property of the AMPC model is that the queries a machine makes in each round may depend on the results of the previous queries it made in that same round, which is why the model is called adaptive. For example, if g is a function from X to X and for each $x \in X, D_{i-1}$ stores a key-value pair $(x, g(x))$, then in round i a machine can compute $g^{k}(y)$ in a single round, provided that $k=O(S)$.

22.7.1 AMPC Power: 1vs2cycle Revisited

In this section, we discuss the computation power of the AMPC model. For several fundamental problems, there are AMPC algorithms solving them with significantly lower round complexities than the best-known MPC algorithms. Behnezhad et al. [$\mathrm{BDE}^{+} 19 \mathrm{a}$] includes a number of such algorithms for some of the most fundamental graph problems, such as Graph Connectivity and Maximal Independent Set. We focus on the 1vs2-Cycle problem since this illustrates that the AMPC is likely more powerful than the MPC model.

Recall that in the MPC model, it is conjectured that 1vs2-Cycle requires a logarithmic number of rounds. However, the following theorem (from [$\mathrm{BDE}^{+} 19 \mathrm{a}$] with help from [$\left.\mathrm{BDE}^{+} 21\right]$) shows that this conjecture does not hold in the Adaptive model.

Theorem 22.22. There is an AMPC algorithm solving the 1vs2-Cycle problem in $O(1 / \varepsilon)$ rounds w.h.p. using $O\left(n^{\varepsilon}\right)$ space per machine and $O(n)$ total space.

Proof:

At first, we discuss the overview of their algorithm. In each round of the algorithm, we sample each vertex with probability $n^{-\varepsilon / 2}$. Then, we contract the original graph to the samples by replacing the paths between sampled vertices with single edges. To do so, we traverse the cycle in both directions for each sampled vertex until we hit another sampled vertex, which can be done in a single round using the adaptivity of the model. In each round, with high probability, the number of vertices shrinks by a factor of $n^{\varepsilon / 2}$. Therefore, after $O(1 / \varepsilon)$ rounds, the number of remaining vertices and edges is reduced to $O\left(n^{\varepsilon}\right)$. Hence, the graph fits in the memory of a single machine, and we can solve the remaining problem in a single round.

We present the algorithm. We first need a procedure

```
Shrink(G=(V,E), \varepsilon,t)
```


Begin Algorithm

```
For \(i=0, \ldots, t\)
        \(V^{\prime} \leftarrow\) a subset of \(V(G)\) s.t. each vertex is included independently with probability \(n^{-\varepsilon / 2}\)
        \(E^{\prime} \leftarrow \emptyset\)
```

 For \(v \in V^{\prime}\)
 \(l_{v} \leftarrow\) first sampled vertex that we reach traversing the graph starting with (v,nei \(i_{G}^{1}(v)\))
 \(r_{v} \leftarrow\) first sampled vertex that we reach traversing the graph starting with (v,nei \(\left.{ }_{G}^{2}(v)\right)\)
 \(E^{\prime} \leftarrow E^{\prime} \cup\left\{\left(v, l_{v}\right),\left(v, r_{v}\right)\right\}\)
 \(G \leftarrow G^{\prime}\left(V^{\prime}, E^{\prime}\right)\)
 EndFor
 Return G
 End Algorithm
 And now the algorithm.
1vs2-CycleGV, E
Begin Algorithm
$G^{\prime} \leftarrow \operatorname{Shrink}(G, \varepsilon, O(1 / \varepsilon))$
Solve the 1v2-Cycle problem on G^{\prime} using a single machine
(Comment: Note that $\left|V\left(G^{\prime}\right)\right| \in O\left(n^{\varepsilon}\right)$ w.h.p.)

End Algorithm

Each iteration of the outer loop in Shrink is a single AMPC round, and the correctness of this algorithm is a result of combining the following lemmas from Behnezhad et al. [$\left.\mathrm{BDE}^{+} 21\right]$.

Lemma 22.23. Let G be a graph consisting of cycles, and let N be the initial number of vertices in G. Consider a cycle with size $k=\Omega\left(N^{\varepsilon}\right)$ in some iteration of the loop of Shrink $(G, \varepsilon, O(1 / \varepsilon))$. The size of this cycle shrinks by at least a factor of $N^{\varepsilon / 2}$ after this iteration w.h.p.

Lemma 22.24. Let G be an N-vertex graph consisting of cycles and let $G^{\prime}=\operatorname{Shrink}(G, \varepsilon, O(1 / \varepsilon))$. Then G^{\prime} can be obtained from G by contracting edges, and the length of each cycle in G^{\prime} is $O\left(n^{\varepsilon}\right)$.

Lemma 22.25. In each round, the total communication of each machine is $O\left(N^{\varepsilon}\right)$ w.h.p., where N is the initial number of vertices in G .

22.7.2 Unconditional AMPC Lower Bounds

Recall that in Section 22.5 we presented the polynomial method for lower bounds on MPC algorithms. Charikar et al. [CMT20] modified the polynomial method to get lower bounds on AMPC algorithms. Everything in this section is from that paper.

They introduced the following extension of degree.
Notation 22.26.

1. In the definitions below $\Delta \subseteq\{0,1\}^{n}$. For example Δ could be the set of two graphs: one the cycle on n vertices, and the other the disjoint union of two cycles of length $n / 2$. We say things like:

Let g be a partial boolean function that maps Δ to $\{0,1\}$.
to emphasize that g can be partial.
2. We use the same convention as in Section 22.5 whereby one can input a graph on n vertices into a polynomial on $\binom{n}{2}$ variables by viewing the graph as a sequence of $\binom{n}{2}$ bits; where $x_{i, j}$ is 1 if (i, j) is an edge and 0 otherwise.

Definition 22.27. Let $g: \Delta \rightarrow\{0,1\}$. Then

$$
\operatorname{deg}_{\text {partial }}(g)=\min \{\operatorname{deg}(p): p(x)=g(x) \text { for all } x \in \Delta\}
$$

The next theorem reduces lower-bounding the deterministic AMPC round complexity of g to lower-bounding $\operatorname{deg}_{\text {partial }}(g)$:

Theorem 22.28. Let g be a partial boolean function that maps Δ to $\{0,1\}$. Let M be a deterministic AMPC algorithm that computes g. Let S be the number of queries and writes allowed per round. The number of rounds is at least

$$
\frac{1}{2} \log _{S} d e g_{p a r t i a l}(g)
$$

In particular, if g is a total boolean function, then any such algorithm requires $\frac{1}{2} \log _{S} \operatorname{deg}(g)$ rounds.
We omit the proof.
Theorem 22.28 provides lower bounds for deterministic algorithms. What about randomized algorithms? To obtain lower bounds on randomized algorithms we need the following definition.

Definition 22.29. Let $g: \Delta \rightarrow\{0,1\}$.

1. g is approximately represented by a polynomial p if

$$
\forall x \in \Delta:|p(x)-g(x)| \leq \frac{1}{3}
$$

2. $\widetilde{\operatorname{deg}}_{\text {partial }}$ is

$$
\widetilde{\operatorname{deg}}_{\text {partial }}(g)=\min \{\operatorname{deg}(p): p \text { approximately represents } g\}
$$

The following theorem reduces lower-bounding the randomized AMPC round complexity of g to lower-bounding $\widetilde{\operatorname{deg}}_{\text {partial }}(g)$:
Theorem 22.30. Let g be a partial boolean function that maps Δ to $\{0,1\}$. Let M be a randomized AMPC algorithm that computes g with probability of error $\leq \frac{1}{3}$. Let S be the number of queries and writes allowed per round. The number of rounds is at least

$$
\frac{1}{2} \log _{S} \widetilde{d e g}_{\text {partial }}(g)
$$

In particular, ifg is a total boolean function, then any such algorithm requires $\frac{1}{2} \log _{S} \widetilde{\operatorname{deg}}(g)$ rounds.
We omit the proof.

Parity

Instance: $x \in\{0,1\}^{n}$. Let $x=x_{1} \cdots x_{n}$.
Question: What is $\sum_{i=1^{n}} x_{i}(\bmod 2)$?
Note: We denote Parity on n bits by Parity n.
Paturi [Pat92] proved the following:
Theorem 22.31. If p is a polynomial that approximates PARITY $_{n}$ then $\operatorname{deg}(p) \geq n$.
By combining Theorems 22.31, 22.28, and 22.30 one obtains the following:

Theorem 22.32.

1. If M is a deterministic $A M P C$ algorithm for $P_{A R I T Y}^{n}$ then the number of rounds is $\geq \frac{1}{2} \log _{S}(n)$.
2. If M is a randomized AMPC algorithm with error $\leq \frac{1}{3}$ for $P_{A R I T Y}^{n}$ then the number of rounds is $\geq \frac{1}{2} \log _{S}(n)$.
3. In both of the items above, if $S=n^{\varepsilon}$, the number of rounds is $\Omega\left(\frac{1}{\varepsilon}\right)$

Now that we have one problem with a provable unconditional lower bounds we can use a reduction get others!

Theorem 22.33.

1. If M is a deterministic AMPC algorithm for 1vs2-CyCLE then the number of rounds is \geq $\frac{1}{2} \log _{S}(n / 2)$.
2. If M is a randomized AMPC algorithm with error $\leq \frac{1}{3}$ for 1vS2-CYCLE then the number of rounds is $\geq \frac{1}{2} \log _{S}(n / 2)$.
3. In both of the items above, if $S=n^{\varepsilon}$, the number of rounds is $\Omega\left(\frac{1}{\varepsilon}\right)$

Proof:

We prove the theorem using a reduction from Parity $_{N}$ to 1 vs2-Cycle. (We use N since we will use n for the number of vertices in a graph.)

Let $x=\left\{x_{1}, \ldots, x_{N}\right\} \in\{0,1\}^{N}$ be an instance of Parity $_{N}$. We construct the graph $G(x)$ as follows:

1. For any x_{i} we add vertices v_{i}^{1} and v_{i}^{2}.
2. For $i=1, \ldots, N$
(a) if $x_{i}=0$, add edges $\left(v_{i}^{1}, v_{(i \bmod N)+1}^{1}\right)$ and $\left(v_{i}^{2}, v_{(i \bmod N)+1}^{2}\right)$;
(b) if $x_{i}=1$ add edges $\left(v_{i}^{1}, v_{(i \bmod N)+1}^{2}\right)$ and $\left(v_{i}^{2}, v_{(i \bmod N)+1}^{1}\right)$.

Figure 22.1 shows the graph G (the right two vertices are the left two vertices) obtained if the input is 01001 . Note that $\operatorname{Parity}(01001)=0$ and G is the union of two cycles of length n. We leave it to the reader to show the following:

- If $\operatorname{Parity}(x)=0$ then $G(x)$ is the union of 2 cycles of length n.
- If $\operatorname{Parity}(x)=1$ then $G(x)$ is the 1 cycle of length $2 n$.

We have a reduction where a string of length N maps to a graph on $2 N$ vertices. Hence, by Theorem 22.32, any AMPC algorithm (of the two types we are talking about) for 1vs2-Cycle on $2 N$ vertices requires $\geq \frac{1}{2} \log _{S}(N)$ rounds. Hence any AMPC algorithm (of the two types we are talking about) for 1vs2-Cycle on n vertices requires $\geq \frac{1}{2} \log _{S}(n / 2)$ rounds.

Theorem 22.34.

1. If M is a deterministic AMPC algorithm for 1VSK-CYCLE then the number of rounds is \geq $\frac{1}{2} \log _{S}\left(n / k^{2}\right)$.

Figure 22.1: Reduction from a parity instance $x=01001$ to a 1vs2-Cycle instance with 10 vertices.
2. If M is a randomized AMPC algorithm with error $\leq \frac{1}{3}$ for 1VSK-CYCLE then the number of rounds is $\geq \frac{1}{2} \log _{S}\left(n / k^{2}\right)$.
3. In both of the items above, if $k=n^{\delta}$ and $S=n^{\varepsilon}$, the number of rounds is $\Omega\left(\frac{1-2 \delta}{\varepsilon}\right)$

Proof sketch:

We give a sketch of the proof since it is similar to the proof of Theorem 22.33.
We prove the theorem using a reduction from Parity_{N} to 1 vsk-Cycle. (We use N since we will use n for the number of vertices in a graph.)

Let $x=\left\{x_{1}, \ldots, x_{N}\right\} \in\{0,1\}^{N}$ be an instance of Parity $_{N}$. we want to construct a graph $G(x)$ such that:

- If $\operatorname{Parity}(x)=0$ then $G(x)$ is the union of k cycles of length n.
- If $\operatorname{Parity}(x)=1$ then $G(x)$ is the 1 cycles of length $k n$.

We leave it to the reader to use Figure 22.2 to guide their construction and then to finish the proof.

Figure 22.2: Reduction from a parity instance to a 1 vsk -Cycle instance with $k=4$.

22.8 Future Directions

Despite the recent interest in the MPC and AMPC models, there are many fundamental open problems. For example, the MPC-complexity and AMPC-complexity of both 2SAT and directed s - t connectivity remain unknown. These problems are related in the sense that solving 2SAT is usually done by reducing it to directed $s-t$ connectivity. For an up-to-date survey of what is known about lower bounds on the MPC model see the paper of Nanongkai \& Scquizzato [NS22].

It is also a challenge to find more problems where AMPC algorithms are provably better than MPC algorithms. s - t connectivity may be such a problem.

An interesting parameter for parallel algorithms is work which is the product of Number-ofProcessors and Time. Karp and Ramachandran [KR88] define the Transitive Closure Bottleneck to illustrate the issue. The bottleneck is that many important problems like directed reachability and Single-Source-Shortest-Path (and its many variants) are in NC (polynomial number of processors, logarithmic time) but only due to using matrix squaring which has work $O\left(n^{3}\right)$. This leads to a later conjecture that these problems require work $\Omega\left(n^{3}\right)$ in order to be solved in polylogarithmic depth. Even getting poly number of processors and sublinear time seemed like a challenge; however, there are some results where this is, perhaps surprisingly, achieved. The problem we consider are: Single Source Graph Reachibility (SSGR) and Single Source Shortest $\boldsymbol{P a t h}(\mathbf{S S S P})$. In all cases the input is a directed graph and the algorithm is randomized.

1. Fineman [Fin18] showed that SSGR can be done in $\tilde{O}(m)$ work and $\tilde{O}\left(n^{2 / 3}\right)$ time.
2. Jambulapati et al. [JLS19] showed that SSGR can be done in $\tilde{O}(m)$ work and $\tilde{O}\left(n^{1 / 2+o(1)}\right)$ time.
3. Rozhon $\left[\mathrm{RHM}^{+} 22\right]$ showed that SSSP can be done in $\tilde{O}(m)$ work and $\tilde{O}(m)$ time.
(1) Jambulapati et al. [JLS19] obtained an algorithm for single-source-shortest path in $O(\mathrm{~m})$ work and $O\left(n^{1 / 2+o(1)}\right)$ time, and (2) Fineman [Fin18] obtained an algorithm for reachability with expected work $\tilde{O}(m)$ and time $\tilde{O}\left(n^{1 / 3}\right)$.

Chapter 23

Nash Equilibria and Polynomial Parity Arguments for Directed Graphs

23.1 Introduction

There are problems that are in P for an odd reason. We give an example. Every directed acyclic graph has a sink. Hence the problem, given a directed acyclic graph, does it have a sink is easy: always say YES. But this does not help you find that sink. If the input is a graph then finding the sink is in polynomial time. But what if the input is a circuit that represents a graph on 2^{n} vertices?

How do we study the complexity of a problem where it is known there is a solution, but not known how to find it? That is the subject of this chapter.

Chapter Summary

1. We discuss several problems where the answer is Yes there is a solution but it seems hard to find them. One of them is NE which was the motivation for this study.
2. We define a complexity class PPAD for these problems and an appropriate notion of reduction for the class.
3. We discuss the proof that NE is PPAD-complete. Along the way we prove other problems also PPAD-complete.
4. We discuss other similar classes and problems that are hard for them.

23.2 The EOL Problem

Definition 23.1. Let $G=(V, E)$ be a directed graph. A vertex $v \in V$ is unbalanced if indeg $(v) \neq$ outdeg (v).

Theorem 23.2. Let G be a directed graph.

1. $\sum_{v \in V} \operatorname{indeg}(v)=\sum_{v \in V} \operatorname{outdeg}(v)$.
2. If there exist an unbalanced vertex then there exists another unbalanced vertex. (This follows from Part 1.)

Consider the following problem.

$$
\begin{aligned}
& \text { Unbalanced } \\
& \text { Instance: A directed graph } G \text { and an unbalanced vertex } v \text {. } \\
& \text { Question: Is there another unbalanced vertex? }
\end{aligned}
$$

This problem is in P for the odd reason that, by Theorem 23.2, there is always another unbalanced vertex. What if we actually want to find that other unbalanced vertex? We certainly can find it in polynomial time by looking at every vertex. But note that the algorithm does not use the proof of Theorem 23.2.

What if we were given a short representation (size poly in n) of a large directed graph (size $\left.2^{n}\right)$? Then you cannot just look at every vertex. We will also restrict the graph to have both in-degree and out-degree ≤ 1. We now define this formally.

End of Line EOL

Instance: Two circuits P (for Previous) and N (for Next) on $\{0,1\}^{n}$ such that for all $x \in\{0,1\}^{n}$ the following holds.

- $P(x)$ returns either NO or an element of $\{0,1\}^{n}$.
- $N(x)$ returns either NO or an element of $\{0,1\}^{n}$.

We interpret the circuits as describing a directed graph by the following:

- If $P(x)=y$ then there is an edge from x to y.
- If $N(x)=y$ then there is an edge from y to x.

Output: If exactly one of $P\left(0^{n}\right), N\left(0^{n}\right)$ is not NO then find another unbalanced vertex. (Such an unbalanced vertex exists by Theorem 23.2.)
Note: This is quite different from finding the unbalanced vertex that has a path to 0^{n}. Papadimitriou [Pap94, Theorem 2] showed that problem is PSPACE-hard. Subtle changes in a problem definition may alter things tremendously.

We do an example. Say $n=3$. Then there is a circuit on 3 inputs that represents a graph on 8 vertices. Figure 23.1 shows that graph. Note that both vertex-111 and vertex-010 are answers. Also note that this gives a very compact way to represent a graph since a circuit on n inputs represents a graph on 2^{n} vertices.

Theorem 23.2 tells us that there is another unbalanced vertex but, since the proof is nonconstructive, it does not help us find that vertex. So it seems that EOL is hard. Is it NP-hard? Unlikely:

Theorem 23.3. If SAT is reducible to EOL using a polynomial number of queries then $N P=\operatorname{coNP}$.

Proof:

Assume there is such a reduction. Then $\varphi \notin$ SAT if and only if that reduction returns NO.

Figure 23.1: The graph produced by the EOL input.

If the reduction says NO then look at that computation. It will have instructions and queries. The key is that that the queries to EOL all have answers that can be verified (you can verify that a vertex v is unbalanced by looking at $P(v)$ and $N(v)$). So the reduction can be encoded in a string that has the answers to the queries and the verification of those answers. This string is of length polynomial in $|\varphi|$.

Hence if $\varphi \notin$ SAT then there is a short string that verifies the reductions answer of NO. This puts $\overline{\mathrm{SAT}}$ into NP, so SAT is in coNP.

In this chapter we will assume that EOL is hard and use that to show that other problems are hard. The motivation for this will be to show that finding Nash equilibrium for 2-player games is hard. The proof that Nash equilibrium exists is, like the proof that an unbalanced vertex exists, nonconstructive.

We will analyze existence theorems by Nash, Brouwer, and Sperner that arise from game theory, topology and combinatorics, respectively. These three theorems, as dissimilar as they seem, can be related to one another and rely on very basic combinatorial principles. In this chapter, we will define the setting for each of the theorems and give an overview of their connection.

The motivation to study these problems is that, unlike (say) 3SAT, we already know that a solution exists. How efficiently can we find a solution? If the search space is polynomial, this is easy: simply search exhaustively. However, some of these problems, like EOL have an exponential size search space.

23.3 Game Theory

Problems in Game Theory have the following.

1. A set of players (often 2).
2. For each player a choice of strategies.
3. For each players choices of strategies, a payoff for each player.

The key question is to figure out the best strategy. It may be randomized, e.g., flip a coin and based on the coin flip choose a strategy. (You could flip many coins and they need not be fair.)

We give several examples of problems in game theory.

23.3.1 Prisoners' dilemma

Two prisoners are on trial for a crime and each face the choice of confessing to the crime or remaining silent. If they both remain silent, the authorities will not be able to charge them for this particular crime, and they will both face two years in prison for minor offenses. If one of them confesses, his term will be reduced to one year, but he will have to bear witness against the other, who will be sentenced to five years. If they both confess, they will both get a small break and be sentenced to four years in prison (rather than five). We summarize the four outcomes and the utility with the matrix in Table 23.4.

Table 23.4. The Prisoner's Dilemma payoff matrix.

	Confess	Silent
Confess	$(4,4)$	$(1,5)$
Silent	$(5,1)$	$(2,2)$

The only stable solution in this game is when both confess. In each of the other three outcomes, a prisoner can switch from being silent to confessing in order to improve his own payoff. The social optimum in this case is when both remain silent; however, this outcome is not stable. In this game, there is a unique optimal selfish strategy for each player, independent of what other players do. A pair of strategies where neither player has an incentive to change, independent of the other players strategy, will be called a Nash Equilibrium (NE). In this case confess-confess is a NE.

One way to specify a game in algorithmic game theory is to explicitly list all possible strategies and utilities of all players. Expressing the game in this form is called the standard form or matrix form. This form is convenient to represent two-player games with a few strategies as demonstrated by the Prisoner's dilemma game.

23.3.2 The Penalty Shot Game

Consider the Penalty shot game: Player 1 needs to decide where to shoot a penalty (left or right) and Player 2 needs to decide where to dive (left or right). The payoff of this game is easy to describe: if Player 1 scores, he gets 1 point and player 2 gets -1 points. If Player 1 misses, Player 2 gets 1 point and Player 1 gets -1 points. This game is summarized in Table 23.5

Table 23.5. The Penalty Shot payoff matrix.

	Kick Left	Kick Right
Dive Left	$(1,-1)$	$(-1,1)$
Dive Right	$(-1,1)$	$(1,-1)$

Imagine that Player 1 initially decides to shoot left. If Player 2 knows this then he will dive left. If Player 1 knows that Player 2 will dive left he will shoot right. This paragraph could go on forever.

Is there a pair of strategies so that neither player has a reason to deviate from his strategy? If we insist that the strategies are deterministic then no: both players will want to deviate. However, there is a pair of randomized strategies: both players flip a fair coin to determine what to do.

23.3.3 Formal Game Theory

Definition 23.6. A finite game consists of the following elements:

1. A set P of r players.
2. For each $p \in P$ a set S_{p} of n pure strategies for p. A pure strategy means a deterministic strategy. In the 2-player case these will be the rows for Player I and columns for Player II.
3. A utility or payoff function that assigns a real value to player p for every possible strategy set. Formally, for every $p \in P$ we have a function

$$
u_{p}: \times_{q \in P} S_{q} \rightarrow \mathbb{R} .
$$

We use u for utility. (In the 2-player case this is the matrix of pairs as seen in both the Prisoner's Dilemma (Table 23.4) and the Penalty Shot Game (Table 23.5).

Definition 23.7. Let P be a game and p be a player with the set S_{p} of pure strategies. A mixed strategy for player \boldsymbol{p} is a distribution over S_{p}. Formally if the strategies are s_{1}, \ldots, s_{n} then a mixed strategy is a set of reals r_{1}, \ldots, r_{n} such that $\forall i: 0 \leq r_{i} \leq 1$ and $\sum_{i=1}^{n} r_{i}=1$.

For the Prisoner's Dilemma and the Penalty Shot game we looked at pairs of strategies where neither player has an incentive to change their mind. We define this formally.

Definition 23.8. A Nash Equilibrium (NE) for a game is a collection of mixed strategies $s_{1}, s_{2}, \ldots, s_{n}$ such that for every player $p \in P$, for every mixed strategy s_{p}^{\prime} for p,

$$
E\left(u_{p}\left(s_{1}, s_{2}, \ldots, s_{p}, \ldots, s_{n}\right)\right) \geq E\left(u_{p}\left(s_{1}, s_{2}, \ldots, s_{p}^{\prime}, \ldots, s_{n}\right)\right)
$$

Informally, this definition says that a tuple of strategy (one for each player) is a NE if no player has incentive (i.e., can't be better off) to change his strategy based on the strategies of the other players, in terms of expected utility.

Nash proved the following:
Theorem 23.9. Every game has an NE.
The proof is (you guessed it) nonconstructive. Hence this fits the theme (and in fact was the original motivation) of this material: we know that a solution exists but it seems hard to find it.

Example 23.10.

1. In the Prisoner's Dilemma the confess-confess pair is a NE of pure strategies.
2. In the Penalty Shot game, the scenario where both players flip a fair coin to determine their move is a NE of mixed strategies

We are interested in the complexity of finding the NE.

```
r-NASH
```

Instance: An r-player game where all of the utilities are integers.
Output: Return an approximation to a NE. The discussion below will clarify why we settle for an approximation. We omit details of how the approximation works; however, you would need to have the error tolerance ε as part of the input. (We use the term Nash to mean r-Nash for some r.)

Is it possible that a NE uses irrational probabilities? Is it possible that a NE uses rationals but the numerator or denominator are exponential the length of the problem? Either of these would make asking for an exact NE a hopeless request. We state fact known about NE.

1. In Nash's original paper [Nas50] he gave an example of a 3-player game where all of the NE used irrational numbers.
2. Lemke \& Howson [EJ64] showed that every 2-player game with integers utilities has a rational NE.
3. Cottle \& Dantzig [CD68] showed that the rational NE for a 2-player game has numerators and denominators that are of size a polynomial in the size of the problem.
4. In 1928, von Neumann [Neu28] showed that in two-player zero-sum games (one where if Player i has utility x then Player $1-i$ has utility $-x$) there is always a NE. His proof was by the minimax theorem which can be interpreted as a polynomial-time algorithm. In fact, this technique is a special case of strong Linear Programming Duality. In our notation we say that 2-NASH restricted to zero-sum games is in P.

What is the complexity of 2-NASH? It seems to be hard to compute. However, by the next exercise, it is unlikely to be NP-hard.

Exercise 23.11. If 2-NASH is NP-hard then NP $=$ coNP.
Hint: This is similar to the proof of Theorem 23.3.

23.4 Brouwer's Fixed Point Theorem

Brouwer's famous Fixed Point Theorem is as follows.
Theorem 23.12. Let D be a subset of Euclidean space. Let f be a function from D to D. Assume f, D satisfy the following three properties:

1. D is a convex set.
2. D is compact.

3. f is continuous.

Then there exists $x \in D$ such that $f(x)=x$.

We note that Brouwer's theorem is tight in that if any of the conditions are not met then the theorem is not true. We also note that the proof of Brouwer's theorem is nonconstructive in that the proof will not help you find the fixed point quickly.

It is worth noting that Nash used Brouwer's theorem to show his result for general games. Roughly, the proof involves a function $f:[0,1]^{n} \rightarrow[0,1]^{n}$ that indicates the motivation a player has to deviate from his current strategy. The NE corresponds to the fixed point of the mapping.

The computational problem that arises from Brouwer's fixed point theorem is to, given f, D satisfying the conditions of Theorem 23.12, find the fixed point. There is a major problem with this problem. f is continuous! D is a subset of the reals! This entire book has been about discrete problems! Not to worry, there is a discrete version of this problem, suitable for study. It is due to Papadimitriou [Pap94, Page 511]. We present it here:
$\operatorname{BrouWER}_{p, d}(p$ is a polynomial with coefficients in \mathbb{Z} and $d \in \mathbb{N}$. Both p and d are parameters)
Instance: A Turing machine M and $n \in \mathbb{N}$. (n is in unary.) Let

$$
D=\left\{\left(\frac{a_{1}}{n}, \ldots, \frac{a_{d}}{n}\right): a_{1}, \ldots, a_{d} \in\{0, \ldots, n\}\right\} .
$$

1. The inputs to the TM will be elements of $D \subseteq[0,1]^{d}$.
2. Note that there are only n^{d} inputs which is a polynomial number of inputs.

Promise: For all $\vec{x} \in D$,

1. $M(\vec{x})$ runs in time $\leq p(n)$.
2. $M(\vec{x}) \in \mathbb{Q}^{d}$,
3. $|M(\vec{x})| \leq \frac{1}{n^{2}}$, and
4. $M(\vec{x})+\vec{x} \in[0,1]^{d}$.

Since there are only n^{d} inputs and M runs in $p(n)$ time, the promise can be checked in polynomial time. Do this. If the promise does not hold then output BAD INPUT.

Output: (Assume the promise holds) Let f be the function from D to D defined by $f(\vec{x})=\vec{x}+M(\vec{x})$. The function f can be extended to a unique piecewise linear map \hat{f} that maps $[1, n]^{d}$ to $[1, n]^{d}$. The function \hat{f} satisfies the conditions of Brouwer's fixed point theorem, so there exists an $\vec{x} \in[1, n]^{d}$ such that $\hat{f}(\vec{x})=\vec{x}$. Find that point.

Note: There is an issue that \vec{x} might have coordinates that are irrational or the ratio of large naturals. Hence, formally, the input must also contain an error bound. We omit these details.

23.5 Sperner's Lemma

Sperner's lemma is about colorings of n-dimensional objects; however, we will look at the special case where the dimension is 2 .

Figure 23.2: Valid edge coloring for the Sperner edge coloring.

We define some terms and then state Sperner's Lemma.
Definition 23.13. Let $C O L$ be a 3-coloring of the lattice points of an $n \times n$ grid.

1. COL is valid if all vertices on the bottom row are RED, all vertices in the leftmost column are YELLOW, and all other boundary vertices are BLUE. (There is no condition on the nonboundary vertices.) Figure 23.2 gives an example of a valid coloring. (If you are reading the black \& white version of this book then the left side is supposed to be all yellow except for the bottom vertex which is red, the bottom is all red except for the right most vertex which is purple, the right side is all purple, and the top is all purple except for the left most vertex which is yellow. all of the other vertices have their color unspecified.)
2. For all squares in the grid draw the line from the upper left to the bottom right. Hence we now have many triangles. A trichromatic triangle is a triangle where all of the vertices have different colors.

Theorem 23.14. For all valid 3-coloring of the lattice points of an $n \times n$ grid there is a trichromatic triangle. In fact, there will be an odd number of them.

Proof:

We give two proofs.
Proof One
First, we will add an artificial trichromatic triangle by adding a blue vertex next to the bottom left corner of the grid, where the yellow and red boundaries meet (see Figure 23.3). We now define a directed walk on the triangles of the grid graph inductively. We start in the artificial triangle and leave it though the yellow-red edge with yellow to the left. If we arrive in a trichromatic triangle we are done. If not then the other vertex is red or yellow. Hence there will be a way to leave by going over a yellow-red edge with yellow on the left. Keep doing this: leave a triangle through the yellow-red edge with yellow on the right and either (a) you are in a trichromatic triangle so you are done, or (b) the other vertex is yellow or red so repeat. We claim that this procedure will find another trichromatic triangle.

Note that this walk can not exit the grid graph with legal boundary coloring: the only redyellow edge on the boundary is the one on the bottom left corner, and in order to cross it we

Figure 23.3: A valid walk in a valid coloring of a triangulation of the lattice for Sperner's Lemma.
would have to have the yellow vertex on our right. This is not allowed. Moreover our walk will not produce a cycle. For the sake of contradiction, suppose that it did. Consider a triangle where the loop closes. This triangle must have had a red-yellow edge that we crossed the first time with yellow to the left. However, on our way back in, any edge we cross will either have red to the left or yellow to the right. Neither of these options is admissible. Therefore, there are no cycles and we never leave the grid graph.

This, together with the fact that the number of triangles is finite, implies that at some point we must encounter a trichromatic triangle, since that is when our walk stops. Therefore, at least one such triangle must exist.

What about any other trichromatic triangles? Well, we can perform the same procedure with the other internal trichromatic triangles. Start another walk from one such triangle and, by the same argument above, we will end at another.

Therefore, the total number of trichromatic triangles in our modified graph is an even number that is at least 2 . However, one of these triangles was artificially introduced. Therefore, the number of trichromatic triangles inside the grid graph must be an odd number that is at least 1.

End of Proof One

Proof Two

This proof is more basic. Consider a directed graph where each vertex represents a triangle. There is an edge (u, v) if triangles u, v are adjacent and the edge that they share has yellow on the left.

We claim that every vertex must have in-degree ≤ 1 and out-degree ≤ 1. This can be done by a case analysis of the possibilities. It is important to note that if a triangle has exactly one red-yellow edge (hence it's trichromatic), then its vertex will have either exactly in-degree 1 and
out-degree 0 or out-degree 1 and in-degree 0 .
But what can we say about a directed graph where every vertex has in-degree and out-degree at most 1? Well, there can only be three types of (weakly) connected components: isolated vertices, cycles or directed paths. These paths correspond to the paths we discovered in the walk above and imply that the trichromatic triangles come in pairs. In a more elementary way, the underlying principle is that if a directed graph has an unbalanced (i.e. in-degree is not the same as out-degree) vertex, then there must be another one.

In our example, the unbalanced vertices correspond exactly to trichromatic triangles. Since in our construction we introduce one such vertex, we are guaranteed that our graph will contain another one and a total even number of them. This property is also known as the Parity Argument for Directed Graphs, and plays a key role in the definition of the PPAD class.

Sperner's Lemma and Brouwer's Theorem have a similar flavor. Indeed, we can derive Brouwer's theorem from Sperner's lemma.

Theorem 23.15. Sperner's Lemma implies Brouwer's Theorem.

Proof sketch:

We can consider the problem of finding approximate fixed points for a function f from the unit square to itself. Given ε we want to find x such that $|f(x)-x|<\varepsilon$. We will create a grid on the unit square where the lines are δ apart (later we will set δ very small). We color each point p of the grid as follows:

- Yellow if the vector from p to $f(p)$ points right, though can be at an angle. Note that all of the grid points on the left will be yellow which fits the premise of Sperner's lemma. (We also color yellow if it points straight up or straight down.)
- Red if the vector from p to $f(p)$ points up, though can be at an angle Note that all of the grid points on the bottom will be red which fits the premise of Sperner's lemma. (We also color red if the it points left or right.)
- Blue in all other cases. Note that all of the grid points on the top or the right will be blue which fits Sperner's lemma.

We can then use a compactness argument and let $\delta \rightarrow 0$ to prove the existence of an approximate fixed point (which will be inside the trichromatic triangle). This proof however might not preserve the parity or even the number of trichromatic triangles.

We now define the problem Sperner for 2-dimensions, called 2-Sperner.

2-SPERNER

Instance: A circuit that has input $\{0,1\}^{n} \times\{0,1\}^{n}$ and output $\{0,1,2\}$ (the three colors). (We do not test if the coloring is valid.)
Output: Either return a trichromatic triangle or return that the coloring is not valid. (It is okay to return a trichromatic coloring even if the coloring is not valid. It is likely that an algorithm will proceed, find an alleged trichromatic coloring, and then test it is trichromatic, return it, if not then return that the coloring is not valid.)

We omit the definition of the general n-dimensional Sperner problem since it is somewhat technical. It can be found in Papadimitriou [Pap94] (page 507-510). We use the term Sperner to refer to the n-dimensional problem for all n.

23.6 Total Search Problems in NP

In the next definition we state two types of problems we have discussed in this book, and two we have not, to show the contrast.

Definition 23.16.

1. Decision Problems: Let A be a set. The problem is, given x, determine if x is in A. Example: SAT. Note that this is NP-hard (actually NP-complete).
2. Functions: Let f be a function. The problem is, given x, find $f(x)$. Example: Given φ output the least lexicographic satisfying assignment if there is one, and 0 if there is not one. Note that this is NP-hard.
3. Search Problems (this is new): Let R be a relation. The problem is, given x, find some y such that $R(x, y)$, or output 0 if there isn't any. Example: Given φ find some y such that $\varphi(y)=$ True, and output 0 if there is no such y. Note that this is NP-hard.
4. Total Search Problems (this is new): Let R be a relation where we are promised that, for all x, there is a short y with $R(x, y)$. The problem is, given x, find some short y such that $R(x, y)$. Examples: EOL, 2-Nash, Brouwer, and Sperner. (We do not include 3-Nash or r-Nash since, as noted earlier, these may have irrational NE. We will later look at approximating them.)

If any of EOL, 2-NASH, Brouwer, or Sperner are NP-hard then NP = coNP (we proved this for EOL in Theorem 23.3 and the proofs for the others are similar). Hence it is unlikely that any of them are NP-hard. We need another way to show they are hard.

In this chapter we will study problems where (1) you know there is a solution, (2) finding it seems hard, but (3) finding it does not seem to be NP-hard.

Exercise 23.17. Show that if the Search Problem that finds some satisfying assignment is in polynomial time, then the function that finds the lexicographic least satisfying assignment is in polynomial time.

We will now define an analog of NP for search problems and total search problems.
To get an intuition for FNP let us first define FP (this is different from the FP we defined in Section 0.3). We follow the definition by Rich [Ric08] (from the section the problem classes FP and $F N P$).

Definition 23.18. A relation R is in FP if the following occur.

1. $R(x, y)$ can be computed in time polynomial in $|x|+|y|$.
2. The function that, given x, determines if there is a y such that $R(x, y)$ holds, can be computed in time polynomial in $|x|$.
3. The function that, given x such that there is y with $R(x, y)$, finds such a y, can be computed in time polynomial in $|x|$.

Note that if there is such a y it will be of length bounded by a polynomial in $|x|$.
Definition 23.19. If $R \in \mathrm{FP}$ then the set associated with R is

$$
\{x: \exists y: R(x, y)\} .
$$

For FP we often think of the set first and the relation later. For example, 2-coloring corresponds to the following relation in FP:

$$
\{(G, \rho): \rho \text { is a 2-coloring of } G\} .
$$

FNP will be the NP-analog of FP. We will not demand that the y (if it exists) can be determined. We will demand that the y (if it exists) will be short since that will no longer follow from the definition.

Definition 23.20. A relation R is in FNP if the following occur.

1. $R(x, y)$ can be computed in polynomial time.
2. There is a polynomial p such that, for all x, if there is a y such that $R(x, y)$ then there is also such a y with $|y| \leq p(|x|)$.

Note that we are not claiming that y can easily be found.
Definition 23.21. If $R \in$ FNP then the set associated with R is

$$
\{x: \exists y: R(x, y)\} .
$$

For FNP we often think of the set first and the relation later. For example, 3-coloring corresponds to the following relation in FNP.

$$
\{(G, \rho): \rho \text { is a 3-coloring of } G\} .
$$

We want to capture the fact that the problems we care about are total.
Definition 23.22. A relation R is in TFNP if $R \in$ FNP and the following additional property holds: For every x there is a y such that $R(x, y)$. Note again that we are not claiming that such a y can be found easily.

Note: Unlike FP and FNP it would be silly to associate with $R \in$ TFNP a set since that set would always be Σ^{*}.

23.7 Reductions and PPAD

We define reductions for FNP.
Definition 23.23. Let $R, R^{\prime} \in \mathrm{FNP}$ and let L, L^{\prime} be the associated sets. R is polynomial-time reducible to R^{\prime} if the following occur.

1. There exists a polynomial time computable f such that $x \in L$ if and only if $f(x) \in L^{\prime}$.
2. There exists a polynomial time computable g such that if $R^{\prime}(f(x), y)$ holds then $R(x, g(y))$ holds. (So if you have a witness for $f(x)$ you can recover one for x.)

Exercise 23.24. Show that, if R is reducible to R^{\prime} and $R^{\prime} \in \mathrm{FP}$, then $R \in \mathrm{FP}$.
We could define a notion of FNP-hard based on this reduction. Alas, it is unlikely that EOL, Nash, Sperner or Brouwer are FNP-hard. We showed in Theorem 23.3 that if EOL is what we now call FNP-hard then NP = coNP. The same holds for the other problems.

These four problems all seem hard. Let's turn this around! Let's assume that one of them is hard and define a complexity class based on that assumption.

Papadimitriou [Pap94] defined the following class.
Definition 23.25. Let $R \in F N P$.

1. R is in PPAD (Polynomial Parity Arguments on Directed graphs) if R is reducible to EOL.
2. R is PPAD-hard if EOL is reducible to R.
3. R is PPAD-complete if R is both in PPAD and PPAD-hard.

Theorem 23.26. SPERNER, NASH, and Brouwer are all in PPAD.

Proof sketch:

The proof of Sperner's Lemma uses Theorem 23.2 in the case of graphs with in-degree and out-degree ≤ 1. This proof can be modified to obtain a reduction of Sperner to EOL.

Theorem 23.15 showed (a sketch of) how to prove Brouwer's fixed point theorem from Sperner's Lemma. That proof can be modified to obtain a reduction of Brouwer to Sperner.

The existence of a NE can be proven from Brouwer's fixed point theorem. That proof can be modified to obtain a reduction of Nash to Brouwer.

It turns out that all three of these problems are PPAD-complete.
We discuss one more problem that is PPAD-complete.
Definition 23.27. Let C be a cake. Let P_{1}, \ldots, P_{n} be n people. They each have a that maps areas of the cake to values. The entire cake maps to 1 and a single point maps to 0 . If A and B are disjoint parts of the cake then, for any utility function $U, U(A \cup B)=U(A)+U(B)$.

1. An allocation of C is a partition $C=C_{1} \cup \cdots \cup C_{n}$ of C where, for all $1 \leq i \leq n, P_{i}$ gets piece C_{i}.
2. An allocation is Proportional if every person, using their own utility function, gets $\geq \frac{1}{n}$.
3. An allocation is Envy-Free if every person, using their own utility function, think that nobody has a strictly larger piece than they have.

We state theorems about existence of an envy-free allocation using only $n-1$ cuts and finding such an allocation.

Theorem 23.28.

1. (Stromquist [Str80]) For any n utility functions there exists an envy-free allocation that only uses $n-1$ cuts. The cuts could be at irrational points. He also discusses finding an approximation to an envy-free division.
2. (Deng et al. [DQS12]) To discuss the complexity of finding an envy free division we need a notion of how a valuation can be input. Let the valuation be a polynomial time computable function (see the paper for details). The problem of, given n evaluation functions, find an envy-free allocation that only uses $n-1$ cuts, is PPAD-complete.

23.8 2-NASH is PPAD-Complete

Daskalakis et al. [DGP09] proved that 3-NASH is PPAD-complete (this was actually in Daskalakis's Ph.D. Thesis). At the time it was thought that perhaps 2-NASH is in P since (1) 2-NASH always has a rational NE and (2) the zero-sum case is in P. Hence it was a surprise when Chen \& Deng [CD06] proved that 2-NASH is PPAD-complete. Later Daskalakis et al. [DGP09] found a way to obtain 2-NASH PPAD-complete from their techniques, and that is in their paper.

We will show part of the proof that 2-NASH is PPAD-complete. We mostly follow the approach of Daskalakis et al [DGP09]. Hence all the theorems we present are due to them unless otherwise noted.

The full reduction requires a sequence of reductions:

1. Reduce a PPAD problem to a PPAD-type problem in $[0,1]^{3}$.
2. Reduce the PPAD-type problem to the 3D-Sperner problem. the 3D-Sperner problem to Arith Circuit SAT. We will define this formally later. It involves arithmetic circuits and asks if there is a way to set the variable vertices so that the circuit is consistent.
3. Reduce Arith Circuit SAT to Poly Matrix Nash. We will define this formally later. It involves a restricted NASH problem, though for many players. So, initially, it looks incomparable to 2-NASH.
4. Reduce Poly Matrix Nash to 2-Nash.

We will focus on the reduction of Arith Circuit SAT to Poly Matrix Nash.

23.8.1 PPAD-completeness of 2-NASH (High Level)

We first find cycles and paths and place them in a cube $[0,1]^{3}$ without intersections. Then we represent this as a Sperner problem, next we convert the problem to an Arithmetic Circuit. Finally, that Arithmetic Circuit is converted into a NASH problem.

23.8.2 Arithmetic Circuit SAT

An arithmetic circuit is a circuit which has arithmetic Operations at the gates. Normally there would be input vertices; however, here we instead have variable vertices. The problem will be to find a way to set the variable vertices so that the circuit is consistent.

Definition 23.29. An Arithmetic Circuit is a circuit with the following types of gates.

- Variable vertices $x_{1}, x_{2}, \ldots, x_{n}$. These have in-degree 1 and out-degree 0 or 1 or 2. (Yes you read that right- the in-degree is 1 , not 0 . These are not input vertices.)
- Gates of 6 types (:=,+, $-, a, x a,>$) which we describe in the next definition. They are pictured, together with their in-degree and out-degree, in Figure 23.4. For the $>$ gate and the - gate, the order of inputs matters, which is why the inputs are labeled 1 and 2. For the other gates the order does not matter.
- Directed edges connecting variables to gates and vice versa.
- Variable vertices have in-degree 1 ; gates have in-degree 0,1 , or 2 inputs depending on type; gates and vertices have arbitrary fan-out.

Figure 23.4: The operation vertices of Arith Circuit SAT.

Definition 23.30. We use $y \leftarrow f\left(x_{1}, \ldots, x_{n}\right)$ to mean that if x_{1}, \ldots, x_{n} are the inputs to the gate, then y is the output. The gates we define are pictured in Figure 23.4.

- Assignment: $y \leftarrow x_{1}$. In-degree 1 .
- Addition: $y \leftarrow \min \left\{1, x_{1}+x_{2}\right\}$. In-degree 2.
- Subtraction: $y \leftarrow \max \left\{0, x_{1}-x_{2}\right\}$. In-degree 2 .
- Equal a constant: $y \leftarrow \max \{0, \min \{1, a\}\}$. In-degree 0 .
- Multiply by a constant: $y \leftarrow \max \{0, \min \{1, a x\}\}$. In-degree 1 .
- Greater than:

$$
y \leftarrow \begin{cases}0, & \text { if } x_{1}<x_{2} \tag{23.1}\\ 1, & \text { if } x_{2}<x_{1} \\ \text { any value, } & \text { if } x_{2}=x_{1}\end{cases}
$$

In-degree 2.

Arith Circuit SAT

Instance: An Arithmetic circuit with variable vertices x_{1}, \ldots, x_{n}.
Output: An assignment of rationals to the variable vertices so that all of the gate operations are satisfied.
Note: In Figure 23.5 we show an example of Arith Circuit SAT. (There is a detail here that we are skipping: the rationals cannot have two large a numerator or denominator.)

Figure 23.5: The operation vertices of Arith Circuit SAT.

We derive values of a, b, c that make the arithmetic circuit consistent.
Node c is assigned to value $1 / 2$ and thus must have this value. Node b has an assignment into vertex a, so $a=b$. If $c>a$ then the $>$ gate outputs a 1 , so $b=1$, so $a=1$ but that can't happen since $c=\frac{1}{2}$. If $c<a$ then the $>$ gate output a 0 , so $b=0$, so $a=0$ but that can't happen since $c=\frac{1}{2}$. Hence we must have $c=a$. Then $a=b=c=\frac{1}{2}$.

In the example the solution existed and was unique. It is quite possible there is no solution, one solution, or many solutions.

23.8.3 Graphical Games

Rather than reducing directly to 2 -NASH, it will be useful to reduce to a more general kind of game. Kearns et al. [KLS01] defined graphical games.

Definition 23.31. A graphical game has the following.

1. A directed graph.
2. Each player's payoff depends only on his own strategy and the strategy of his in-neighbors.

Janovkaya [Jan68] defined a special case of graphical games called polymatrix games.

Definition 23.32. A polymatrix game is a graphical game with edge-wise separable utility functions. For player v,

$$
u_{v}\left(x_{1}, \ldots, x_{n}\right)=\sum_{(w, v) \in E} u_{w, v}\left(x_{w}, x_{v}\right)=\sum_{(w, v) \in E} x_{v}^{T} A^{(v, w)} x_{w} .
$$

Here, $A^{(v, w)}$ are matrices, x_{v} is the mixed strategy of v, and x_{w} is the mixed strategy of w. Now, our strategy for reducing from Arith Circuit SAT to Nash will be via Poly Matrix Nash, so our next goal is to reduce Arith Circuit SAT to Poly Matrix Nash

We define the problem of finding a Nash equilibrium for a polymatrix game.

Poly Matrix Nash

Instance: A polymatrix game.
Output: An approximation to a Nash equilibrium.

23.8.4 Reduction: Arith Circuit SAT to Poly Matrix Nash

The key to this reduction is the invention of game gadgets, small polymatrix games that model arithmetic at their Nash equilibrium. As an example, consider the following gadget for addition.

Addition Gadget Suppose each player has two strategies, call these $\{0,1\}$. Then, a mixed strategy is a number in $[0,1]$, i.e. the probability of playing 1 . We construct a gadget with players w, x, y, z and edges $(x, w),(y, w),(z, w),(w, z)$. Player w has expected return

$$
\begin{aligned}
& \operatorname{Pr}[x: 1]+\operatorname{Pr}[y: 1] \text { for playing } 0 \\
& \operatorname{Pr}[z: 1] \text { for playing } 1
\end{aligned}
$$

It is easy to construct this payoff matrix: $u_{w}(0)=x+y$ and $u_{w}(1)=z$.
Player z is paid for "playing the opposite" of $w: u_{z}(0)=.5$ and $u_{z}(1)=1-w$.
Lemma 23.33. In any Nash equilibrium of a game containing the above gadget,

$$
\operatorname{Pr}[z: 1]=\min \{\operatorname{Pr}[x: 1]+\operatorname{Pr}[y: 1], 1\} .
$$

Proof:

Suppose $\operatorname{Pr}[z: 1]<\min (\operatorname{Pr}[x: 1]+\operatorname{Pr}[y: 1], 1)$. Then w will play 0 with probability 1 , but then z should have played 1 with probability 1 , a contradiction.

Conversely, suppose $\operatorname{Pr}[z: 1]>\operatorname{Pr}[x: 1]+\operatorname{Pr}[y: 1]$. Then w will play 1 with probability 1 , but then z should have played 0 with probability 1 , again a contradiction.

Thus, $\operatorname{Pr}[z: 1]=\operatorname{Pr}[x: 1]+\operatorname{Pr}[y: 1]$.

More gadgets We need such a gadget for all the possible gates in Arith Circuit SAT. If z is the output of the gadget and x, y are the inputs, we need (conflating x with $\operatorname{Pr}[x: 1]$)

- copy: $z=x$
- addition: $z=\min (1, x+y)$
- subtraction: $z=\max (0, x-y)$
- set equal to constant: $z=a$
- multiply by a constant: $z=a x$
- comparison: $z=1$ if $x>y, z=0$ if $x<y$, unconstrained otherwise

Another example: Comparison gadget Players $x, y, z . u_{z}(0)=y, u_{z}(1)=x$. Then $x>y \Rightarrow$ $\operatorname{Pr}[z: 1]=1$ and similarly for $x<y$.

Now that we have all these gadgets we can sketch a proof of the reduction we seek (in this section).

Theorem 23.34. Arith Circuit SAT is reducible to Poly Matrix Nash. Hence Poly Matrix Nash is PPAD-complete.

Proof sketch:

We omit the construction of the remaining gadgets, but they are not much more complicated than the addition gadget. From here, given an arbitrary instance of Arith Circuit SAT, we can create a polymatrix game by composing game gadgets corresponding to each of the gates. At any Nash equilibrium of the resulting polymatrix game, the gate conditions are satisfied, which completes the reduction.

By Theorem 23.26 NASH is in PPAD. Since Poly Matrix NASH is a subcase of NASH, it is also in PPAD.

23.8.5 Reduction: Poly Matrix Nash to 2-Nash

Theorem 23.35. Poly Matrix Nash reduces to 2-Nash.

Proof sketch:

Since we can construct the game gadgets we used to reduce to Poly Matrix Nash using only bipartite game gadgets (input and output players are on one side, and auxiliary vertices are on the other side), without any loss of generality we can also assume the polymatrix game is bipartite. This implies that the graph is 2-colorable, say by two colors 'red' and 'blue'. Now, we can think of this as a two-player game between the 'red lawyer' and the 'blue lawyer', where each lawyer represents all the vertices of their color.

Each lawyer's set of pure strategies is the union of the pure strategy sets of her clients; importantly, this is not the same as having a strategy set equal to the product of the strategy sets of the clients, as this would cause an exponential blowup in the problem size (and thus invalidate the
reduction). One way of picturing this is that the red lawyer selects one of her clients to represent, and then selects a strategy for that client.

The payoff of $(u: i),(v: j)$ (the red lawyer plays strategy i of client u, and the blue lawyer plays strategy j of client $v)$ is $A_{i, j}^{(u, v)}$ for u and $A_{j, i}^{(v, u)}$ for v. Informally, the payoff of the lawyers is just the payoffs of the respective clients had they played the chosen strategies. Also, note that the payoff is 0 for either lawyer if their client choice does not have an edge incoming from the other lawyer's client choice (and 0 for both lawyers if they choose non-neighboring clients).

Wishful thinking If (x, y) is a Nash equilibrium of the lawyer game, then the marginal distributions that x assigns to the strategies of the red vertices and the marginals that y assigns to the blue vertices comprise a Nash equilibrium.

This does not work because lawyers might gravitate only to the 'lucrative' clients - we need to enforce that lawyers will (at least approximately) represent each client equally. This is true not only because a lawyer might choose to never represent a client (and hence the marginals are undefined), but because if the red lawyer's clients are not equally represented, the optimal marginals for the blue lawyer are distorted correspondingly.

Enforcing Equal Representation Lawyers play a 'high stakes' game on the side. Without loss of generality, assume that each lawyer represents n clients (can create 'dummy' clients to equalize number of clients). Label each lawyer's clients $1, \ldots, n$ arbitrarily. Payoffs of the high stakes game: Suppose the red lawyer plays any strategy of client j and blue lawyer plays any strategy of client k, then if $j \neq k$ then both players get 0 . If $j=k$ then red lawyer gets $+M$ while blue lawyer gets $-M$.

Claim 23.36. In any Nash equilibrium of the high stakes game, each lawyer assigns probability (close to) $1 / n$ to the set of pure strategies of each of his clients.

We omit the proof.
Now, the game we need for the reduction is simply the sum of the original lawyer game and the high stakes game. Choose $M \gg 2 n^{2} u_{\max }$, where $u_{\max }$ is the maximum absolute value of payoffs in the original game. We can show that the total probability mass is distributed almost evenly among the different vertices.

Lemma 23.37. If (x, y) is an equilibrium of the lawyer game, for all u, v :

$$
\begin{aligned}
& x_{u}=\frac{1}{n}\left(1 \pm \frac{2 u_{\max } n^{2}}{M}\right) \\
& y_{v}=\frac{1}{n}\left(1 \pm \frac{2 u_{\max } n^{2}}{M}\right)
\end{aligned}
$$

However, within a particular vertex u, only the original low stakes game matters, since the different strategies of u are all identical from the perspective of the high stakes game.

Lemma 23.38. The payoff difference for the red lawyer from strategies $(u: i)$ and $(u: j)$ is

$$
\sum_{v} \sum_{\ell}\left(A_{i, \ell}^{(u, v)}-A_{j, \ell}^{(u, v)}\right) y_{v: \ell}
$$

Corollary If $x_{u: i}>0$, then for all j :

$$
\sum_{v} \sum_{\ell}\left(A_{i, \ell}^{(u, v)}-A_{j, \ell}^{(u, v)}\right) y_{v: \ell} \geq 0
$$

Define $\hat{x}_{u}(i):=\frac{x_{u i i}}{x_{u}}$ and $\hat{y}_{v}(j):=\frac{y_{v j i}}{y_{v}}$ (these are the marginals given by lawyers to different vertices).

Observation: If we had $x_{u}=1 / n$ for all u and $y_{v}=1 / n$ for all v, then $\left\{\left\{\hat{x}_{u}\right\}_{u},\left\{\hat{y}_{v}\right\}_{v}\right\}$ would be a Nash equilibrium. Since we have $\pm \frac{2 u_{\max }{ }^{2}}{M}$ deviation, we get approximate Nash equilibrium instead. Fortunately, Arith Circuit SAT is still PPAD-hard with ε approximation, so we still get PPAD-hardness for Nash from this reduction.

NASH really asks for an approximation to the NE. This means that if (x, y) is the NE (where x and y are vectors of probabilities that add to 1) then the algorithm produces (x^{\prime}, y^{\prime}) where x^{\prime} is close to x and y^{\prime} is close to y. We briefly discuss a different kind of approximation.

Definition 23.39. An ε-Nash equilibrium (henceforth just ε-equilibrium) is a pair of mixed strategies (x, y) such that the following holds.

1. If the row player deviates from x, and the column player still uses y, then the row player benefits by at most ε.
2. If the column player deviates from y, and the row player still uses x, then the column player benefits by at most ε.
3. For each player, the payoff at (x, y) is at most ε less than the optimal.

There are essentially matching upper and lower bounds for the time needed to find an ε equilibrium:

Theorem 23.40.

1. Lipton et al. [LMM03] showed that, for all $\varepsilon>0$, there is an algorithm that finds an ε equilibrium that runs in time $O\left(n^{\varepsilon^{-2} \log n}\right)$
2. Braverman et al. [BKW15] showed that, assuming ETH, there exists ε^{*} such that any algorithm that finds an ε^{*}-equilibrium and requires time $O\left(n^{\log n}\right)$

Remark: Consider a 2-player game with payoff matrices $\mathrm{R} \& \mathrm{C}$. Zero-sum games correspond to having $R+C=0$ (the zero matrix) but we can also consider games where the rank of $R+C$ is r, for some constant r. Adsul et at. [AGMS11, AGM ${ }^{+} 21$] showed that rank 1 games have a polynomial-time algorithm for finding a NE (just like zero-sum games), but a result of Mehta in [Meh14] shows that, in rank 3 games, it is already PPAD-hard to find a NE. The case or rank 2 seems to be open.

23.9 Other arguments of existence and resulting complexity classes

The purely combinatorial theorem with a nonconstructive proof at the core of the definition of PPAD is:

If a directed graph has an unbalanced vertex, then it has another unbalanced vertex.
This statement lead to problems (EOL, Nash, Brouwer, Sperner) that are in P but finding the witness seems hard. We then defined PPAD to pin down that finding the witness is probably hard.

In this section we discuss other purely combinatorial theorems with nonconstructive proofs. In all cases (1) the theorems can be interpreted as problems that are in P , (2) finding a witness to verify a relation seems hard, (3) a complexity class is inspired.

23.9.1 There are an Even Number of Vertices of Odd Degree

The oldest theorem in graph theory, due to Euler, is the following (we refashion it for our purposes).

Theorem 23.41. If a graph has a vertex of odd degree, then it must have another.
The proof of Theorem 23.41 is nonconstructive and inspires the following problem and complexity class.

```
Odd Deg
Instance: A circuit \(C\) on \(\{0,1\}^{n}\) that, on input \(x\), outputs a set of elements of \(\{0,1\}^{n}\).
We interpret this as a graph on \(\{0,1\}^{n}\) where the circuit \(C\), when run on \(x\), outputs the neighbors of \(x\). We also have that \(0^{n}\) has an odd number of neighbors.
Output: A vertex \(v \in\{0,1\}^{n}-\left\{0^{n}\right\}\) that has an odd degree.
```

Papadimitriou [Pap94] defined the following classes to make this statement rigorous (our definition differs from Papadimitriou, however ours and his definitions are equivalent).

Definition 23.42. Let $R \in F N P$.

1. R is in PPA (Polynomial Parity Argument) if R is reducible to Odd Deg.
2. R is PPA-hard if Odd Deg is reducible to R.
3. R is PPA-complete if R is both in PPA and PPA-hard.

Exercise 23.43. Show that PPAD \subseteq PPA.
The following theorem is due to Smith (unpublished) and is presented in a paper by Thomason [Tho78] (see also a paper by Krawczyk [Kra99] which contains the proof and is not behind paywalls).

Theorem 23.44. If a 3-regular graph has a Hamiltonian cycle C then, for all edges e in C, there is a second Hamiltonian cycle that uses e.

The proof uses Theorem 23.41 and hence is nonconstructive. Theorem 23.41 inspires the following problem.

> Hamiltonian Cycles in Large 3-Regular Graphs (Ham-3reg)

Instance: A 3-regular graph G and a Hamiltonian cycle H in G.
Output: A Hamiltonian cycle that is not H.
The proof of Theorem 23.44 easily yields the following theorem.
Theorem 23.45. HAM-3REG is in PPA.
Open Problem 23.46. Is HAm-3REG is PPA-complete? (This is believed to be true.)
Here is a non-graph example.
Definition 23.47. Let D be any integral domain (for our purposes \mathbb{Z} or \mathbb{Z}_{p}).

1. Let m be a monomial in $D\left[x_{1}, \ldots, x_{n}\right]$. The degree of m is the sum of the degrees of its terms. For example, the degree of $x_{1}^{2} x_{2}^{3} x_{4}^{4}$ is $2+3+4=9$.
2. Let $p \in D\left[x_{1}, \ldots, x_{n}\right]$ The degree of p is the max of the degrees of the monomials in p.
3. If $q_{1}, \ldots, q_{L} \in D\left[x_{1}, \ldots, x_{n}\right]$ then we refer to that set of polynomials as a system. A solution to the system is $\left(a_{1}, \ldots, a_{n}\right) \in D^{n}$ such that, for all $1 \leq i \leq L, q_{i}\left(a_{1}, \ldots, a_{n}\right)=0$.

Chevalley proved the following.
Theorem 23.48. Let p be a prime. Let $q_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, q_{L}\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}_{p}\left[x_{1}, \ldots, x_{n}\right]$. Assume q_{i} is of degree d_{i}.

1. If $\sum_{i=1}^{L} d_{i}<n$ then the number of solutions to this system is divisible by p.
2. (This is an easy corollary of interest to us.) If $p=2$ and there is a solution, then there is another solution.

Chevalley

Instance: A system of polynomial equations with n variables over \mathbb{Z}_{2} such that the sum of the degrees is $<n$, and one solution.
Output: A solution that is not the given one.

Theorem 23.49.

1. (Papadimitriou [Pap94]) Chevalley is in PPA.
2. (Goos et al. [GKSZ20]) A variant of ChEvalley is $P P A_{q}$-complete (you will define $P P A_{q}$ in Exercise 23.50). However, they do not think the original Chevalley is PPA-complete (see their note on page 6).

Exercise 23.50.

1. Let $q \in \mathbb{N}$ and let G be a bipartite graph. Show that if there is some vertex of degree $\not \equiv 0$ $(\bmod q)$ then there must be another one.
2. Define PPA_{q} and PPA_{q}-complete using Part 1 as motivation.
3. Read Goos et al. [GKSZ20] which shows several problems are PPA_{q}-complete. Rewrite their proofs in your own words.

Open Problem 23.51. Is Chevalley is PPA-complete?
What about natural problems and completeness? The following are known.

1. Filos-Ratsikas \& Goldberg [FG18] showed that the consensus-halving problem, a computational version of the Hobby-Rice Theorem, is PPA-complete.
2. Jerábek [Jer16] showed that the following problem randomly reduces to PPA: given an integer, either declare that it is prime or find a factor. Under the General Riemann Hypothesis there is a deterministic reduction. Note that this reduction, randomized or deterministic, is not a hardness result.

23.9.2 Every Directed Acyclic Graph has a Sink

The following is well known.
Theorem 23.52. Every directed acyclic graph has a vertex v such that outdeg $(v)=0$. Such a vertex is called a sink.

The proof is nonconstructive. Theorem 23.52 inspires the following problem.

```
Find Sink
```



```
    We interpret this as a graph on {0,1\mp@subsup{}}{}{n}}\mathrm{ where the circuit outputs a potential set
    of neighbors. The neighbors of v are the elements }u\inC(v)\mathrm{ such that u>v
    (interpreted as numbers in binary). This will ensure that the graph is acyclic.
Output: A vertex of out-degree 0. (These called sinks.)
```

Johnson et al. [JPY88] defined the following.
Definition 23.53. Let $R \in F N P$.

1. R is in PLS (Polynomial Local Search) if R reduces to Find Sink. (The name "Polynomial Local Search" comes from using this class to classify certain search problems that have local \max (or min) making it difficult to find the global max (or min).)
2. R is PLS-hard if Find Sink is reducible to R.
3. R is PLS-complete if R is both in PLS and PLS-hard.

Local Max Cut
Instance: A weighted graph $G=(V, E, w)$.
Output: A partition $V=V_{1} \cup V_{2}$ that is locally optimal (i.e. can't move any single vertex to the other side to increase the cut size).

Johnson et al. [JPY88] showed the following.
Theorem 23.54. Local Max Cut is PLS-complete.

23.9.3 The Pigeonhole Principle

The following is the well known Pigeonhole Principle.
Theorem 23.55. Let A have n elements and B have $n-1$ elements. For all functions $f: A \rightarrow B$ there exists $x_{1} \neq x_{2} \in A$ such that $f\left(x_{1}\right)=f\left(x_{2}\right)$.

The proof of Theorem 23.55 is nonconstructive.
The following theorem is an easy direct consequence of Theorem 23.55 and hence its proof is nonconstructive.

Theorem 23.56. If $A \subseteq\left\{1, \ldots, 2^{n}-1\right\}$ of n elements whose sum is $<2^{n}-1$ then there exist two distinct subsets of A that have the same sum.

We use Theorem 23.55 and 23.56 as the inspiration for problems.

Collison

Instance: A circuit C with input and output both $\{0,1\}^{n}$. (We are not requiring that C has range $<2^{n}$.)
Output: Either an x such that $C(x)=0^{n}$ or an x, y such that $x \neq y$ but $C(x)=C(y)$.
Distinct Subsets (Dist Subset)
Instance: $A \subseteq\left\{1, \ldots, 2^{n}-1\right\}$ of n elements whose sum is $<2^{n}-1$.
Output: Two distinct subsets of A with the same sum.
It is believed that both Collison and Dist Subset are hard and are equivalent. Papadimitriou [Pap94] defined the following classes to make this statement rigorous.

Definition 23.57. Let $R \in F N P$.

1. R is in PPP (Polynomial Pigeonhole Principle) if R reduces to Collison.
2. R is PPP-hard if Collison is reducible to R.
3. R is PPP-complete if R is both in PPP and PPP-hard.

Exercise 23.58. Show that PPAD \subseteq PPP.
The proof of Theorem 23.56 easily yields the following theorem.
Theorem 23.59. Dist Subset is in PPP.
Open Problem 23.60. Is DIST SUBSET is PPP-complete?
What about natural problems? The following is known.

1. Sotiraki et al. [SZZ18] showed that a variant of the shortest lattice problem is PPP-complete.
2. Jerábek [Jer16] showed that there is a randomized reduction from integer factorization (finding a nontrivial factor) to a weaker version of Collison where the domain is 2^{n} and the range is 2^{n-1}. Under the Generalized Riemann Hypothesis the reduction can be derandomized. Note that this reduction, randomized or deterministic, is not a hardness-result for factoring. Nor does it imply that factoring is in PPP.

23.10 How do the Classes Relate?

We summarize what is know about how the classes relate, and what is open.

Exercise 23.61.

1. Show that $\mathrm{FP} \subseteq \mathrm{PPAD} \subseteq \mathrm{PPA} \subseteq \mathrm{FNP}$.
2. Show that $\mathrm{FP} \subseteq \mathrm{PPAD} \subseteq \mathrm{PPP} \subseteq \mathrm{FNP}$.

Open Problem 23.62.

1. For each subset inclusions in Part 1 and 2 resolve if the inclusion is equal or proper. (It is widely believed that all of the inclusions are proper.)
2. For each subset inclusions in Part 1 and 2 determine whether an equality implies $P=N P$ or some other unlikely conclusion.
3. Resolve how PPA and PPP compare.

Chapter 24

Quantum Computing

24.1 Introduction

This book is about classical computing. The algorithms and reductions in this book can be carried out by a modern computer running on a single CPU or multiple CPUs. We will call such computers classical in that they are based on classical physics (at the bit level computers are based on electricity) and not quantum physics. We use the term classical algorithm for an algorithm that can be run on a classical computer. What we call a classical algorithm in this chapter was just an algorithm in all of the other chapters.

There are theoretical devices called quantum computers. An algorithm that can be run on such a device is a quantum algorithm. There are some problems for which, theoretically, there is a quantum algorithm that is faster than any (known) classical algorithm. Hence quantum algorithms are of interest (we later list other reasons they are of interest).

Quantum computing is a vast topic that we will, for reasons of space, only be able to discuss briefly. We will have very few definitions, proofs, algorithms, or reductions. For basic definitions and more information on quantum computing see (1) the references in this chapter, or (2) the books by Aaronson [Aar13], Mermin [Mer07], or Nielson \& Chuang [NC16].

Chapter Summary

1. We discuss results about quantum algorithms.
2. We discuss results about quantum streaming algorithms.
3. We discuss results about quantum games.
4. We discuss the question will quantum computers ever outperform classical computers-the Quantum Supremecy Debate.

The topics and results chosen highlight when the classical world and the quantum world differ or seem to differ.

24.2 Since the Hype is False, Why Study Quantum Computation?

A cautionary note: from the popular press one might think that quantum computers, if they are built, can solve world hunger, predict the stock market, and solve NP-complete problems. Most experts agree that this is not the case in reality. This misunderstanding may come from a misinterpretation of the many-worlds interpretation of quantum mechanics which gives the false impression that quantum algorithms are massively parallel. They are not. In reality there seem to be only a few problems of interest that quantum computers (if they are built) can do much faster than classical computers. We also note that most experts in quantum do not think that NP-complete problems can be solved quickly by a quantum computer.

Given that the usefulness of quantum algorithms seems limited, why study them?

1. There are two problems, Factoring and Discrete Log, which (1) are very important, and (2) quantum algorithms for them are much faster (polynomial time versus exponential time) than any known classical algorithm.
2. There are many problems that have quantum algorithms that are faster than any known classical algorithm. Childs \& Dam [CvD10] survey algebraic problems that have quantum algorithms which seem faster than any known classical algorithm. Jordan [Jor11] maintains a website of problems that have quantum algorithms that seem faster than any known classical algorithm. The speedups are usually not that large. Even so, they are a proof-ofconcept for quantum algorithms being useful.
3. Richard Feynman first conceived of quantum computing as a way to potentially simulate quantum mechanics. This is another problem where quantum computers may outperform classical ones.
4. There have been cases where a classical algorithm was inspired by research on quantum algorithms. We give an example. Kerenidis \& Prakash [KP17b] had a quantum algorithm for a recommendation system. Tang, while trying to show that no classical algorithm could do as well as the quantum algorithm, found a classical one that did [Tan19]. We stress that this classical algorithm was found because of research in quantum algorithms. For other examples do a web search for Quantum Inspired Classical Algorithms.
5. The study of quantum algorithms has lead to results in classical computing. See the survey of Drucker \& de Wolf [DdW11] for examples.
6. The attempt to build quantum computers may lead to interesting insights into quantum physics. See next point.
7. The most exciting development that could happen would be if the attempt to build quantum computers leads to a discovery that the current theories of quantum mechanics are wrong or incomplete.

24.3 Factoring

Factoring is an important problem for cryptography. Many cryptosystems would be broken if factoring is easy. Hence, in contrast to work in algorithms, cryptographers hope that factoring is hard.

We will define factoring slightly differently than how it was defined in Chapter 0 .

```
Factoring (Factoring)
```

Instance: A number N
Output: If N is prime then output PRIME. If N is not prime then output a nontrivial factor of N.

As noted in Chapter 0:

1. There are no polynomial-time algorithms for Factoring, nor is there a proof that its NPcomplete.
2. There are reasons to think it is not NP-complete (See Exercise 0.24).
3. There is no clear consensus on whether Factoring is in P

For a bit more on classical factoring see Section 0.9. For a lot more about classical factoring, see Wagstaff's book [Wag13].

What about Quantum Polynomial time?
Theorem 24.1. Let the input to a factoring algorithm be N. Let $L=\lg N$ which is the length of N.

1. (Shor [Sho94, Sho99]) There is a polynomial quantum algorithm for Factoring.
2. (Beckman et al. [BCDP96]) There is quantum algorithm for FACTORING that takes time $O\left(L^{2} \log (L) \log (\log (L))\right.$ (This paper used Shor's algorithm as a starting point.)

We note the following

1. The key quantum component of Shor's algorithm for Factoring is the quantum Fourier transform.
2. The constants in Beckman et al.'s version of Shor's algorithm are small. The biggest obstacle to running the algorithm is building a quantum computer that can handle many qubits.
3. Martin-Lopez et al. [MLLL ${ }^{+}$12] have factored 21 on a quantum computer using Shor's algorithm. This can be considered a proof-of-concept. Other bigger numbers have been reported to have been factored by a quantum computer but they really used a lot of classical computing to set the problem up and hence we do not count those. Smolin et al. [SSV13] discuss this issue.

Upshot If Factoring $\notin \mathrm{P}$ then Factoring will be an example of a problem that quantum computers can do faster than classical computers. Proving Factoring $\notin P$ is hard since it implies $P \neq N P$.

24.4 Discrete Log

Discrete Log is an important problem for cryptography. Many cryptosystems would be broken if Discrete Log is easy. Hence, in contrast to work in algorithms, cryptographers hope that Discrete Log is hard.

We will define Discrete Log slightly differently than how it was defined in Chapter 0.

```
Discrete Log (Discrete Log)
Instance: A prime p, a generator }g\mathrm{ of }\mp@subsup{\mathbb{Z}}{p}{}\mathrm{ , and }a\in\mp@subsup{\mathbb{Z}}{p}{}.\quad(g\mathrm{ is a generator if
    {g,\mp@subsup{g}{}{2},\ldots.,\mp@subsup{g}{}{p-1}}={1,\ldots,p-1}.)
Output: }x\mathrm{ such that }\mp@subsup{g}{}{x}\equiva(\operatorname{mod}p)
```

As noted in Chapter 0 there are no polynomial-time algorithms for Discrete Log, nor is there a proof that its NP-complete. There are reasons to think it is not NP-complete (See the discussion of Discrete Log in Chapter 0.)

Algorithms for Discrete Log are hard to analyze and depend on (widely believed) conjectures in number theory. The fastest known algorithm, the Function Field Sieve, is believed to have running time roughly $2^{1.53 L^{1 / 3}(\lg L)^{2 / 3}}$, where $L=\lg N$ is the length of the input number N. This bound is small enough that the algorithm is practical for moderately large inputs. The naive algorithm for Discrete Log takes time 2^{L}. Hence reducing the time to roughly $2^{L^{1 / 3}}$ is a real improvement. Adleman [Adl94] developed the Function Field Sieve and then elaborated the ideas with Huang (see [AH99]).

There is no formal connection between Discrete Log and Factoring; however, the techniques for one seem to apply to the other. Hence the following two points made about Factoring are true of Discrete Log also: (1) there is no consensus about if Discrete Log $\in P$, and (2) if Discrete Log $\in P$ then this will require new techniques.

What about Quantum Polynomial time?
Theorem 24.2. Let the input to a Discrete Log algorithm be N. Let $L=\lg N$ which is the length of N.

1. (Shor [Sho94, Sho99]) There is a polynomial quantum algorithm for Discrete Log.
2. (Folklore though can be obtained from Beckman et al. [BCDP96].) There is quantum algorithm for Discrete Log that takes time $O\left(L^{2} \log (L) \log (\log (L))\right)$.

We note the following

1. The key quantum component of Shor's algorithm for Discrete Log is the quantum Fourier transform. While discussing classical algorithms for Discrete Log we noted that while there is no formal connection between Discrete Log and Factoring, improvements in one tend to lead to improvements in the other. We were referring to classical algorithms. However, the same seems to be true for quantum algorithms: both the quantum algorithm for Factoring and for Discrete Log use the quantum Fourier transform.
2. There do not seem to be any attempts to execute Shor's Discrete Log algorithm on a quantum computer. Since the quantum algorithms for Factoring and Discrete Log are similar, the same techniques that were used for Factoring will work on Discrete Log.

Hence it is likely that a quantum computer could be used to find Discrete Log when p, g, a are all ≤ 21.

Upshot If Discrete Log $\notin \mathrm{P}$ then Discrete Log will be an example of a problem that quantum computers can do much faster than classical computers. Proving Discrete Log $\notin \mathrm{P}$ is hard since it implies $P \neq N P$.

24.5 The Search Problem

Search

Instance: Access to a function $f:\{0, \ldots, N-1\} \rightarrow\{0,1\}$. We are promised that there is only one x such that $f(x)=1$. We think of this function as representing a 1-element subset of $\{0, \ldots, N-1\}$.
Output: The x such that $f(x)=1$.
Note: The basic unit of computation is an evaluation of f which we call a query.

Theorem 24.3. Let $N \in \mathbb{N}$ and $f:\{0, \ldots, N-1\} \rightarrow\{0,1\}$.

1. (Easy) There is a deterministic algorithm for Search that takes N queries in the worst case. There is a randomized algorithm for SEARCH that has expected complexity $\frac{N}{2}$ queries. Both of these are optimal.
2. (Grover [Gro96]) There is a quantum algorithm for SEARCH that uses $O(\sqrt{N})$ queries.
3. (Bennett et al. [BBBV97]) Any quantum algorithm for SEARCH requires $\Omega(\sqrt{N})$ queries.
4. (easy) Assume that instead of having only $1 x$ with $f(x)=1$ there are M, and the goal is to find one of them. There is a deterministic algorithm takes $O(N-M)$ queries in the worst case. There is a randomized algorithm that has expected complexity $\frac{N}{M}$ queries. Both of these are optimal.
5. For the problem in the last item there is a quantum algorithm that takes $O(\sqrt{N / M})$ queries.

Upshot Search, with the complexity measure number-of-queries, is a problem where quantum computers are provably faster than classical computers.

24.6 The Traversal Problem

Traversal

Instance: A graph G with $\Theta\left(2^{n}\right)$ vertices represented by $\Theta(n)$-bit strings. There are two distinguished vertices Entrance and Exit. The label of Entrance (e.g., Vertex 0110) is given. The label of Exit is not given.
Output: The label of Exit.
Note: The graph is large. We think of the graph as being like a database that you ask questions about. The algorithm can ask question of the following type: given a string w of $\Theta(n)$ bits, return the following information:

- Is w a vertex?
- If w is a vertex then output all of its neighbors.
- If one of the neighbors of w is Exit then indicate this.

The number of queries is the complexity of the algorithm.
Note: Traversalis only asking to find Exit. It is not asking to find the path from Entrance to Exit. We will later comment on this perhaps harder problem of having to find the path.
Note: The basic unit of computation is a query of one of the types above.
This problem looks like it requires $\Omega\left(2^{n}\right)$ queries for either classical or quantum algorithms. And indeed, for the case of general graphs, that is the case. But there is a sequence of graphs where there is a large difference between classical algorithms and quantum algorithms.

One technique that a classical algorithm can use is a Classical Random Walk: the algorithm picks a random neighbor of Entrance, then a random neighbor of that neighbor, etc, until it finds Exit. There is also a notion of a Quantum Random Walk which we will not define.

Theorem 24.4.

1. (Childs et al. [CFG02]) There is a sequence of graphs $\left\{G_{n}\right\}_{n=1}^{\infty}$ such that the following hold: (a) G_{n} has $\Theta\left(2^{n}\right)$ vertices, (b) there is a Quantum Random Walk algorithm that solves Traversal on G_{n} using $\leq p(n)$ queries for some polynomial p, (c) any Classical RANDOM Walk algorithms requires $2^{\Omega(n)}$ queries.
2. (Childs et al. $\left.\left[C C D^{+} 03\right]\right)$ There is a sequence of graphs $\left\{G_{n}\right\}_{n=1}^{\infty}$ such that the following hold: (a) G_{n} has $\Theta\left(2^{n}\right)$ vertices, (b) there is a Quantum Random Walk algorithm that solves Traversal on G_{n} with $p(n)$ queries for some polynomial p, (c) any classical algorithms (whether or not it uses Classical Random Walk) requires $2^{\Omega(n)}$ queries.
3. (Feffery and Zur [7Z22]) In items 1 and 2, $p(n)$ can be replaced by $O(n)$.
4. (Childs et al. [CCG23]) (Informal) Consider the problem of actually finding the path from Entrance to Exit. Under reasonable assumptions, any Classical Random Walk or Quantum RANDOM WALK algorithm requires an exponential number of queries.
Upshot Traversal, with the complexity measure number-of-queries, is a problem where quantum computers are provably faster than classical computers.

24.7 Subquadratic Approximate Edit Distance

Definition 24.5. Let Σ be a finite alphabet and let $x, y \in \Sigma^{*}$. The edit distance between x and \boldsymbol{y} is the number of insertions/deletions/substitutions needed to transform x into y.

Edit Distance

Instance: Two strings x, y over some alphabet Σ. We think of Σ as being fixed.
Output: The edit distance between x and y ?

Theorem 24.6.

1. (Easy) Edit Distance can be computed in time $O\left(n^{2}\right)$ where $n=\max \{|x|,|y|\}$.
2. (Backurs \& Indyk [BI15]) Assuming SETH, Edit Distance requires $\Omega\left(n^{2}\right)$ time.
3. (Abboud et al. [AHWW16]) With an assumption weaker than SETH, EDit Distance requires $\Omega\left(n^{2}\right)$ time.

Theorem 24.6 settles the question for exact Edit Distance: quadratic time is both the upper and lower bound. Is there a subquadratic algorithm for approximating Edit Distance?

Can a quantum algorithm give a subquadratic approximation algorithm? Yes. Boroujeni et al. $\left[\mathrm{BEG}^{+} 21\right]$ proved the following:

Theorem 24.7.

1. (Theorem 4.5 of their paper) For all $\varepsilon>0$ there is a quantum algorithm that (a) runs in time $O\left(n^{2-(4 / 21)} \log \left(\frac{1}{\varepsilon}\right)\right)$ and (b) returns a number that is $\leq(3+\varepsilon) O P T(x, y)$. Note that $2-(4 / 21) \approx 1.8095$.
2. (Theorem 5.1 of their paper) For all $\varepsilon>0$ there is a quantum algorithm that (a) runs in time $\tilde{O}\left(n^{\alpha}\right)$ where $\alpha=2-(5-\sqrt{17} / 3) \approx 1.7077$. (b) returns a number that is $\leq O(1 / \varepsilon)^{O(1 / \varepsilon) O P T(x, y)}$.

Open Problem 24.8. In this open problem the problem is of course approximate EDIT DISTANCE.

1. Find a constant $D>3$ such that that no classical algorithm can, in subquadratic time, obtain a $\operatorname{DOPT}(x, y)$ approximation. This would show that a subquadratic ($3+\varepsilon$)-approximation for Edit Distance is a problem that a quantum algorithm can do but a classical one cannot.
2. Improve the runtime of the quantum algorithm in Theorem 24.7.1.

TWO UPSHOTS: The problem at hand is Edit Distance.

1. The following can be done by a quantum algorithm but (at least for now) not by a classical algorithm: a subquadratic algorithm that, on input x, y, returns $(3+\varepsilon) \operatorname{OPT}(x, y)$.
2. For this problem a quantum approximation algorithm inspired a classical one.

24.8 Quantum Streaming Algorithms

24.8.1 Classical Streaming for Triangle Counting and Distinguishing

Triangle Counting TC
Instance: Graph $G=(V, E)$
Output: An approximation to the number of triangles in G.
A related problem that is usually considered in the literature is that of Triangle Distinguishing, which is defined as follows.

Triangle Distinguishing TD
Instance: Graph $G=(V, E)$, a number T, and the promise that G has either 0 triangles or T triangles.
Question: Does G have 0 triangles?
Clearly TD \leq TC. Hence, a lower bound on TD implies a lower bound on TC.
We will state lower bounds on TD (and hence TC). Recall that in Chapter 21 lower bounds on streaming algorithms were obtained via lower bounds in communication complexity. In this chapter we will talk about (though not prove) lower bounds on quantum streaming algorithms via lower bounds on quantum communication complexity. We first need a problem with large quantum communication complexity.

Definition 24.9. Let $n \in \mathbb{N}$.

1. A perfect matching M over [2n] is a set of n ordered pairs (i, j), where i and j are distinct elements of $[2 n]$, such that every $\ell \in[2 n]$ is in exactly 1 ordered pair.
2. Let M be a perfect matching over [2n]. We identify M with the following $n \times 2 n$ matrix: For every ordered pair (i, j) in the matching there is a row with 1 's in the i th and j th spot, and 0 's everywhere else. Note that a perfect matching can be associated to many different matrices. We will turn this around: we will give Bob a perfect matching by giving him a matrix.
```
Boolean Hidden Matching BHM
Instance: Alice gets a string }x\in{0,1\mp@subsup{}}{}{2n}\mathrm{ . Bob gets (a) a perfect matching M over
    [2n] via a matrix as described in Definition 24.9, and (b) a string w}\in{0,1\mp@subsup{}}{}{n
```



```
    every bit flipped).
Question: Does Mx =w?
```

Theorem 24.10. (Gavinsky et al. [GKK 08$]$) The randomized 1-way communication complexity of BHM, with Alice sending, is $\Omega(\sqrt{n})$.

Notation 24.11. Let n denote the number of vertices, m denote the number of edges, and T is as in the problem statement. Δ_{V} (respectively Δ_{E}) is the maximum number of triangles in G that share a vertex (respectively an edge).

The following are known.

Theorem 24.12.

1. (Jayaram \& Kallaugher [7K21]) There is a 1-pass streaming algorithm for TC that uses space $\tilde{O}\left(\frac{m \Delta_{E}}{T}+\frac{m \sqrt{\Delta_{V}}}{T}\right)$.
2. (Braverman et al. [BOV13]) Any 1-pass streaming algorithm for TD (and hence for TC) uses space $\Omega\left(\frac{m \Delta_{E}}{T}\right)$. This proof uses a reduction of INDEX to TD.
3. (Kallaugher and Price [KP17a]) Any 1-pass streaming algorithm for $T D$ (and hence for $T C$) uses space $\Omega\left(\frac{m \sqrt{\Delta_{V}}}{T}\right)$. This proof uses a reduction of BHM to TD.
4. Any 1-pass streaming algorithm for $T D$ (and hence for $T C$) requires space $\Omega\left(\frac{m \Delta_{E}}{T}+\frac{m \sqrt{\Delta_{V}}}{T}\right)$. This follows from Parts 2 and 3. Note that we now have matching bounds for 1-pass streaming algorithms for TC.

24.8.2 Quantum Streaming for Triangle Counting and Distinguishing

Quantum streaming algorithms were first defined by Khadiev et al. [KKM18] (see also Ablayev et al. [AAKV18]). We will discuss modifying the proofs of the lower bounds for streaming on TD and TC from Theorem 24.12 to obtain lower bounds for quantum streaming for these problems.

Theorem 24.12.2 used that Index has communication complexity $\Omega(n)$. Fortunately, Ambainis et al. [ANTV02] showed that Index also has quantum communication complexity $\Omega(n)$. Hence we have the following analog to Theorem 24.12 .2 by the same proof:

Theorem 24.13. Any 1-pass quantum streaming algorithm for $T D$ (and hence for $T C$) requires space $\Omega\left(\frac{m \Delta_{E}}{T}\right)$. This proof uses a reduction of INDEX to TD. This follows from Theorem 24.12 .2 and the work of Ambainis et al. [ANTV02].

Can we do the same for Theorem 24.12.3? No. Gavinsky et al. [GKK 08] showed that the quantum communication complexity of BHM is $O(\log n)$. Hence we do not have a non-trivial lower bound for TC or TD in the region where $\Delta_{E}=O(1)$ and $T=\Omega(n)$. Indeed, there is a quantum streaming algorithm that works well in that region. Kallaugher [Kal21] showed the following.

Theorem 24.14. Restrict TC to the graphs where $\Delta_{E}=O(1), \Delta_{V}=\Omega(T)$, and $T=\Omega(\mathrm{m})$. There is a 1-pass quantum streaming algorithm for TC that uses space $\tilde{O}\left(m^{2 / 5}\right)$.

Open Problem 24.15. Find a lower bound of the form $\Omega\left(m^{c}\right)$ for TC in the case where $\Delta_{E}=O(1)$, $\Delta_{V}=\Omega(T)$, and $T=\Omega(m)$.

24.8.3 Classical Streaming for \boldsymbol{k}-Clique Counting and Distinguishing

In this section, we define two problems for k-clique finding which are analogous to Triangle Counting and Triangle Distinguishing.

$$
k \text {-CliQue Counting (кСС) }
$$

Instance: Graph $G=(V, E)$ and $k \in \mathbb{N}$.
Output: An approximation to the number of cliques of size k in G.

$$
\begin{aligned}
& \text { k-Clique Distinguishing }(\kappa C D) \\
& \text { Instance: Graph } G=(V, E), C \in \mathbb{N} \text {, and the promise that } G \text { has either } 0 k \text {-cliques } \\
& \quad \text { or } \geq C k \text {-cliques. } \\
& \text { Question: Does } G \text { have } 0 k \text {-cliques? }
\end{aligned}
$$

Clearly кСD $\leq \kappa С С$. Hence a lower bound on $\kappa C D$ implies a lower bound on $\kappa С С$.
Theorem 24.12.2 stated a $\Omega\left(\frac{m \Lambda_{E}}{T}\right)$ space lower bound for 1-pass streaming algorithms for Triangle Distinguishing. A similar proof gives the same lower bound for k-Clique Distinguishing (with T being the number of k-cliques); however this gives a trivial lower bound on most graphs, since Δ_{E} is usually small. We want a stronger lower bound for more general graphs. Additionally, since the quantum streaming complexity of triangle counting in the parameter setting $\Delta_{E}=O(1)$ and $T=\Omega(m)$ is an open problem it might be instructive to look for lower bounds on k-clique counting for $k \geq 4$ in this parameter setting to understand if the difficulty of this problem is unique for triangle counting.

For the next exercise you need the following definition and theorem.
Definition 24.16. Let $k, n \in \mathbb{N}$.

1. A perfect hypermatching $\boldsymbol{M} \operatorname{over}[\mathbf{k n}]$ is a set of n ordered k-tuples $\left(i_{1}, \ldots, i_{k}\right)$, where i_{1}, \ldots, i_{k} are distinct elements of [kn], such that every $\ell \in[k n]$ is in exactly 1 ordered k-tuple.
2. Let M be a perfect hypermatching M over [$k n$]. We identify M with the following $n \times k n$ matrix: For every ordered k-tuple (i_{1}, \ldots, i_{k}) in the hypermatching there is a row with 1 's in the i_{1} th, i_{2} th, .., i_{k} th spot, and 0 's everywhere else. Note that a perfect hypermatching can be associated to many different matrices. We will turn this around: we will give Bob a perfect hypermatching by giving him a matrix.

Boolean Hidden Hypermatching BHHM
Instance: Alice gets a string $x \in\{0,1\}^{k n}$. Bob gets (a) a perfect hypermatching M over [$k n$] via a matrix as described in Definition 24.16, and (b) a string $w \in\{0,1\}^{n}$ where w is promised to satisfy either $M x=w$ or $M x=\bar{w}$ (where \bar{w} is w with every bit flipped).
Question: Does $M x=w$?
Theorem 24.17.

1. (Verbin \& Yu [VY11]) The randomized 1-way communication complexity for BHHM, with Alice sending, is $\Omega\left(n^{1-(1 / k)}\right)$.
2. (Shi et al. [SWY15]) the quantum 1-way communication complexity for BHHM, with Alice sending, is $\Omega\left(n^{1-(2 / k)}\right)$.

Exercise 24.18.

1. Prove that any classical 1-pass streaming algorithm for KCD requires space $\Omega\left(m^{1-1 / k}\right)$. (

Hint: Use the lower bound on BHHM from Theorem 24.17.1).
2. Prove that any quantum 1-pass streaming algorithm for KCD requires space $\Omega\left(m^{1-2 / k}\right)$ (space is measured in qubits). (
Hint: Use the lower bound on BHHM from Theorem 24.17.2).

Open Problem 24.19.

1. We have looked at counting and detecting triangles and k-cliques. Look at the problems of counting and detecting other subgraphs such as k-cycles.
2. Obtain classical and quantum upper and lower bounds on p-pass streaming algorithms.

24.8.4 Separations

So far we have not presented a large separations between classical and quantum streaming algorithms. Note that we have been looking at natural streaming problems. There are results for contrived problems.

Theorem 24.20.

1. (Le Gall [Gal09]) There exists a streaming problem which (a) any classical algorithm requires $\Omega\left(n^{1 / 3}\right)$ space, (b) there is a quantum algorithm that uses $O(\log n)$ space.
2. (Gavinsky et al. [GKK 08$]$) There exists a streaming problem which (a) any classical algorithm requires $\Omega\left(n^{1 / 2}\right)$ space, (b) there is a quantum algorithm that uses $O(\log n)$ space.
(There are reasons why the first result is not quite comparable to the second result.)
Open Problem 24.21. Find natural streaming problems for which there is a large separation between classical and quantum algorithms.

Upshot Lower bounds on classical or quantum streaming algorithms are obtained by lower bounds on classical or quantum communication complexity. Hence the difficulty in obtaining a separation for streaming algorithms is to find a separation for communication complexity problems. This has been done for some contrived streaming problems; however, we would like to have a separation for natural problems.

24.9 MIP* $=$ RE

Let's consider 3COL \in NP as a game involving two people: an all powerful prover and a poly time verifier. The prover wants to convince the verifier that a given graph is 3-colorable.

- The prover sends the verifier a string y that he hopes will convince the verifier that $x \in A$. The obvious thing to send is a 3 -coloring of G.
- The verifier then determines if y really is a 3 -coloring of G. If so then he accepts that G is 3-colorable. If not then he now believes G is not 3-colorable.

Note that (a) there is only one prover, (b) the conversation is only one direction (prover sends a string to verifier), (c) the verifier can implement any deterministic polynomial time, and (d) the verifier is convinced $G \in 3 \mathrm{COL}$ iff $G \in 3 \mathrm{COL}$.

We can modify the game by (1) allowing more rounds, (2)allowing the verifier to flip coins, (3) allowing the verifier a small probability of error. Such games are called interactive proof systems Note that an interactive proof system has one prover and one verifier. A multiprover interactive proof systems allows many provers, who cannot talk to each other.

Multiprover interactive proof systems have been used to get some lower bounds on how well a problem can be approximated in poly time, and can be considered a precursor to PCP (which you saw in Chapter 9 and the unique games conjecture (which you say in Chapter 11.

Definition 24.22.

1. A set A is in MIP if there is a Multiprover interactive system such that (a) if $x \in A$ then the verifier accepts, and (b) if $x \notin A$ then the verifier rejects with probability ≥ 0.9.
2. If we allow the provers to share entangled quantum states (the verifier is still classical) then this is MIP*.

MIP and MIP* differ a lot:

Theorem 24.23.

1. (Babai et al. [BFL91]) MIP $=$ NEXPTIME.
2. (Fi et al. $\left.\left[7 N V^{+} 21\right]\right)$ MIP* $=R E$ where RE is the first level of the arithmetic hierarchy, Since RE contains the Halting set, MIP* contains sets that are undecidable.

Upshot MIP and MIP* give an example where in a classical setting problems are in NEXPTIME and in quantum setting, problems can be undecidable.

24.10 Quantum Games

In the previous sections we measured how well an algorithm did by how much time or space it used (queries can be considered time). In this section we look at games and measure how well the players do by looking at their probability of winning.

We discuss two games such that if the players play the game with quantum resources they can provably do better than if they play the game with classical resources. For further discussion of these games, and other games with this property, see the survey of Brunner et al. [$\left.\mathrm{BCP}^{+} 14\right]$.

24.10.1 The CHSH Game

Clauser, Horne, Shimony, and Holt [CHSH69] invented the CHSH Game as a realizable experiment that can differentiate quantum from classical computing. (They did not give it that name; however, named using their initials.) We note that Clauser won the 2022 Nobel prize in Physics for this and other work [Rel22].

The CHSH Game
Instance: Alice gets bit x, Bob gets bit y. Before they get their bits they can discuss strategy.
Output: Alice outputs bit a, Bob outputs bit b. Alice and Bob win iff $x \wedge y=a \oplus b$.
Clauser et al. [CHSH69] proved the following (see also Aaronson [Aar16, Chapter 13] for an exposition).

Theorem 24.24.

1. If Alice and Bob play the CHSH GAME with classical resources (a) there is a deterministic strategy where they win with probability 0.75 (both always output 0), (b) there is no strategy, deterministic or randomized, that does better.
2. If Alice and Bob play the CHSH GAME with quantum resources (they prepare entangled qubits before the game begins) then (a) there is a strategy where they win with probability $0.5+\sqrt{2} / 4 \approx$ 0.85 (this is complicated), (b) there is no strategy that does better.

This game is of interest since it is a case where the quantum world is provably different from the classical world. Note that the gap between the classical and quantum is $0.85-.0 .75=0.1$.

24.10.2 Magic Square Game

Cabello [Cab01] defined the Magic Square Game, though he did not call it that. For more information on it also see the survey of Brassard et al. on Quantum pseudo-telepathy [BBT05, Section 5] or the Wikipedia entry on Quantum pseudo-telepathy [Wikg].

The Magic SQuare Game (MS Game)

Instance: Alice gets $i \in\{1,2,3\}$, Bob gets $j \in\{1,2,3\}$. They interpret i as the row of a 3×3 matrix and j as the column of a 3×3 matrix. Alice and Bob get to discuss strategy ahead of time.
Output: Alice and Bob both output a three-bit sequence. Alice's sequence is used as the i th row of a matrix. Bob's sequence is used as the j th column of a matrix. If the following three conditions hold then Alice and Bob win, else they lose. (a) The values in row i add to an even number, (b) The values in column j add to an odd number. (c) Alice and Bob's values are consistent (they agree at (i, j)).

Theorem 24.25.

1. If Alice and Bob play the MS GAME with classical resources (a) there is a deterministic strategy where they win with probability $\frac{8}{9}=0.88 \ldots$, (b) there is no strategy, deterministic or randomized, that does better.
2. If Alice and Bob play the MS Game with quantum resources (they prepare entangled qubits before the game begins) then there is a strategy that wins with probability 1 (so always wins).

This game is of interest since it is a case where the quantum world is provably different from the classical world. Note that the gap between the classical and quantum is $1.0-0.88 \ldots=0.11 \ldots$.

Is there an interesting version of the MS Game on $k \times k$ matrices for $k \geq 4$? The following exercise shows that the answer is no.

Exercise 24.26.

1. Give a 4×4 matrix M of 0 's and 1's such that every row sums to an even number and every column sums to an odd number.
2. Show that there is a classical strategy for the 4×4 MS GAmE that wins with probability 1 . (Hint: Use Part 1.)
3. Show that, for all $k \geq 4$, there is a classical strategy for the $k \times k$ MS Game that wins with probability 1.

24.10.3 Comparing the CHSH Game with The MS Game

We give two reasons why the MS Game game is better for distinguishing classical and quantum computation, and one reason why the CHSH GAME game is better.
Two reasons why the MS Game is better

1. In the CHSH Game the gap between the classical and quantum players is 0.1 . In the MS GAME the gap between the classical and quantum players is 0.11 which is bigger!
2. For the MS Game the quantum players always win. This is better for repeated experiments. Assume the game is played n times.
(a) For the MS Game:

If Alice and Bob are classical then the expected number of wins is $8 n / 9$.
If Alice and Bob are quantum then the expected number of wins is n.
So if Alice and Bob lose just once, then they must be classical.
(b) For the CHSH Game

If Alice and Bob are classical then the expected number of wins is $0.75 n$.
If Alice and Bob are classical then the expected number of wins is $0.85 n$.
These two cases are harder to distinguish since a lose by Alice and Bob could happen in either case.

One reason why the CHSH Game is better. Quantum computers (in 2023) are noisy. The computations are not that reliable. Hence many trials must be run. There is a lot of work on quantum error correction to try to alleviate this.

The CHSH Game game is simpler and uses fewer operations, hence less noise. This is not just theoretical. The CHSH GAME is currently used in quantum systems in order to calibrate the
quantum computers. The calculations done above for the MS GAME were assuming an error-free quantum computer which is not a reality yet.

In 2023 CHSH GAME is better and, as noted above, is actually used. However, if quantum hardware and out level of control on it improve, there may be a time in the future where the MS Game is better.
Upshot There are games where if the players can use quantum entanglement then their probability of winning is provably higher than if they cannot.

24.11 Quantum Supremacy

The original point of quantum computing is that it should be better than classical computing on some problems. This goal was crystallized by John Preskill [Pre12] (see also [Pre19]) who defined Boolean Hidden Hypermatching.
Definition 24.27. Quantum Supremacy is the goal of finding a problem where a quantum computer can outperform a classical computer. Note that this involves (a) formulating a problem, (b) come up with a quantum algorithm for it, (c) code up that algorithm on a real quantum computer, (d) have an argument (it need not be a proof) that any classical algorithm, when coded up, will do much worse than the quantum algorithm. Note that this is not theoretical. The goal involves real quantum computers versus real classical computers. The goal is that the quantum computer is better than the classical one; however, better may be speed or energy or some other parameter.

In this chapter we discussed many problems where quantum algorithms seem to do better than any known classical algorithm. However, putting these quantum algorithms on a real quantum computer is difficult. Hence other problems have been suggested as candidates for achieving quantum supremacy. We discuss two problems for which quantum supremacy may have been achieved.

24.11.1 Quantum Sampling

Random Circuit Sampling (RCS)
Instance: A quantum circuit C. C takes n qubits as input and outputs n qubits that are then measured to get an element of $\{0,1\}^{n}$. Note that if you run C on the same input twice you may not get the same answer. Hence $C\left(0^{n}\right)$ can be viewed as a distribution rather than an element of $\{0,1\}^{n}$. We call this distribution D. If the quantum circuit is chosen at random then the D is far from uniform.
Output: (Informally) Take enough samples of the circuit to show statistically that D is unlikely to be uniform.
The following are known.

1. Bouland et al. [BFNV18] and Aaronson \& Chen [AC17] give evidence that if RCS is classically easy then certain reasonable complexity hypothesis are false. Hence RCS is probably hard classically. We note that this is a theoretical asymptotic result so it may not be as helpful for quantum supremacy as it appears at first glance.
2. On October 23, 2019 Google published a paper [AA19] which claims to have have solved the 53 -bit RCS problem in 200 seconds. They also claim that any classical supercomputer would have taken 10,000 years. The quantum processor used is named Sycamore.
3. IBM [PGA19] (see also Scott Aaronson's blog post [Aar19]) showed how the computation would have taken only 2.5 days on a supercomputer.
4. We will stop here; however, the claims and counter-claims about if Google really did achieve quantum supremacy continue. For intelligent discussions of the issue go to Scott Aaronson's Blog and search for Quantum Supremacy.

24.11.2 Gaussian Boson Sampling

Aaronson \& Arkhipov [AA13] proposed boson sampling as a candidate problem for quantum supremacy. We omit the description as it is somewhat technical, They give evidence that if boson SAMPLING is easy in one way then the polynomial hierarchy collapses, and if it is easy in another way then (with some assumptions) computing the permanent of a matrix is easy, which also implies that the polynomial hierarchy collapses.

Hamilton et al. [HKS^{+}17] introduced a related problem, gaussian boson sampling. They give evidence that if GAUSSIAN BOSON SAMPLING is easy then computing the permanent of a matrix is easy, so the polynomial hierarchy collapses.

The following are known.

1. In December of 2020, a group based in the University of Science and Technology of China (USTC) [Poa20] achieved quantum supremacy by implementing GAUSSIAN BOSON SAMPLING on 76 photons with their photonic quantum computer Jiuzhang. The paper states that to generate the number of samples the quantum computer generates in 2 seconds, a classical supercomputer would require 600 million years of computation. For more information on these results see the articles by Conover [Con21] and Garisto [Gar20].
2. They later increased the number of photons to 113 .
3. Martinez-Cifuentes et al. [MCFRQ22] give reasons why the USTC group may not have actually achieved quantum supremacy.

24.11.3 Has Quantum Supremacy Happened?

We close with a quote from a blog post of Scott Aaronson [Aar22]. We insert comments in parenthesis for clarity.

The experiments by Google and USTC and now Xanadu (they worked on a graph problem that has a classical $O\left(n^{3}\right)$ algorithm so the quantum advantage cannot be too large) represent a big step forward for the field, but since they started being done, the classical spoofing attacks have also steadily improved, to the point that whether "quantum computational supremacy" still exists depends on exactly how you define it.

Briefly: If you measure by total operations, energy use, or CO2 footprint, then probably yes, quantum supremacy remains. But if you measure by number of seconds, then it doesn't remain, not if you're willing to shell out for enough cores on AWS (Amazon Web Services) or your favorite supercomputer. And even the quantum supremacy that does remain might eventually fall to, e.g., further improvements due to Gao et al. [GKC $\left.{ }^{+} 21\right]$. For more details, see e.g., the now-published work of Pan, Chen and Zhang [PCZ22] or this good popular summary by Adrian Cho [Cho22] for Science.

Bibliography

[AA13] Scott Aaronson and Alex Arkhipov. The computational complexity of linear optics. Theory Comput., 9:143-252, 2013.
https://arxiv.org/pdf/1011.3245.pdf. 478
[AA19] Frank Arute and 77-Authors. Quantum supremacy ausing a programmable supercomuter processor. Nature, 574:505-501, 2019. 478
[AAA $\left.{ }^{+} 09\right]$ Noga Alon, Baruch Awerbuch, Yossi Azar, Niv Buchbinder, and Joseph Naor. The online set cover problem. SIAM fournal on Computing, 39(2):361-370, 2009. https://doi.org/10.1137/060661946. 402, 403
[$\left.\mathrm{AAD}^{+} 20\right]$ Joshua Ani, Sualeh Asif, Erik D. Demaine, Yevhenii Diomidov, Dylan Hendrickson, Jayson Lynch, Sarah Scheffler, and Adam Suhl. PSPACE-completeness of pulling blocks to reach a goal. Fournal of Information Processing, 28:929-941, 2020. 66
[AAGH21] Pankaj K. Agarwal, Boris Aronov, Tzvika Geft, and Dan Halperin. On two-handed planar assembly partitioning with connectivity constraints. In Dániel Marx, editor, Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, Virtual Conference, January 10-13, 2021, pages 1740-1756. SIAM, 2021. https://doi.org/10.1137/1.9781611976465.105. 98
[AAKV18] Farid M. Ablayev, Marat Ablayev, Kamil Khadiev, and Alexander Vasiliev. Classical and quantum computations with restricted memory. In Hans-Joachim Böckenhauer, Dennis Komm, and Walter Unger, editors, Adventures Between Lower Bounds and Higher Altitudes - Essays Dedicated to Juraj Hromkovič on the Occasion of His 60th Birthday, volume 11011 of Lecture Notes in Computer Science, pages 129-155. Springer, 2018. 471
[AAM22] Mikkel Abrahamsen, Anna Adamaszek, and Tillmann Miltzow. The art gallery problem is $(\exists R)$-complete. Journal of the $A C M, 69(1): 4: 1-4: 70,2022$. https://doi.org/10.1145/3486220. 305
[Aar11] Scott Aaronson. A linear-optical proof that the permanent is \#P-hard. Electronic Colloquium on Computational Complexity, page 43, 2011. https://eccc.weizmann.ac.il/report/2011/043. 291
[Aar13] Scott Aaronson. Quantum Computing since Democritus. Cambridge University Press, 2013. 463
[Aar16] Scott Aaronson. Introduction to quantum information science, 2016.
https://www.scottaaronson.com/qclec.pdf. 475
[Aar19] Scott Aaronson. Quantum supremacy: the glove are off, 2019. https://scottaaronson.blog/?p=4372. 478
[Aar22] Scott Aaronson. Summer 2022 quantum supremacy updates, 2022. https://scottaaronson.blog/?p=6645. 478
[$\mathrm{ABC}^{+} 20$] Zachary Abel, Jeffrey Bosboom, Michael J. Coulombe, Erik D. Demaine, Linus Hamilton, Adam Hesterberg, Justin Kopinsky, Jayson Lynch, Mikhail Rudoy, and Clemens Thielen. Who witnesses the witness? Finding witnesses in the witness is hard and sometimes impossible. Theoretical Computer Science, 839:41-102, 2020. https://doi.org/10.1016/j.tcs.2020.05.031. 36
$\left[\mathrm{ABD}^{+} 21\right]$ Joshua Ani, Jeffrey Bosboom, Erik D. Demaine, Yevhenii Diomidov, Dylan H. Hendrickson, and Jayson Lynch. Walking through doors is hard, even without staircases: Proving PSPACE-hardness via planar assemblies of door gadgets. In Martin Farach-Colton, Giuseppe Prencipe, and Ryuhei Uehara, editors, 10th International Conference on Fun with Algorithms, FUN 2021, May 30 to fune 1, 2021, Favignana Island, Sicily, Italy, volume 157 of LIPIcs, pages 3:1-3:23. Schloss Dagstuhl - LeibnizZentrum für Informatik, 2021.
https://doi.org/10.4230/LIPIcs.FUN.2021.3. 315
[$\mathrm{ABF}^{+} 02$ J Jochen Alber, Hans L. Bodlaender, Henning Fernau, Ton Kloks, and Rolf Niedermeier. Fixed parameter algorithms for DOMINATING SET and related problems on planar graphs. Algorithmica, 33(4):461-493, 2002.
https://doi.org/10.1007/s00453-001-0116-5. 199, 214
[ABGS21] Divesh Aggarwal, Huck Bennett, Alexander Golovnev, and Noah StephensDavidowitz. Fine-grained hardness of CVP (P) - everything that we can prove (and nothing else). In Dániel Marx, editor, Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, Virtual Conference, January 10-13, 2021, pages 1816-1835. SIAM, 2021.
https://doi.org/10.1137/1.9781611976465.109. 183
[$\mathrm{ABI}^{+}{ }^{09}$] Eric Allender, Michael Bauland, Neil Immerman, Henning Schnoor, and Heribert Vollmer. The complexity of satisfiability problems: Refining Schaefer's theorem. Journal of Computing and System Science, 75(4):245-254, 2009.
https://www.cs.rutgers.edu/~allender/papers/csp.pdf. 71
[ABKM06] Eric Allender, Peter Bürgisser, Johan Kjeldgaard-Pedersen, and Peter Bro Miltersen. On the complexity of numerical analysis. In 21st Annual IEEE Conference on Computational Complexity (CCC 2006), 16-20 July 2006, Prague, Czech Republic, pages 331-339. IEEE Computer Society, 2006.
https://doi.org/10.1109/CCC.2006.30. 307
[Abr21] Mikkel Abrahamsen. Covering polygons is even harder, 2021.
https://arxiv.org/abs/2106.02335. 305
[ABS15] Sanjeev Arora, Boaz Barak, and David Steurer. Subexponential algorithms for unique games and related problems. Journal of the Association of Computing Machinery (7 ACM), 62(5):42:1-42:25, 2015.
https://doi.org/10.1145/2775105. 278
[ABSS97] Sanjeev Arora, László Babai, Jacques Stern, and Z. Sweedyk. The hardness of approximate optima in lattices, codes, and systems of linear equations. Journal of Computing and System Sciences, 54(2):317-331, 1997. https://doi.org/10.1006/jcss.1997.1472. 267
[ABV15] Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. Tight hardness results for LCS and other sequence similarity measures. In Venkatesan Guruswami, editor, IEEE 56th Annual Symposium on Foundations of Computer Science, FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015, pages 59-78. IEEE Computer Society, 2015. https://doi.org/10.1109/FOCS.2015.14. 374
[AC06] Sanjeev Arora and Eden Chlamtac. New approximation guarantee for chromatic number. In Jon M. Kleinberg, editor, Proceedings of the 38th Annual ACM Symposium on Theory of Computing, Seattle, WA, USA, May 21-23, 2006, pages 215-224. ACM, 2006.
https://doi.org/10.1145/1132516.1132548. 273
[AC17] Scott Aaronson and Lijie Chen. Complexity-theoretic foundations of quantum supremacy experiments. In Ryan O'Donnell, editor, 32nd Computational Complexity Conference, CCC 2017, July 6-9, 2017, Riga, Latvia, volume 79 of LIPIcs, pages 22:1-22:67. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. 477
[ACD $\left.{ }^{+} 20\right]$ Sualeh Asif, Michael Coulombe, Erik D. Demaine, Martin L. Demaine, Adam Hesterberg, Jayson Lynch, and Mihir Singhal. Tetris is NP-hard even with $O(1)$ rows or columns. Journal of Information Processing, 28:942-958, 2020. 171
[ACD $\left.{ }^{+} 22\right]$ Joshua Ani, Lily Chung, Erik D. Demaine, Yevhenii Diomidov, Dylan Hendrickson, and Jayson Lynch. Pushing blocks via checkable gadgets: PSPACE-completeness of Push-1F and Block/Box Dude. In Proceedings of the 11th International Conference on Fun with Algorithms, pages 2:1-2:30, 2022. 64, 66
[ACMM05] Amit Agarwal, Moses Charikar, Konstantin Makarychev, and Yury Makarychev. $\mathrm{O}(\sqrt{\log n})$ approximation algorithms for min uncut, min 2CNF deletion, and directed cut problems. In Proceedings of the 37th Annual ACM Symposium on Theory of Computing, Baltimore, MD, USA, May 22-24, 2005, pages 573-581. ACM, 2005. https://doi.org/10.1145/1060590.1060675. 272
[AD11] Zachary Abel and Erik D. Demaine. Edge-unfolding orthogonal polyhedra is strongly NP-complete. In Proceedings of the 23rd Annual Canadian Conference on

Computational Geometry, Toronto, Ontario, Canada, August 10-12, 2011, 2011.
http://www.cccg.ca/proceedings/2011/papers/paper43.pdf. 172
[$\left.\mathrm{ADD}^{+}{ }^{14}\right]$ Zachary Abel, Erik D. Demaine, Martin L. Demaine, Takashi Horiyama, and Ryuhei Uehara. Computational complexity of piano-hinged dissections. IEICE Transactions on Fundamentals of Electronics, Communicationsand Computer Science., 97-A(6):1206-1212, 2014.
https://doi.org/10.1587/transfun.E97.A.1206. 173
[ADG14] Greg Aloupis, Erik D. Demaine, and Alan Guo. Classic Nintendo games are NP-hard. In Fun with Algorithms, volume abs/1203.1895, 2014. http://arxiv.org/abs/1203. 1895. 314, 315
[ADGV15] Greg Aloupis, Erik D. Demaine, Alan Guo, and Giovanni Viglietta. Classic Nintendo games are (computationally) hard. Theoretical Computer Science, 586:135-160, 2015. https://doi.org/10.1016/j.tcs.2015.02.037. 67, 128, 314, 315
[ADHL22] Joshua Ani, Erik D. Demaine, Dylan H. Hendrickson, and Jayson Lynch. Trains, games, and complexity: 0/1/2-player motion planning through input/output gadgets. In Petra Mutzel, Md. Saidur Rahman, and Slamin, editors, WALCOM: Algorithms and Computation - 16th International Conference and Workshops, WALCOM 2022, Jember, Indonesia, March 24-26, 2022, Proceedings, volume 13174 of Lecture Notes in Computer Science, pages 187-198. Springer, 2022.
https://arxiv.org/abs/2005.03192. 351
[Adl94] Leonard M. Adleman. The function field sieve. In Leonard M. Adleman and MingDeh A. Huang, editors, Algorithmic Number Theory, First International Symposium, ANTS-I, Ithaca, NY, USA, May 6-9, 1994, Proceedings, volume 877 of Lecture Notes in Computer Science, pages 108-121. Springer, 1994. 466
[AFI ${ }^{+}$09] Esther M. Arkin, Sándor P. Fekete, Kamrul Islam, Henk Meijer, Joseph S. B. Mitchell, Yurai Núñez-Rodrıguez, Valentin Polishchuk, David Rappaport, and Henry Xiao. Not being (super)thin or solid is hard: A study of grid Hamiltonicity. Computational Geometry: Theory and Applications, 42(6):582-605, 2009.
https://www.sciencedirect.com/science/article/pii/S092577210800117X. 122
[AFM00] Esther M. Arkin, Sándor P. Fekete, and Josephy S. B. Mitchell. Approximation algorithms for lawn mowing and milling. Computational Geometry, 17(1):25-50, 2000. http://www.ams.sunysb.edu/~jsbm/papers/lawn.pdf. 125
[AGI^{+}19] Amir Abboud, Loukas Georgiadis, Giuseppe F. Italiano, Robert Krauthgamer, Nikos Parotsidis, Ohad Trabelsi, Przemyslaw Uznanski, and Daniel Wolleb-Graf. Faster algorithms for All-Pairs bounded Min-Cuts. In Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi, editors, 46th International Colloquium on Automata, Languages, and Programming, ICALP 2019, fuly 9-12, 2019, Patras, Greece, volume 132 of LIPIcs, pages 7:1-7:15. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2019.
https://doi.org/10.4230/LIPIcs.ICALP.2019.7. 388
[$\left.\mathrm{AGM}^{+} 21\right]$ Bharat Adsul, Jugal Garg, Ruta Mehta, Milind A. Sohoni, and Bernhard von Stengel. Fast algorithms for rank-1 bimatrix games. Oper. Res., 69(2):613-631, 2021. https://arxiv.org/abs/1812.04611. 457
[AGMS11] Bharat Adsul, Jugal Garg, Ruta Mehta, and Milind A. Sohoni. Rank-1 bimatrix games: a homeomorphism and a polynomial time algorithm. In Lance Fortnow and Salil P. Vadhan, editors, Proceedings of the 43rd ACM Symposium on Theory of Computing, STOC 2011, San Jose, CA, USA, 6-8 7une 2011, pages 195-204. ACM, 2011. https://arxiv.org/abs/1010.3083. 457
[AGV15] Amir Abboud, Fabrizio Grandoni, and Virginia Vassilevska Williams. Subcubic equivalences between graph centrality problems, APSP and diameter. In Piotr Indyk, editor, Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego, CA, USA, Fanuary 4-6, 2015, pages 1681-1697. SIAM, 2015. https://doi.org/10.1137/1.9781611973730.112. 382
[AH77a] Kenneth Appel and Wolfgang Haken. Every planar map is four colorable I: Discharging. Illinois Journal of Mathematics, 21:429-490, 1977.
https://projecteuclid.org/euclid.ijm/1256049011. 81, 185
[AH77b] Kenneth Appel and Wolfgang Haken. Solution of the four color map problem. Scientific American, 237:108-121, 1977. 81
[AH99] Leonard M. Adleman and Ming-Deh A. Huang. Function field sieve method for discrete logarithms over finite fields. Information and Computation, 151(1-2):5-16, 1999. 466
[AH08] Boris Aronov and Sariel Har-Peled. On approximating the depth and related problems. SIAM Journal on Computing, 38(3):899-921, 2008. https://doi.org/10.1137/060669474. 376
[AHK77] Kenneth Appel, Wolfgang Haken, and John Koch. Every planar map is four colorable II: Reducibility. Illinois fournal of Mathematics, 21:491-567, 1977. https://projecteuclid.org/euclid.ijm/1256049012. 81, 185
[AHWW16] Amir Abboud, Thomas Dueholm Hansen, Virginia Vassilevska Williams, and Ryan Williams. Simulating branching programs with edit distance and friends: or: a polylog shaved is a lower bound made. In Daniel Wichs and Yishay Mansour, editors, Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016, Cambridge, MA, USA, Fune 18-21, 2016, pages 375-388. ACM, 2016. https://arxiv.org/abs/1511.06022. 469
[Ajt98] Miklós Ajtai. The shortest vector problem in L_{2} is NP-hard for randomized reductions (extended abstract). In Jeffrey Scott Vitter, editor, Proceedings of the Thirtieth

Annual ACM Symposium on the Theory of Computing, Dallas, Texas, USA, May 23-26, 1998, pages 10-19. ACM, 1998.
https://doi.org/10.1145/276698.276705. 262
[AK95] Edoardo Amaldi and Viggo Kann. The complexity and approximability of finding maximum feasible subsystems of linear relations. Theoretical Computer Science, 147(1\&2):181-210, 1995.
https://doi.org/10.1016/0304-3975(94)00254-G. 261
[AK00] Paola Alimonti and Viggo Kann. Some APX-completeness results for cubic graphs. Theoretical Computer Science, 237(1):123-134, 2000.
https://www.sciencedirect.com/science/article/pii/S0304397598001583. 250
[AKI87] H. Adachi, H. Kamekawa, and S. Iwata. Shogi on $n \times n$ board is complete in exponetial time. Transactions IEICE. 770-D, 88-A:1843-1852, 1987. 336
[AKS87] Miklós Ajtai, János Komlós, and Endre Szemerédi. Deterministic simulation in LOGSPACE. In Proceedings of the 19th Annual ACM Symposium on Theory of Computing, 1987, New York, New York, USA, pages 132-140. ACM, 1987. https://doi.org/10.1145/28395.28410. 227
[AKS01] Miklós Ajtai, Ravi Kumar, and D. Sivakumar. A sieve algorithm for the shortest lattice vector problem. In Jeffrey Scott Vitter, Paul G. Spirakis, and Mihalis Yannakakis, editors, Proceedings on 33rd Annual ACM Symposium on Theory of Computing, Fuly 6-8, 2001, Heraklion, Crete, Greece, pages 601-610. ACM, 2001.
https://doi.org/10.1145/380752.380857. 262
[AKS04] Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. PRIMES is in P. Annals of Mathematics, 160:781-793, 2004. 30, 32
[AL10] Antonios Antoniadis and Andrzej Lingas. Approximability of edge matching puzzles. In SOFSEM 2010: Theory and Practice of Computer Science, 36th Conference on Current Trends in Theory and Practice of Computer Science, Spindleruv Mlýn, Czech Republic, January 23-29, 2010. Proceedings, pages 153-164, 2010. 253
[Alf98] Jorge L. Ramírez Alfonsín. On variations of the subset sum problem. Discrete Applied Mathematics, 81:1-7, 1998.
https://core.ac.uk/download/pdf/82533986.pdf. 151
[All21] Eric Allender. Vaughan Jones, Kolmogorov complexity, and the new complexity landscape around circuit minimization. New Zealand Journal of Mathematics, 52, 2021.
https://people.cs.rutgers.edu/~allender/papers/jones.pdf. 30
[ALM ${ }^{+}$98] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy. Proof verification and the hardness of approximation problems. fournal of the ACM, 45(3):501-555, 1998.
https://doi.org/10.1145/278298.278306. 227, 231, 265
[ALN05] Sanjeev Arora, James R. Lee, and Assaf Naor. Euclidean distortion and the sparsest cut. In Harold N. Gabow and Ronald Fagin, editors, Proceedings of the 37th Annual ACM Symposium on Theory of Computing, Baltimore, MD, USA, May 22-24, 2005, pages 553-562. ACM, 2005.
https://doi.org/10.1145/1060590.1060673. 272
[AM17] Josh Alman and Dylan McKay. Theoretical foundations of team matchmaking. In Kate Larson, Michael Winikoff, Sanmay Das, and Edmund H. Durfee, editors, Proceedings of the 16th Conference on Autonomous Agents and MultiAgent Systems, AAMAS 2017, São Paulo, Brazil, May 8-12, 2017, pages 1073-1081. ACM, 2017. http://dl.acm.org/citation.cfm?id=3091277. 403
[AMS99] Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating the frequency moments. Journal of Computer and System Science, 58(1):137-147, 1999.
https://doi.org/10.1006/jcss.1997.1545. 405
[AMS20] Mikkel Abrahamsen, Tillmann Miltzow, and Nadja Seiferth. Framework for ERcompleteness of two-dimensional packing problems. In Sandy Irani, editor, 61st IEEE Annual Symposium on Foundations of Computer Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020, pages 1014-1021. IEEE, 2020.
https://doi.org/10.1109/FOCS46700.2020.00098. 305
[AN21] Sepehr Assadi and Vishvajeet N. Graph streaming lower bounds for parameter estimation and property testing via a streaming XOR lemma. In Samir Khuller and Virginia Vassilevska Williams, editors, STOC '21: 53rd Annual ACM SIGACT Symposium on Theory of Computing, Virtual Event, Italy, Fune 21-25, 2021, pages 612-625. ACM, 2021.
https://doi.org/10.1145/3406325.3451110. 417
[ANTV02] Andris Ambainis, Ashwin Nayak, Amnon Ta-Shma, and Umesh V. Vazirani. Dense quantum coding and quantum finite automata. fournal of the $A C M, 49(4): 496-511$, 2002. 471
[APT79] Bengt Aspvall, Michael F. Plass, and Robert Endre Tarjan. A linear-time algorithm for testing the truth of certain quantified boolean formulas. Inf. Process. Lett., 8(3):121-123, 1979.
https://doi.org/10.1016/0020-0190(79)90002-4. 47
[AR98] Yonatan Aumann and Yuval Rabani. An $O(\log k)$ approximate min-cut max-flow theorem and approximation algorithm. SIAM fournal on Computing, 27(1):291-301, 1998.
https://doi.org/10.1137/S0097539794285983. 277
[AR20] Sepehr Assadi and Ran Raz. Near-quadratic lower bounds for two-pass graph streaming algorithms. In Sandy Irani, editor, 61 st IEEE Annual Symposium on Foundations of Computer Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020,
pages 342-353. IEEE, 2020.
https://doi.org/10.1109/FOCS46700.2020.00040. 417
[Aro98] Sanjeev Arora. Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems. Fournal of the Association of Computing Machinery ($7 A C M), ~ 45(3): 501-555,1998$.
https://dl.acm.org/doi/10.1145/290179.290180. 221
[ARV09] Sanjeev Arora, Satish Rao, and Umesh V. Vazirani. Expander flows, geometric embeddings and graph partitioning. Journal of the Assocation of Computing Machinery ($7 A C M), 56(2): 5: 1-5: 37,2009$.
https://doi.org/10.1145/1502793.1502794. 272, 277
[AS98] Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: A new characterization of NP. Fournal of the ACM, 45(1):70-122, 1998.
https://doi.org/10.1145/273865.273901. 227
[AS18] Divesh Aggarwal and Noah Stephens-Davidowitz. (Gap/S)ETH hardness of SVP. In Ilias Diakonikolas, David Kempe, and Monika Henzinger, editors, Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, Los Angeles, CA, USA, Fune 25-29, 2018, pages 228-238. ACM, 2018. https://doi.org/10.1145/3188745.3188840. 183
[ASS ${ }^{+}$18] Alexandr Andoni, Zhao Song, Clifford Stein, Zhengyu Wang, and Peilin Zhong. Parallel graph connectivity in log diameter rounds. In Mikkel Thorup, editor, 59th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2018, Paris, France, October 7-9, 2018, pages 674-685. IEEE Computer Society, 2018.
https://doi.org/10.1109/FOCS.2018.00070. 423
[Ass22] Sepehr Assadi. A two-pass (conditional) lower bound for semi-streaming maximum matching. In Joseph (Seffi) Naor and Niv Buchbinder, editors, Proceedings of the 2022 ACM-SIAM Symposium on Discrete Algorithms, SODA 2022, Virtual Conference / Alexandria, VA, USA, January 9-12, 2022, pages 708-742. SIAM, 2022.
https://arxiv.org/abs/2108.07187. 417
[Aus07] Per Austrin. Balanced max 2-sat might not be the hardest. In David S. Johnson and Uriel Feige, editors, Proceedings of the 39th Annual ACM Symposium on Theory of Computing, San Diego, California, USA, Fune 11-13, 2007, pages 189-197. ACM, 2007.
https://doi.org/10.1145/1250790.1250818. 271
[AVW14] Amir Abboud, Virginia Vassilevska Williams, and Oren Weimann. Consequences of faster alignment of sequences. In Javier Esparza, Pierre Fraigniaud, Thore Husfeldt, and Elias Koutsoupias, editors, Automata, Languages, and Programming - 41st International Colloquium, ICALP 2014, Copenhagen, Denmark, July 8-11, 2014, Proceedings, Part I, volume 8572 of Lecture Notes in Computer Science, pages 39-51. Springer, 2014.
https://people.csail.mit.edu/virgi/hardstrings.pdf. 374, 376
[AVY18] Amir Abboud, Virginia Vassilevska Williams, and Huacheng Yu. Matching triangles and basing hardness on an extremely popular conjecture. SIAM fournal on Computing, 47(3):1098-1122, 2018.
https://doi.org/10.1137/15M1050987. 389
[AW14] Amir Abboud and Virginia Vassilevska Williams. Popular conjectures imply strong lower bounds for dynamic problems. In 55th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2014, Philadelphia, PA, USA, October 18-21, 2014, pages 434-443. IEEE Computer Society, 2014.
https://arxiv.org/abs/1402.0054. 374, 379
[AWY15] Amir Abboud, Ryan Williams, and Huacheng Yu. More applications of the polynomial method to algorithm design. In Piotr Indyk, editor, Proceedings of the TwentySixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego, CA, USA, January 4-6, 2015, pages 218-230. SIAM, 2015.
https://doi.org/10.1137/1.9781611973730.17. 374
[BA18] Moti Ben-Ari. Mastermind is NP-complete, 2018.
http://arxiv.org/abs/cs/0512049. 81
[Bab16] László Babai. Graph isomorphism in quasipolynomial time [extended abstract]. In Daniel Wichs and Yishay Mansour, editors, Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016, pages 684-697. ACM, 2016.
https://dl.acm.org/doi/10.1145/2897518.2897542. 30
[BB02] Olivier Bournez and Michael S. Branicky. The mortality problem for matrices of low dimensions. Theory of Computing Systems, 35(4):433-448, 2002. https://doi.org/10.1007/s00224-002-1010-5. 341
[BBBV97] Charles H. Bennett, Ethan Bernstein, Gilles Brassard, and Umesh V. Vazirani. Strengths and weaknesses of quantum computing. SIAM 7. Comput., 26(5):15101523, 1997.
https://arxiv.org/abs/quant-ph/9701001. 467
[$\mathrm{BBD}^{+}{ }^{17]}$ MohammadHossein Bateni, Soheil Behnezhad, Mahsa Derakhshan, MohammadTaghi Hajiaghayi, Raimondas Kiveris, Silvio Lattanzi, and Vahab S. Mirrokni. Affinity clustering: Hierarchical clustering at scale. In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett, editors, Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pages 6864-6874, 2017.
https://proceedings.neurips.cc/paper/2017/hash/ 2e1b24a664f5e9c18f407b2f9c73e821-Abstract.html. 430
[BBT05] Gilles Brassard, Anne Broadbent, and Alain Tapp. Quantum pseudo-telepathy. Foundations of Physics (Special Asher Peres Memorial Issue), 35(11):1877-1907, 2005.
https://arxiv.org/abs/quant-ph/0407221. 475
[BCD^{+}19] Jeffrey Bosboom, Spencer Congero, Erik D. Demaine, Martin L. Demaine, and Jayson Lynch. Losing at checkers is hard. In The mathematics of various entertaining subjects: The magic of mathematics. Princeton University Press, 2019. http://arxiv.org/abs/1806.05657. 333
[$\left.\mathrm{BCD}^{+} 21\right]$ Josh Brunner, Lily Chung, Erik D. Demaine, Dylan H. Hendrickson, Adam Hesterberg, Adam Suhl, and Avi Zeff. 1×1 Rush Hour with fixed blocks is PSPACEcomplete. In Martin Farach-Colton, Giuseppe Prencipe, and Ryuhei Uehara, editors, 10th International Conference on Fun with Algorithms, FUN 2021, May 30 to fune 1, 2021, Favignana Island, Sicily, Italy, volume 157 of LIPIcs, pages 7:1-7:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. https://doi.org/10.4230/LIPIcs.FUN. 2021.7. 346
[BCDP96] David Beckman, Amalavoyal Chari, Srikrisha Devabhaktuni, and John Preskill. Efficient networks for quantum factoring. Physical Review Letters, 54(2):1034-1063, 1996.
https://arxiv.org/abs/quant-ph/9602016. 465, 466
[BCG82] Elwyn R. Berlekamp, John H. Conway, and Richard K. Guy. Winning Ways for your Mathematical Plays, volume 2. Academic Press, New York, 1982. 71
[BCH16] Michele Borassi, Pierluigi Crescenzi, and Michel Habib. Into the square: On the complexity of some quadratic-time solvable problems. Electronic Notes Theoretical Computer Science, 322:51-67, 2016. https://doi.org/10.1016/j.entcs.2016.03.005. 373
[BCLS87] T. Bui, S. Chaudhuri, T. Leighton, and M. Sipser. Graph bisection algorithms with good average case behavior. Combinatorica, 7:171-191, 1987. https://link.springer.com/article/10.1007/BF02579448. 142
[$\left.\mathrm{BCP}^{+} 14\right]$ Nicolas Brunner, Daniel Cavalcanti, Stefano Pironio, Valerio Scarani, and Stephanie Wehner. Bell nonlocality. Review of Modern Physics, 2014.
https://arxiv.org/abs/1303.2849. 474
$\left[\mathrm{BDD}^{+} 98\right]$ Therese C. Biedl, Erik D. Demaine, Martin L. Demaine, Anna Lubiw, Mark H. Overmars, Joseph O'Rourke, Steve Robbins, and Sue Whitesides. Unfolding some classes of orthogonal polyhedra. In Proceedings of the 10th Canadian Conference on Computational Geometry, McGill University, Montréal, Québec, Canada, August 10-12, 1998, 1998. 172
[$\left.\mathrm{BDD}^{+} 01\right]$ Therese C. Biedl, Erik D. Demaine, Martin L. Demaine, Rudolf Fleischer, Lars Jacobsen, and J. Ian Munro. The complexity of Clickomania, 2001.
https://arxiv.org/abs/cs/0107031. 170
[$\left.\mathrm{BDD}^{+} 17\right]$ Jeffrey Bosboom, Erik D. Demaine, Martin L. Demaine, Adam Hesterberg, Pasin Manurangsi, and Anak Yodpinyanee. Even $1 \times n$ edge-matching and jigsaw puzzles are really hard. Journal of Information Processing, 25:682-694, 2017. https://doi.org/10.2197/ipsjjip.25.682. 254
[BDE^{+}19a] Soheil Behnezhad, Laxman Dhulipala, Hossein Esfandiari, Jakub Lacki, and Vahab S. Mirrokni. Near-optimal massively parallel graph connectivity. In David Zuckerman, editor, 60th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2019, Baltimore, Maryland, USA, November 9-12, 2019, pages 1615-1636. IEEE Computer Society, 2019.
https://arxiv.org/abs/1910.05385. 423, 431
[BDE^{+}19b] Mahdi Boroujeni, Sina Dehghani, Soheil Ehsani, Mohammad Taghi Hajiaghayi, and Saeed Seddighin. Subcubic equivalences between graph centrality measures and complementary problems, 2019.
http://arxiv.org/abs/1905.08127. 382, 387, 389
[$\left.\mathrm{BDE}^{+} 21\right]$ Soheil Behnezhad, Laxman Dhulipala, Hossein Esfandiari, Jakub Lacki, Vahab S. Mirrokni, and Warren Schudy. Massively parallel computation via remote memory access. ACM Trans. on Parallel Computing, 8(3):13:1-13:25, 2021.
https://doi.org/10.1145/3470631. 430, 431, 432
[$\left.\mathrm{BDH}^{+} 04\right]$ Ron Breukelaar, Erik D. Demaine, Susan Hohenberger, Hendrik Jan Hoogeboom, Walter A. Kosters, and David Liben-Nowell. Tetris is hard, even to approximate. International Journal of Computational Geometry and Applications, 14(1-2):41-68, 2004. https://doi.org/10.1142/S0218195904001354. 170
[BDP08] Ilya Baran, Erik D. Demaine, and Mihai Pǎtraşcu. Subquadratic algorithms for 3SUM. Algorithmica, 50(4):584-596, 2008.
https://doi.org/10.1007/s00453-007-9036-3. 358
[BdW02] Harry Buhrman and Ronald de Wolf. Complexity measures and decision tree complexity: A survey. Theoretical Computer Science, 288(1):21-43, 2002. https://www.sciencedirect.com/science/article/pii/S030439750100144X. 428
[BEG^{+}21] Mahdi Boroujeni, Soheil Ehsani, Mohammad Ghodsi, MohammadTaghi Hajiaghayi, and Saeed Seddighin. Approximating edit distance in truly subquadratic time: Quantum and mapreduce. fournal of the $A C M, 68(3): 19: 1-19: 41,2021.469$
[Ben23] Huck Bennett. The complexity of the shortest vector problem. SIGACT News, To Appear, 2023.
https://eccc.weizmann.ac.il/report/2022/170/. 184, 262
[BEP05] Cristina Bazgan, Bruno Escoffier, and Vangelis Th. Paschos. Completeness in standard and differential approximation classes: Poly-(D)APX- and (D)PTAScompleteness. Theoretical Computer Science, 339(2-3):272-292, 2005.
http://dx.doi.org/10.1016/j.tcs.2005.03.007. 260
[BFGS20] Guy E. Blelloch, Jeremy T. Fineman, Yan Gu, and Yihan Sun. Optimal parallel algorithms in the binary-forking model. In Christian Scheideler and Michael Spear,
editors, SPAA '20: 32nd ACM Symposium on Parallelism in Algorithms and Architectures, Virtual Event, USA, Fuly 15-17, 2020, pages 89-102. ACM, 2020.
https://doi.org/10.1145/3350755.3400227. 420
[BFL91] László Babai, Lance Fortnow, and Carsten Lund. Non-deterministic exponential time has two-prover interactive protocols. Compututational Complexity, 1:3-40, 1991. 474
[BFNV18] Adam Bouland, Bill Fefferman, Chinmay Nirkhe, and Umesh Vazarani. On the complexity and verifiation of quantum random circuit sampling. Nature Physics, 15:159163, 2018.
https://arxiv.org/abs/1803.04402. 477
[BFNW93] László Babai, Lance Fortnow, Noam Nisan, and Avi Wigderson. BPP has subexponential time simulations unless EXPTIME has publishable proofs. Computational Complexity, 3:307-318, 1993. https://doi.org/10.1007/BF01275486. 33
[BFS99] Jonathan F. Buss, Gudmund Skovbjerg Frandsen, and Jeffrey O. Shallit. The computational complexity of some problems of linear algebra. Journal of Computing and System Sciences, 58(3):572-596, 1999.
https://doi.org/10.1006/jcss.1998.1608. 300, 302
[BGG97] Egon Börger, Erich Grädel, and Yuri Gurevich. The Classical Decision Problem. Perspectives in Mathematical Logic. Springer, 1997. 73
[$\left.\mathrm{BGL}^{+} 18\right]$ Davide Bilò, Luciano Gualà, Stefano Leucci, Guido Proietti, and Mirko Rossi. On the PSPACE-completeness of Peg Duotaire and other peg-jumping games. In Hiro Ito, Stefano Leonardi, Linda Pagli, and Giuseppe Prencipe, editors, 9th International Conference on Fun with Algorithms, FUN 2018, Fune 13-15, 2018, La Maddalena, Italy, volume 100 of LIPIcs, pages 8:1-8:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.
https://doi.org/10.4230/LIPIcs.FUN.2018.8. 351
[BGLR93] Mihir Bellare, Shafi Goldwasser, Carsten Lund, and A. Russeli. Efficient probabilistically checkable proofs and applications to approximations. In S. Rao Kosaraju, David S. Johnson, and Alok Aggarwal, editors, Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory of Computing, May 16-18, 1993, San Diego, CA, USA, pages 294-304. ACM, 1993.
https://doi.org/10.1145/167088.167174. 230
[BGMW20] Karl Bringmann, Pawel Gawrychowski, Shay Mozes, and Oren Weimann. Tree edit distance cannot be computed in strongly subcubic time (unless APSP can). ACM Trans. on Algorithms, 16(4):48:1-48:22, 2020.
https://doi.org/10.1145/3381878. 388
[BGRS13] Jaroslaw Byrka, Fabrizio Grandoni, Thomas Rothvoß, and Laura Sanità. Steiner tree approximation via iterative randomized rounding. Fournal of the ACM, 60(1):6:16:33, 2013.
https://doi.org/10.1145/2432622.2432628. 259
[BGS98] Mihir Bellare, Oded Goldreich, and Madhu Sudan. Free bits, PCPs, and nonapproximability-towards tight results. SIAM fournal on Computing, 27(3):804915, 1998.
https://www.cs.umd.edu/~gasarch/TOPICS/pcp/bgsfreebits.pdf. 268
[BGS17] Huck Bennett, Alexander Golovnev, and Noah Stephens-Davidowitz. On the quantitative hardness of CVP. In Chris Umans, editor, 58th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA, October 15-17, 2017, pages 13-24. IEEE Computer Society, 2017. https://doi.org/10.1109/FOCS.2017.11. 183
[BGS20] Huck Bennett, Sasha Golovnev, and Noah Stephens-Davidowitz. Fine-grained hardness of lattice problems: Open questions, 2020.
https://blog.simons.berkeley.edu/2020/05/fine-grained-hardness-of-lattice-problems 183, 184
[BH93] Amir Ben-Dor and Shai Halevi. Zero-one permanent is \#P-complete, A simpler proof. In Second Israel Symposium on Theory of Computing Systems, ISTCS 1993, Natanya, Israel, fune 7-9, 1993, Proceedings, pages 108-117. IEEE Computer Society, 1993.
https://shaih.github.io/pubs/01perm.pdf. 291
[BH01] Gill Barequet and Sariel Har-Peled. Polygon containment and translational min-hausdorff-distance between segment sets are 3SUM-hard. International fournal of Computational Geometry, 11(4):465-474, 2001.
https://doi.org/10.1142/S0218195901000596. 376
[BH22] Marie Louisa Tølbøll Berthelsen and Kristoffer Arnsfelt Hansen. On the computational complexity of decision problems about multi-player nash equilibria. Theory Comput. Syst., 66(3):519-545, 2022. https://doi.org/10.1007/s00224-022-10080-1. 306
[BHP12] Paul C. Bell, Mika Hirvensalo, and Igor Potapov. Mortality for 2×2 matrices is NPhard. In Branislav Rovan, Vladimiro Sassone, and Peter Widmayer, editors, Mathematical Foundations of Computer Science 2012-37th International Symposium, MFCS 2012, Bratislava, Slovakia, August 27-31, 2012. Proceedings, volume 7464 of Lecture Notes in Computer Science, pages 148-159. Springer, 2012. 341
[BHZ87] Ravi Boppana, Johan Hastad, and Stathis Zachos. Does co-NP have short interactive proofs? Information Processing Letters, 25, 1987. 30
[BI06] Jonathan F. Buss and Tarique Islam. Simplifying the weft hierarchy. Theoretical Computer Science, 351(3):303-313, 2006.
https://doi.org/10.1016/j.tcs.2005.10.002. 201
[BI15]
Arturs Backurs and Piotr Indyk. Edit distance cannot be computed in strongly subquadratic time (unless SETH is false). In Rocco A. Servedio and Ronitt Rubinfeld, editors, Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of

Computing, STOC 2015, Portland, OR, USA, Fune 14-17, 2015, pages 51-58. ACM, 2015. https://doi.org/10.1145/2746539.2746612. 374, 375, 469
[BI16] Arturs Backurs and Piotr Indyk. Which regular expression patterns are hard to match? In Irit Dinur, editor, IEEE 57th Annual Symposium on Foundations of Computer Science, FOCS 2016, 9-11 October 2016, Hyatt Regency, New Brunswick, New Jersey, USA, pages 457-466. IEEE Computer Society, 2016.
https://doi.org/10.1109/FOCS.2016.56. 375
[Bia11] Marzio De Biasi. Boulder dash is NP-hard, 2011.
http://www.nearly42.org/boulderdash/bdnp00.pdf. 127
[Bid20] Stella Biderman. Magic: The Gathering is as hard as arithmetic, 2020.
https://arxiv.org/abs/2003.05119. 324, 340
[Bie91] Daniel Bienstock. Some provably hard crossing number problems. Discrete and Computional Geometry, 6:443-459, 1991.
https://doi.org/10.1007/BF02574701. 304
[Bie20] Nicholas Bieker. Complexity of graph drawing problems in relation to the existential theory of the reals. Master's thesis, Karlsruhe Institute of Technology, 2020. https://i11www.iti.kit.edu/_media/teaching/theses/ba-bieker-20.pdf. 298, 299
[BK98a] Therese C. Biedl and Goos Kant. A better heuristic for orthogonal graph drawings. Computational Geometry: Theory and Applications, 9(3):159-180, 1998. https://www.sciencedirect.com/science/article/pii/S0925772197000266. 86
[BK98b] Heinz Breu and David G. Kirkpatrick. Unit disk graph recognition is NP-hard. Comput. Geom., 9(1-2):3-24, 1998.
https://doi.org/10.1016/S0925-7721(97)00014-X. 304
[BK99] Piotr Berman and Marek Karpinski. On some tighter inapproximability results. In Automata, Languages and Programming, 26th International Colloquium, ICALP'99, Prague, Czech Republic, Fuly 11-15, 1999, Proceedings, pages 200-209, 1999. https://eccc.weizmann.ac.il/report/1998/065/. 251
[BK09] Nikhil Bansal and Subhash Khot. Optimal long code test with one free bit. In 50th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2009, October 2527, 2009, Atlanta, Georgia, USA, pages 453-462. IEEE Computer Society, 2009. https://doi.org/10.1109/FOCS.2009.23. 271, 273
[BK10] Nikhil Bansal and Subhash Khot. Inapproximability of hypergraph vertex cover and applications to scheduling problems. In Samson Abramsky, Cyril Gavoille, Claude Kirchner, Friedhelm Meyer auf der Heide, and Paul G. Spirakis, editors, Automata, Languages and Programming, 37th International Colloquium, ICALP 2010, Bordeaux, France, Fuly 6-10, 2010, Proceedings, Part I, volume 6198 of Lecture Notes in Computer Science, pages 250-261. Springer, 2010.
https://cs.nyu.edu/~khot/papers/hypergraph4.pdf. 271
[BKM21] Mark Braverman, Subhash Khot, and Dor Minzer. On rich 2-to-1 games. In James R. Lee, editor, 12th Innovations in Theoretical Computer Science Conference, ITCS 2021, Fanuary 6-8, 2021, Virtual Conference, volume 185 of LIPIcs, pages 27:1-27:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. https://doi.org/10.4230/LIPIcs.ITCS.2021.27. 278
[BKP^{+}19] Marthe Bonamy, Lukasz Kowalik, Michal Pilipczuk, Arkadiusz Socala, and Marcin Wrochna. Tight lower bounds for the complexity of multicoloring. ACM Trans. on Computation Theory, 11(3):13:1-13:19, 2019. https://doi.org/10.1145/3313906. 185
[BKS17] Paul Beame, Paraschos Koutris, and Dan Suciu. Communication steps for parallel query processing. Fournal of the Assocation of Computing Machinery ($7 A C M$), 64(6):40:1-40:58, 2017.
https://doi.org/10.1145/3125644. 421
[BKW15] Mark Braverman, Young Kun-Ko, and Omri Weinstein. Approximating the best Nash equilibrium in $n^{o(\log n)}$ time breaks the exponential time hypothesis. In Piotr Indyk, editor, Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego, CA, USA, Fanuary 4-6, 2015, pages 970-982. SIAM, 2015.
https://doi.org/10.1137/1.9781611973730.66. 457
[BM08] Benjamin E. Birnbaum and Claire Mathieu. On-line bipartite matching made simple. SIGACT News, 39(1):80-87, 2008.
https://doi.org/10.1145/1360443.1360462. 401
[BM21] Vittorio Bilò and Marios Mavronicolas. $\exists R$-complete decision problems about (symmetric) nash equilibria in (symmetric) multi-player games. ACM Trans. Economics and Comput., 9(3):14:1-14:25, 2021.
https://doi.org/10.1145/3456758. 306
[BOS94] David Bremner, Joseph O'Rourke, and Thomas Shermer. Motion planning amidst movable square blocks is PSPACE-complete, 1994. Not published and does not seem to be online, hence is lost to humanity. 64
[Bou85] Jean Bourgain. On Lipshitz embeddings of finite metric spaces in Hilbert space. Israel Fournal of Mathematics, 52:46-52, 1985.
https://link.springer.com/article/10.1007/BF02776078. 277
[BOV13] Vladimir Braverman, Rafail Ostrovsky, and Dan Vilenchik. How hard is counting triangles in the streaming model? In Fedor V. Fomin, Rusins Freivalds, Marta Z. Kwiatkowska, and David Peleg, editors, Automata, Languages, and Programming 40th International Colloquium, ICALP 2013, Riga, Latvia, July 8-12, 2013, Proceedings, Part I, volume 7965 of Lecture Notes in Computer Science, pages 244-254. Springer, 2013. 471
[BP02] Vincent Blondel and Natacha Portier. The presense of a zero in an integer linear recurrent sequence is NP-hard to decide. Linear Algebra and its applications, 351-352:91-98, 2002. 336
[BP15] Manuel Bodirsky and Michael Pinsker. Schaefer's theorem for graphs. Journal of the Association of Computing Machinery ($7 A C M), 62(3): 19: 1-19: 52,2015$.
https://arxiv.org/pdf/1011.2894.pdf. 73
[BP22] Huck Bennett and Chris Peikert. Hardness of the (approximate) shortest vector problem: A simple proof via Reed-Solomon codes, 2022. https://arxiv.org/abs/2202.07736. 263
[BPT92] Richard B. Borie, R. Gary Parker, and Craig A. Tovey. Automatic generation of linear-time algorithms from predicate calculus descriptions of problems on recursively constructed graph families. Algorithmica, 7(5\&6):555-581, 1992. https://doi.org/10.1007/BF01758777. 213
[BRG89] David Bernstein, Michael Rodeh, and Izidor Gertner. On the complexity of scheduling problems for parallel/pipelined machines. IEEE Trans. on Computers, 38(9):13081313, 1989.
https://doi.org/10.1109/12.29469. 173
[Bri14] Karl Bringmann. Why walking the dog takes time: Frechet distance has no strongly subquadratic algorithms unless SETH fails. In 55th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2014, Philadelphia, PA, USA, October 18-21, 2014, pages 661-670. IEEE Computer Society, 2014.
https://doi.org/10.1109/FOCS.2014.76. 375
[Bro41] Rowland Leonard Brooks. On colouring the nodes of a network. Mathematical Proceedings of the Cambridge Philosophical Society, 37:194-197, 41941. https://www.cambridge.org/core/services/aop-cambridge-core/content/ view/546AD533E0FDCFD02755AC34B0972D0E/S030500410002168Xa.pdf/ on-colouring-the-nodes-of-a-network.pdf. 80
[BSS88] Lenore Blum, Mike Shub, and Steve Smale. On a theory of computation over the real numbers; NP completeness, recursive functions and universal machines (extended abstract). In 29th Annual Symposium on Foundations of Computer Science, White Plains, New York, USA, 24-26 October 1988, pages 387-397. IEEE Computer Society, 1988.
https://doi.org/10.1109/SFCS.1988.21955. 301
[Bul17] Andrei A. Bulatov. A dichotomy theorem for nonuniform csps. In Chris Umans, editor, 58th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA, October 15-17, 2017, pages 319-330. IEEE Computer Society, 2017. https://doi.org/10.1109/FOCS. 2017.37. 99
[Bur] Burke. Is there an easy gadget for Planar Hamiltonian Cycle is NP-complete (from Hamiltonian Cycle).
https://cstheory.stackexchange.com/questions/9587/
i-want-an-easy-gadget-to-prove-planar-hamiltonian-cycle-np-complete-from-hamilt. 75
[BW91] Graham Brightwell and Peter Winkler. Counting linear extensions. Order, 8:225242, 1991.
https://link.springer.com/content/pdf/10.1007/BF00383444.pdf. 295
[BW05] Graham R. Brightwell and Peter Winkler. Counting Eulerian circuits is \#P-complete. In Camil Demetrescu, Robert Sedgewick, and Roberto Tamassia, editors, Proceedings of the Seventh Workshop on Algorithm Engineering and Experiments and the Second Workshop on Analytic Algorithmics and Combinatorics, ALENEX/ANALCO 2005, Vancouver, BC, Canada, 22 January 2005, pages 259-262. SIAM, 2005.
http://www.siam.org/meetings/analco05/papers/09grbrightwell.pdf. 285
[Cab01] Adan Cabello. Bell's theorem without inequalities and without probabilities for two observers. Physical Review Letters, 2001.
https://arxiv.org/abs/quant-ph/0008085. 475
[Can88] John F. Canny. Some algebraic and geometric computations in PSPACE. In Janos Simon, editor, Proceedings of the 20th Annual ACM Symposium on Theory of Computing, May 2-4, 1988, Chicago, Illinois, USA, pages 460-467. ACM, 1988.
https://doi.org/10.1145/62212.62257. 298
[Car15] Jean Cardinal. Computational geometry column 62. SIGACT News, 46(4):69-78, 2015.
https://doi.org/10.1145/2852040.2852053. 297
[CBH21] Alex Churchill, Stella Biderman, and Austin Herrick. Magic: The Gathering is Turing complete. In Martin Farach-Colton, Giuseppe Prencipe, and Ryuhei Uehara, editors, 10th International Conference on Fun with Algorithms, FUN 2021, May 30 to Fune 1, 2021, Favignana Island, Sicily, Italy, volume 157 of LIPIcs, pages 9:1-9:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.
https://doi.org/10.4230/LIPIcs.FUN.2021.9. 340
[CC03] Miroslav Chlebík and Janka Chlebíková. Approximation hardness for small occurrence instances of NP-hard problems. In Algorithms and Complexity, 5th Italian Conference, CIAC 2003, Rome, Italy, May 28-30, 2003, Proceedings, pages 152-164, 2003. 252
[CC08] Miroslav Chlebík and Janka Chlebíková. Approximation hardness of dominating set problems in bounded degree graphs. Inf. Comput., 206(11):1264-1275, 2008.
https://doi.org/10.1016/j.ic.2008.07.003. 254
[CCD $\left.{ }^{+} 03\right]$ Andrew M. Childs, Richard Cleve, Enrico Deotto, Edward Farhi, Sam Gutmann, and Daniel A. Spielman. Exponential algorithmic speedup by a quantum walk. In Lawrence L. Larmore and Michel X. Goemans, editors, Proceedings of the 35th Annual ACM Symposium on Theory of Computing, Fune 9-11, 2003, San Diego, CA, USA,
pages 59-68. ACM, 2003.
https://arxiv.org/abs/quant-ph/0209131. 468
[CCG23] Andrew M. Childs, Matthew Coudron, and Amin Shiraz Gilani. Quantum algorithms and the power of forgetting. In Yael Tauman Kalai, editor, 14th Innovations in Theoretical Computer Science Conference, ITCS 2023, January 10-13, 2023, MIT, Cambridge, Massachusetts, USA, volume 251 of LIPIcs, pages 37:1-37:22. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. 468
[CCHM15] Rajesh Hemant Chitnis, Graham Cormode, Mohammad Taghi Hajiaghayi, and Morteza Monemizadeh. Parameterized streaming: Maximal matching and vertex cover. In Piotr Indyk, editor, Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego, CA, USA, January 4-6, 2015, pages 1234-1251. SIAM, 2015.
https://doi.org/10.1137/1.9781611973730.82. 417
[CD68] Richard W. Cottle and George B. Dantzig. Complentary pivot theory of mathematical programming. Linear Algebra and its applications, 1:103-125, 1968. https://www.sciencedirect.com/science/article/pii/0024379568900529. 442
[CD06] Xi Chen and Xiaotie Deng. Settling the complexity of two-player Nash equilibrium. In 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2006), 2124 October 2006, Berkeley, California, USA, Proceedings, pages 261-272. IEEE Computer Society, 2006.
https://doi.org/10.1109/FOCS.2006.69. 451
[CDE $\left.{ }^{+} 20\right]$ Jean Cardinal, Erik D. Demaine, David Eppstein, Robert A. Hearn, and Andrew Winslow. Reconfiguration of satisfying assignments and subset sums: Easy to find, hard to connect. Theoretical Computer Science, 806(2):332-343, February 2020. https://arxiv.org/abs/1805.04055. 347
[CDG $\left.{ }^{+} 08\right]$ Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach, Michael Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber. Bigtable: A distributed storage system for structured data. ACM Trans. on Computer Systems, 26(2):4:1-4:26, 2008.
https://doi.org/10.1145/1365815.1365816. 430
[CDP08] Gruia Călinescu, Adrian Dumitrescu, and János Pach. Reconfigurations in graphs and grids. SIAM Journal of Discrete Mathematics, 22(1):124-138, 2008.
http://dx.doi.org/10.1137/060652063. 255
[CDP21] Artur Czumaj, Peter Davies, and Merav Parter. Component stability in low-space massively parallel computation. In Avery Miller, Keren Censor-Hillel, and Janne H. Korhonen, editors, PODC '21: ACM Symposium on Principles of Distributed Computing, Virtual Event, Italy, Fuly 26-30, 2021, pages 481-491. ACM, 2021.
https://arxiv.org/pdf/2106.01880.pdf. 429
[CDR86] Stephen A. Cook, Cynthia Dwork, and Rüdiger Reischuk. Upper and lower time bounds for parallel random access machines without simultaneous writes. SIAM Journal on Computing, 15(1):87-97, 1986.
https://doi.org/10.1137/0215006. 420
[CE91] Leizhen Cai and John A. Ellis. NP-completeness of edge-colouring some restricted graphs. Discrete Applied Mathematics, 30(1):15-27, 1991.
https://doi.org/10.1016/0166-218X(91)90010-T. 252
[CE04] Mark Cieliebak and Stephan J. Eidenbenz. Measurement errors make the partial digest problem NP-hard. In Martin Farach-Colton, editor, LATIN 2004: Theoretical Informatics, 6th Latin American Symposium, Buenos Aires, Argentina, April 5-8, 2004, Proceedings, volume 2976 of Lecture Notes in Computer Science, pages 379-390. Springer, 2004. 173
[Ces03] Marco Cesati. The Turing way to parameterized complexity. Journal of Computing and System Science, 67(4):654-685, 2003.
https://doi.org/10.1016/S0022-0000(03)00073-4. 213
[CFG02] Andrew M. Childs, Edward Farhi, and Sam Gutmann. An example of the difference between quantum and classical random walks. Quantum Inf. Process., 1(1-2):35-43, 2002. https://arxiv.org/abs/quant-ph/0103020. 468
[CFG ${ }^{+} 17$] Marek Cygan, Fedor V. Fomin, Alexander Golovnev, Alexander S. Kulikov, Ivan Mihajlin, Jakub Pachocki, and Arkadiusz Socala. Tight lower bounds on graph embedding problems. Journal of the Association of Computing Machinery ($\mathcal{F A C M}$), 64(3):18:1-18:22, 2017. https://doi.org/10.1145/3051094. 184
[CFK ${ }^{+}$15] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015. https://doi.org/10.1007/978-3-319-21275-3. 187, 206
[CH99] Nadia Creignou and Miki Hermann. On \#P-completeness of some counting problems, 1999. 295
[Cha20] Timothy M. Chan. More logarithmic-factor speedups for 3SUM, (median, +)convolution, and some geometric 3SUM-hard problems. ACM Trans. on Algorithms, 16(1):7:1-7:23, 2020.
https://doi.org/10.1145/3363541. 359
[Che06] Hubie Chen. A rendezvous of logic, complexity, and algebra. SIGACT News, 37(4):85-114, 2006. https://arxiv.org/abs/cs/0611018. 70
[Che09] Hubie Chen. A rendezvous of logic, complexity, and algebra. ACM Computing surveys, 42(1):2:1-2:32, 2009.
https://dl.acm.org/doi/pdf/10.1145/1592451.1592453. 70
[CHHN14] Julien Cassaigne, Vesa Halava, Tero Harju, and Francois Nicolas. Tighter undecidability bounds for matrix mortality, zero-in-the-corner problems, and more, 2014. http://arxiv.org/abs/1404.0644. 341
[CHK ${ }^{+}$21] Jianer Chen, Qin Huang, Iyad Kanj, Qian Li, and Ge Xia. Streaming algorithms for graph k-matching with optimal or near-optimal update time. In Hee-Kap Ahn and Kunihiko Sadakane, editors, 32nd International Symposium on Algorithms and Computation, ISAAC 2021, December 6-8, 2021, Fukuoka, Japan, volume 212 of LIPIcs, pages 48:1-48:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. https://doi.org/10.4230/LIPIcs.ISAAC.2021.48. 417
[CHKX06] Jianer Chen, Xiuzhen Huang, Iyad A. Kanj, and Ge Xia. Strong computational lower bounds via parameterized complexity. Journal of Computing and System Science, 72(8):1346-1367, 2006.
https://doi.org/10.1016/j.jcss.2006.04.007. 192
[Cho16] Amy Chou. NP-hard triangle packing problems, 2016. https://math.mit.edu/research/highschool/rsi/documents/2015Chou.pdf. 160
[Cho22] Adrian Cho. Ordinary computers can beat Google's quantum computers after all. Science, 377, 2022. 479
[Chr22] Nicos Christofides. Worst-case analysis of a new heuristic for the travelling salesman problem. Operations Research Forum, 3(1), 2022. Written in 1976 https://doi.org/10.1007/s43069-021-00101-z. 221
[CHSH69] John Clauser, Michael Horne, Abner Shimony, and Richard Holt. Proposed experiment to test local hidden-variable theories. Physical Review Letters, 23(15):880-884, 1969. 475
[Chu12] Alex Churchill. Magic: The Gathering is Turing complete, 2012. http://www.toothycat.net/~hologram/Turing/. 340
[Chv79] V. Chvatal. A greedy heuristic for the set-covering problem. Mathematics of Operations Research, 4:233-235, 1979.
https://www.jstor.org/stable/pdf/3689577.pdf. 27, 229, 275
[CJ03] Liming Cai and David W. Juedes. On the existence of subexponential parameterized algorithms. Journal of Computer and System Sciences, 67(4):789-807, 2003.
https://core.ac.uk/download/pdf/81180403.pdf. 189, 214
[CKK $\left.{ }^{+} 06\right]$ Shuchi Chawla, Robert Krauthgamer, Ravi Kumar, Yuval Rabani, and D. Sivakumar. On the hardness of approximating multicut and sparsest-cut. Computational ComplexityBlog, 15(2):94-114, 2006.
https://doi.org/10.1007/s00037-006-0210-9. 272
[CKS01] Nadia Creignou, Sanjeev Khanna, and Madhu Sudan. Complexity classifications of Boolean constraint satisfaction problems, volume 7 of SIAM monographs on discrete mathematics and applications. SIAM, 2001. 310
[CKST99] Pierluigi Crescenzi, Viggo Kann, Riccardo Silvestri, and Luca Trevisan. Structure in approximation classes. SIAM fournal on Computing, 28(5):1759-1782, 1999. http://dx.doi.org/10.1137/S0097539796304220. 260, 264
[CKX10] Jianer Chen, Iyad A. Kanj, and Ge Xia. Improved upper bounds for vertex cover. Theoretical Computer Science, 411(40-42):3736-3756, 2010.
https://doi.org/10.1016/j.tcs.2010.06.026. 189
[CLA] Shobhit Chaurasia, Harshil Lodhi, and Hitesh Arora. 2-satisfiability. https://www.iitg.ac.in/deepkesh/CS301/assignment-2/2sat.pdf. 47
[CLRS03] Thomas Cormen, Charles Leiserson, Ronald Rivest, and Clifford Stein. Introduction to Algorithms. MIT Press, Cambridge, 2003. 420
[CMT20] Moses Charikar, Weiyun Ma, and Li-Yang Tan. Unconditional lower bounds for adaptive massively parallel computation. In Christian Scheideler and Michael Spear, editors, SPAA '20: 32nd ACM Symposium on Parallelism in Algorithms and Architectures, Virtual Event, USA, Fuly 15-17, 2020, pages 141-151. ACM, 2020. https://doi.org/10.1145/3350755.3400230. 432
[Cob64] Alan Cobham. The intrinsic computational difficulty of functions. In Logic, Methodology, and Philosophy of Science, pages 186-192. North Holland, 1964. 14
[Col75] George Collins. Quantifier elimination for real closed fields by cylindrical algebraic decompostion. In H. Brakhage, editor, Automata Theory and Formal Languages, pages 134-183, Berlin, Heidelberg, 1975. Springer Berlin Heidelberg. https://link.springer.com/chapter/10.1007/3-540-07407-4_17. 298, 301
[Con21] Emily Conover. The new light-based quantum computer Jiuzhang has achieved quantum supremacy. ScienceNews, January 16, 2021, 2021. 478
[Coo71] Stephen A. Cook. The complexity of theorem-proving procedures. In Proceedings of the Third IEEE Symposium on the Foundations of Computer Science, pages 151-158, 1971.
https://dl.acm.org/doi/10.1145/800157.805047. 13, 14, 25, 46, 48
[Cou90] Bruno Courcelle. Graph rewriting: An algebraic and logic approach. In Jan van Leeuwen, editor, Handbook of Theoretical Computer Science, Volume B: Formal Models and Semantics, pages 193-242. Elsevier and MIT Press, 1990.
https://doi.org/10.1016/b978-0-444-88074-1.50010-x. 213
[CR18] Daniel W. Cranston and Landon Rabern. Planar graphs are 9/2-colorable. Journal of Combinatorial Theory, Series B, 133:32-45, 2018.
https://arxiv.org/abs/1410.7233. 185
[CS14] Michael S. Crouch and Daniel M. Stubbs. Improved streaming algorithms for weighted matching, via unweighted matching. In Klaus Jansen, José D. P. Rolim, Nikhil R. Devanur, and Cristopher Moore, editors, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2014, September 4-6, 2014, Barcelona, Spain, volume 28 of LIPIcs, pages 96-104. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2014.
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2014.96. 417
[CT97] Marco Cesati and Luca Trevisan. On the efficiency of polynomial time approximation schemes. Inf. Process. Lett., 64(4):165-171, 1997. www.sciencedirect.com/science/article/pii/S0020019097001646. 205, 206
[Cul98] J. C. Culberson. Sokoban is PSPACE-complete. In Proceedings International Conference on Fun with Algorithms (FUN98), pages 65-76, Waterloo, Ontario, Canada, June 1998. Carleton Scientific.
https://webdocs.cs.ualberta.ca/~joe/Preprints/Sokoban/paper.html. 64
[CvD10] Andrew Childs and Wim van Dam. Quantum algorithms for algebraic problems. Review of Modern Physics, 82:1-52, 2010.
https://arxiv.org/abs/0812.0380. 464
[CW19] Lijie Chen and Ryan Williams. An equivalence class for orthogonal vectors. In Timothy M. Chan, editor, Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019, pages 21-40. SIAM, 2019. https://doi.org/10.1137/1.9781611975482.2. 375
[CW21] Timothy M. Chan and R. Ryan Williams. Deterministic APSP, orthogonal vectors, and more: Quickly derandomizing Razborov-Smolensky. ACM Trans. on Algorithms, 17(1):2:1-2:14, 2021.
https://doi.org/10.1145/3402926. 379
[Dal99] Víctor Dalmau. A dichotomy theorem for learning quantified Boolean formulas. Mach. Learn., 35(3):207-224, 1999. https://doi.org/10.1023/A:1007582729656. 310
[Dav73] Martin Davis. Hilbert's tenth problem is unsolvable. American Mathematical Monthly, pages 233-2695, 1973.
https://www.math.umd.edu/~laskow/Pubs/713/Diophantine.pdf. 341
[dBK12] Mark de Berg and Amirali Khosravi. Optimal binary space partitions for segments in the plane. International fournal of Computational Geometry, 22(3):187-206, 2012. https://www.win.tue.nl/~mdberg/Papers/2010/bk-obspp-10.pdf. 93
[DD07] Erik D. Demaine and Martin L. Demaine. Jigsaw puzzles, edge matching, and polyomino packing: Connections and complexity. Graphs and Combinatorics, 23(Supplement-1):195-208, 2007.
https://doi.org/10.1007/s00373-007-0713-4. 156, 162, 166, 167
[DDD18] Andreas Darmann, Janosch Docker, and Britta Dorn. The monotone satisfiability problem with bounded variable appearances. International fournal of Foundations of Computer Science, 29:979-993, 2018.
https://arxiv.org/abs/1604.05588. 52
[DDE00] Erik D. Demaine, Martin L. Demaine, and David Eppstein. Phutball endgames are hard. Computing Research Repository, cs.CC/0008025, 2000. https://arxiv.org/ abs/cs/0008025. 72
[$\mathrm{DDE}^{+} 11$ Erik D. Demaine, Martin L. Demaine, Sarah Eisenstat, Anna Lubiw, and Andrew Winslow. Algorithms for solving Rubik's cubes. In Algorithms - ESA 2011-19th Annual European Symposium, Saarbrücken, Germany, September 5-9, 2011. Proceedings, pages 689-700, 2011. 144
[DDHO01] Erik D. Demaine, Martin L. Demaine, Michael Hoffmann, and Joseph O'Rourke. Pushing blocks is hard. Computational Geometry: Theory and Applications, 26:21-36, 2001. https://www.sciencedirect.com/science/article/pii/S0925772102001700.66, 135
[DDO00] Erik D. Demaine, Martin L. Demaine, and Joseph O'Rourke. PushPush and Push-1 are NP-hard in 2d. In Proceedings of the 12th Canadian Conference on Computational Geometry, Fredericton, New Brunswick, Canada, August 16-19, 2000, 2000. 64
[DDST16] Benjamin Doerr, Carola Doerr, Reto Spöhel, and Henning Thomas. Playing Mastermind with many colors. fournal of the Association of Computing Machinery ($7 A C M$), 63(5):42:1-42:23, 2016.
https://doi.org/10.1145/2987372. 81
[DdW11] Andrew Drucker and Ronald de Wolf. Quantum proofs for classical theorems. Theory of Computing, 2:1-54, 2011. 464
[DE11] Erik D. Demaine and Sarah Eisenstat. Flattening fixed-angle chains is strongly NPhard. In Frank Dehne, John Iacono, and Jörg-Rüdiger Sack, editors, 12th International Workshop on Algorithms and Data Structures (WADS), 2011, New York, NY, USA, August 15-17, 2011. Proceedings, volume 6844 of Lecture Notes in Computer Science, pages 314-325. Springer, 2011. 97
[Der10] Dariusz Dereniowski. Phutball is PSPACE-hard. Theoretical Computer Science, 411(44-46):3971-3978, 2010. https://doi.org/10.1016/j.tcs.2010.08.019. 72
[Der14] Franck Dernoncourt. TrackMania is NP-complete, 2014. https://arxiv.org/pdf/1411.5765v1.pdf/. 62
[DER18] Erik D. Demaine, Sarah Eisenstat, and Mikhail Rudoy. Solving the rubik's cube optimally is np-complete. In Rolf Niedermeier and Brigitte Vallée, editors, 35th Symposium on Theoretical Aspects of Computer Science, STACS 2018, February 28 to March 3,

2018, Caen, France, volume 96 of LIPIcs, pages 24:1-24:13. Schloss Dagstuhl - LeibnizZentrum für Informatik, 2018.
https://doi.org/10.4230/LIPIcs.STACS.2018.24. 145
[DF86] Martin E. Dyer and Alan M. Frieze. Planar 3DM is NP-complete. Journal of Algorithms, 7(2):174-184, 1986. https://www.math.cmu.edu/~af1p/Texfiles/3DM.pdf. 99
[DF99] Rodney G. Downey and Michael R. Fellows. Parameterized Complexity. Monographs in Computer Science. Springer, 1999. 187, 201, 202, 213
[DFHT05] Erik D. Demaine, Fedor V. Fomin, Mohammad Taghi Hajiaghayi, and Dimitrios M. Thilikos. Subexponential parameterized algorithms on bounded-genus graphs and H-minor-free graphs. Journal of the Association of Computing Machinery ($7 A C M$), 52(6):866-893, 2005.
http://www-math.mit.edu/~hajiagha/hminorfreeJ15.pdf. 182, 189, 214
[DFL10] Erik D. Demaine, Sándor P. Fekete, and Robert J. Lang. Circle packing for origami design is hard, 2010.
http://arxiv.org/abs/1008.1224. 160
[DFR98] Rodney G. Downey, Michael R. Fellows, and Kenneth W. Regan. Parameterized circuit complexity and the W hierarchy. Theoretical Computer Science, 191(1-2):97115, 1998.
https://doi.org/10.1016/S0304-3975(96)00317-9. 203
[DGH^{+}02] Evgeny Dantsin, Andreas Goerdt, Edward A. Hirsch, Ravi Kannan, Jon M. Kleinberg, Christos H. Papadimitriou, Prabhakar Raghavan, and Uwe Schöning. A deterministic $\left(2-\frac{2}{k+1}\right)^{n}$ algorithm for k-SAT based on local search. Theoretical Computer Science, 289(1):69-83, 2002.
https://doi.org/10.1016/S0304-3975(01)00174-8. 175
[DGIM02] Mayur Datar, Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Maintaining stream statistics over sliding windows. SIAM fournal on Computing, 31(6):17941813, 2002.
https://doi.org/10.1137/S0097539701398363. 418
[DGKR05] Irit Dinur, Venkatesan Guruswami, Subhash Khot, and Oded Regev. A new multilayered PCP and the hardness of hypergraph vertex cover. SIAM fournal on Computing, 34(5):1129-1146, 2005.
https://doi.org/10.1137/S0097539704443057. 268, 271
[DGP09] Constantinos Daskalakis, Paul W. Goldberg, and Christos H. Papadimitriou. The complexity of computing a Nash equilibrium. SIAM fournal of Computing, 39(1):195-259, 2009.
https://doi.org/10.1137/070699652. 451
[DGPT91] Josep Díaz, Alan Gibbons, Mike Paterson, and Jacobo Torán. The MINSUMCUT problem. In Frank K. H. A. Dehne, Jörg-Rüdiger Sack, and Nicola Santoro, editors, Algorithms and Data Structures, 2nd Workshop WADS '91, Ottawa, Canada, August 14-16, 1991, Proceedings, volume 519 of Lecture Notes in Computer Science, pages 6589. Springer, 1991.
https://doi.org/10.1007/BFb0028251. 142
[DH01] Erik D. Demaine and Michael Hoffmann. Pushing blocks is NP-complete for noncrossing solution paths. In Proceedings of the 13th Canadian Conference on Computational Geometry, University of Waterloo, Ontario, Canada, August 13-15, 2001, pages 65-68, 2001. 64
[DHH02] Erik D. Demaine, Robert A. Hearn, and Michael Hoffmann. Push-2f is PSPACEcomplete. In Proceedings of the 14th Canadian Conference on Computational Geometry, pages 31-35, Lethbridge, Alberta, Canada, August 2002. 64
[DHH04] Erik D. Demaine, Michael Hoffmann, and Markus Holzer. PushPush- k is PSPACEcomplete. In Proceedings of the 3rd International Conference on Fun with Algorithms, pages 159-170, 2004. 64, 66
[DHHL22] Erik D. Demaine, Robert A. Hearn, Dylan Hendrickson, and Jayson Lynch. PSPACEcompleteness of reversible deterministic systems, 2022.
https://arxiv.org/abs/2207.07229.349, 350
[DHL20] Erik D. Demaine, Dylan H. Hendrickson, and Jayson Lynch. Toward a general complexity theory of motion planning: Characterizing which gadgets make games hard. In Thomas Vidick, editor, 11th Innovations in Theoretical Computer Science Conference, ITCS 2020, January 12-14, 2020, Seattle, Washington, USA, volume 151 of LIPIcs, pages 62:1-62:42. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.
https://doi.org/10.4230/LIPIcs.ITCS.2020.62. 351
[DHT04] Erik D. Demaine, Mohammad Taghi Hajiaghayi, and Dimitrios M. Thilikos. Bidimensional theory of bounded-genus graphs. SiAM fournal of Discrete Mathematics, 18(3):501-511, 2004.
http://www-math.mit.edu/~hajiagha/handle.pdf. 182
[DKK ${ }^{+}$18a] Irit Dinur, Subhash Khot, Guy Kindler, Dor Minzer, and Muli Safra. On nonoptimally expanding sets in Grassmann graphs. In Ilias Diakonikolas, David Kempe, and Monika Henzinger, editors, Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, Los Angeles, CA, USA, Fune 25-29, 2018, pages 940-951. ACM, 2018.
https://eccc.weizmann.ac.il/report/2017/094/. 235, 266
[DKK ${ }^{+}$18b] Irit Dinur, Subhash Khot, Guy Kindler, Dor Minzer, and Muli Safra. Towards a proof of the 2-to-1 games conjecture? In Ilias Diakonikolas, David Kempe, and Monika Henzinger, editors, Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, Los Angeles, CA, USA, Fune 25-29, 2018, pages

376-389. ACM, 2018.
https://doi.org/10.1145/3188745.3188804. 235, 266
[DKL20] Erik D. Demaine, Justin Kopinsky, and Jayson Lynch. Recursed is not recursive: A jarring result. In Yixin Cao, Siu-Wing Cheng, and Minming Li, editors, 31st International Symposium on Algorithms and Computation, ISAAC 2020, December 14-18, 2020, Hong Kong, China (Virtual Conference), volume 181 of LIPIcs, pages 50:1-50:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.
https://doi.org/10.4230/LIPIcs.ISAAC. 2020.50. 340
[DKS18] Debarati Das, Michal Koucký, and Michael E. Saks. Lower bounds for combinatorial algorithms for boolean matrix multiplication. In Rolf Niedermeier and Brigitte Vallée, editors, 35th Symposium on Theoretical Aspects of Computer Science, STACS 2018, February 28 to March 3, 2018, Caen, France, volume 96 of LIPIcs, pages 23:123:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. https://doi.org/10.4230/LIPIcs.STACS.2018.23. 388
[DKS19] Yuval Dagan, Gil Kur, and Ohad Shamir. Space lower bounds for linear prediction in the streaming model. In Alina Beygelzimer and Daniel Hsu, editors, Conference on Learning Theory, COLT 2019, 25-28 7une 2019, Phoenix, AZ, USA, volume 99 of Proceedings of Machine Learning Research, pages 929-954. PMLR, 2019.
http://proceedings.mlr.press/v99/dagan19b.html. 418
[DLL ${ }^{+}$22] Xiaotie Deng, Guojun Li, Zimao Li, Bin Ma, and Lusheng Wang. A PTAS for distinguishing (sub)string selection. In Peter Widmayer, Francisco Triguero Ruiz, Rafael Morales Bueno, Matthew Hennessy, Stephan J. Eidenbenz, and Ricardo Conejo, editors, Automata, Languages and Programming, 29th International Colloquium, ICALP 2002, Malaga, Spain, Fuly 8-13, 2002, Proceedings, volume 2380 of Lecture Notes in Computer Science, pages 740-751. Springer, 2002. 204
[DM99] Mauro Dell'Amico and Silvano Martello. Reduction of the three-partition problem. fournal of Combinatorial Optimization, 3(1):17-30, 1999. https://doi.org/10.1023/A:1009856820553. 173
[dMP13] Leonardo Mendonça de Moura and Grant Olney Passmore. Computation in real closed infinitesimal and transcendental extensions of the rationals. In Maria Paola Bonacina, editor, Automated Deduction - CADE-24-24th International Conference on Automated Deduction, Lake Placid, NY, USA, Fune 9-14, 2013. Proceedings, volume 7898 of Lecture Notes in Computer Science, pages 178-192. Springer, 2013.
https://www.cl.cam.ac.uk/~gp351/infinitesimals.pdf. 301
[DMR09] Irit Dinur, Elchanan Mossel, and Oded Regev. Conditional hardness for approximate coloring. SIAM Journal on Computing, 39(3):843-873, 2009.
https://doi.org/10.1137/07068062X. 273
[DMS ${ }^{+}$18] Erik D. Demaine, Fermi Ma, Ariel Schvartzman, Erik Waingarten, and Scott Aaronson. The fewest clues problem. Theoretical Computer Science, 748:28-39, 2018. https://doi.org/10.1016/j.tcs.2018.01.020. 295
[DOUU14] Erik D. Demaine, Yoshio Okamoto, Ryuhei Uehara, and Yushi Uno. Computational complexity and an integer programming model of Shakashaka. IEICE Transactions, 97-A(6):1213-1219, 2014.
https://dspace.mit.edu/handle/1721.1/99994. 91
[DPPS01] Josep Díaz, Mathew D. Penrose, Jordi Petit, and Maria J. Serna. Approximating layout problems on random geometric graphs. Fournal of Algorithms, 39(1):78-116, 2001.
https://doi.org/10.1006/jagm.2000.1149. 142
[DPR61] Martin Davis, Hillary Putnam, and Julia Robinson. The decision problem for exponential Diophantine equations. Annal of Mathematics, 74:425-436, 1961. 341
[DPS02] Josep Díaz, Jordi Petit, and Maria Serna. A survey of graph layout problems. ACM Computing Surveys, 34(3):313-356, September 2002.
http://doi.acm.org/10.1145/568522.568523. 141
[DQS12] Xiaotie Deng, Qi Qi, and Amin Saberi. Algorithmic solutions for envy-free cake cutting. Oper. Res., 60(6):1461-1476, 2012. https://doi.org/10.1287/opre.1120.1116. 451
[DR17] Erik D. Demaine and Mikhail Rudoy. Hamiltonicity is hard in thin or polygonal grid graphs, but easy in thin polygonal grid graphs. arXiv:1706.10046, 2017. https: //arxiv.org/abs/1706.10046. 122
[DS02] Irit Dinur and Shmuel Safra. The importance of being biased. In John H. Reif, editor, Proceedings on 34th Annual ACM Symposium on Theory of Computing, May 19-21, 2002, Montréal, Québec, Canada, pages 33-42. ACM, 2002.
https://doi.org/10.1145/509907.509915. 268
[DS05] Irit Dinur and Samuel Safra. On the hardness of approximating minimum vertex cover. Annals of Mathematics, pages 439-485, 2005.
http://www.wisdom.weizmann.ac.il/~dinuri/mypapers/vc.pdf. 235
[DS13] Irit Dinur and David Steurer. Analytical approach to parallel repetition. In Proceedings of the 46th annual ACM Sympsosium on Theory of Computing, pages 624-633, 2013.
https://dl.acm.org/doi/pdf/10.1145/2591796.2591884. 27, 229, 230, 268
[DvM14] Holger Dell and Dieter van Melkebeek. Satisfiability allows no nontrivial sparsification unless the polynomial-time hierarchy collapses. Journal of the Association of Computing Machinery (7 ACM), 61(4):23:1-23:27, 2014.
https://doi.org/10.1145/2629620. 191
[DVW16] Erik D. Demaine, Giovanni Viglietta, and Aaron Williams. Super Mario Brothers is harder-easier than we thought. In Fun with algorithms, 2016. 67
[Edm65] Jack Edmonds. Paths, trees, and flowers. Canadian fournal of Mathematics, 17:449467, 1965. 14
[EG04] Friedrich Eisenbrand and Fabrizio Grandoni. On the complexity of fixed parameter clique and dominating set. Theoretical Computer Science, 326(1-3):57-67, 2004. https://doi.org/10.1016/j.tcs.2004.05.009. 212, 388
[EHL ${ }^{+}$18] Hossein Esfandiari, MohammadTaghi Hajiaghayi, Vahid Liaghat, Morteza Monemizadeh, and Krzysztof Onak. Streaming algorithms for estimating the matching size in planar graphs and beyond. ACM Trans. on Algorithms, 14(4):48:1-48:23, 2018. https://doi.org/10.1145/3230819. 417
[EHLM17] Hossein Esfandiari, MohammadTaghi Hajiaghayi, Vahid Liaghat, and Morteza Monemizadeh. Prophet secretary. SIAM Journal on Discrete Mathematics, 31(3):16851701, 2017.
https://arxiv.org/abs/1507.01155. 394, 396
[EJ64] Calrton E.Lemke and J.T.Howson. Equilibrium points of bimatrix games. SIAM fournal on Applied Mathematics, 12:412-423, 1964.
https://epubs.siam.org/doi/pdf/10.1137/0112033. 442
[ENSS98] Guy Even, Joseph Naor, Baruch Schieber, and Madhu Sudan. Approximating minimum feedback sets and multicuts in directed graphs. Algorithmica, 20(2):151-174, 1998.
https://doi.org/10.1007/PL00009191. 272
[EP06] Bruno Escoffier and Vangelis Th. Paschos. Completeness in approximation classes beyond APX. Theoretical Computer Science., 359(1-3):369-377, 2006.
http://dx.doi.org/10.1016/j.tcs.2006.05.023. 254, 260
[Epp87] David Eppstein. On the NP-completeness of cryptarithms. SIGACT News, 18(3):3840, 1987.
http://www.ics.uci.edu/~eppstein/pubs/p-cryptarithm.html. 58
[ES75] Guy Even and Yossi Shiloach. NP-completeness of several arrangement problems, 1975.
https://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-get.cgi/1975/CS/ CS0043.pdf. 142
[EY09] Kousha Etessami and Mihalis Yannakakis. Recursive markov chains, stochastic grammars, and monotone systems of nonlinear equations. fournal of the $A C M$, 56(1):1:1-1:66, 2009.
https://doi.org/10.1145/1462153.1462154. 307
[FB02] Gary William Flake and Eric B. Baum. Rush Hour is PSPACE-complete, or "why you should generously tip parking lot attendants". Theoretical Computer Science, 270(1-2):895-911, 2002.
https://doi.org/10.1016/S0304-3975(01)00173-6. 346
[Fei98] Uriel Feige. A threshold of $\ln n$ for approximating set cover. fournal of the Association of Computing Machinery (7 ACM), 45:634-652, 1998.
https://dl.acm.org/doi/10.1145/285055.285059. 230
[Fei04] Uriel Feige. Approximating maximum clique by removing subgraphs. SIAM fournal on Discrete Mathematics, 18(2):219-225, 2004.
https://epubs.siam.org/doi/pdf/10.1137/S089548010240415X. 227
[FG06] Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Texts in Theoretical Computer Science. An EATCS Series. Springer, 2006. 187, 191, 213
[FG18] Aris Filos-Ratsikas and Paul W. Goldberg. Consensus halving is PPA-complete. In Ilias Diakonikolas, David Kempe, and Monika Henzinger, editors, Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018, pages 51-64. ACM, 2018. https://arxiv.org/abs/1711.04503. 460
[FGJ ${ }^{+}$78] A. S. Fraenkel, M. R. Garey, D. S. Johnson, T. Schaefer, and Y. Yesha. The complexity of checkers on an $n \times n$ board. In 19th Annual Symposium on Foundations of Computer Science, 1978, pages 55-64. IEEE Computer Society, 1978. 333
[FGL $\left.{ }^{+} 96\right]$ Uriel Feige, Shafi Goldwasser, László Lovász, Shmuel Safra, and Mario Szegedy. Interactive proofs and the hardness of approximating cliques. fournal of the ACM, 43(2):268-292, 1996.
https://doi.org/10.1145/226643.226652. 227
[FGLS10] Fedor V. Fomin, Petr A. Golovach, Daniel Lokshtanov, and Saket Saurabh. Algorithmic lower bounds for problems parameterized with clique-width. In Moses Charikar, editor, Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2010, Austin, Texas, USA, January 17-19, 2010, pages 493-502. SIAM, 2010.
https://doi.org/10.1137/1.9781611973075.42. 213
[FHM^{+}20] Alireza Farhadi, Mohammad Taghi Hajiaghayi, Tung Mai, Anup Rao, and Ryan A. Rossi. Approximate maximum matching in random streams. In Shuchi Chawla, editor, Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, Fanuary 5-8, 2020, pages 1773-1785. SIAM, 2020. https://arxiv.org/abs/1912.10497. 408
[FHRV09] Michael R. Fellows, Danny Hermelin, Frances A. Rosamond, and Stéphane Vialette. On the parameterized complexity of multiple-interval graph problems. Theoretical Computer Science, 410(1):53-61, 2009. https://doi.org/10.1016/j.tcs.2008.09.065. 196
[Fil19] Ivan Tadeu Ferreira Antunes Filho. Characterizing Boolean satisfiability variants. Master's thesis, Massachusetts Institute of Technology, 2019. http://erikdemaine.org/theses/ifilho.pdf. 49, 98
[Fin18] Jeremy T. Fineman. Nearly work-efficient parallel algorithm for digraph reachability. In Ilias Diakonikolas, David Kempe, and Monika Henzinger, editors, Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, Los

Angeles, CA, USA, Fune 25-29, 2018, pages 457-470. ACM, 2018.
https://arxiv.org/abs/2210.16351. 436
[FKL ${ }^{+91] ~ A m o s ~ F i a t, ~ R i c h a r d ~ M . ~ K a r p, ~ M i c h a e l ~ L u b y, ~ L y l e ~ A . ~ M c G e o c h, ~ D a n i e l ~ D o m i n i c ~}$ Sleator, and Neal E. Young. Competitive paging algorithms. Journal of Algorithms, 12(4):685-699, 1991.
www.cs.cmu.edu/~sleator/papers/competitive-paging.pdf. 398
[FL81] Avierzi S. Fraenkel and David Lichtenstein. Computing a perfect strategy for $n \times n$ chess requires time exponential in n. Journal of Combinatorial Theory (Series A), 31:199-214, 1981.
http://www.ms.mff.cuni.cz/~truno7am/slozitostHer/chessExptime.pdf. 333
[Flo62] Robert Floyd. Algorithm 97: Shortest path. Communications of the ACM, 5:345, 1962. 378
[For10] Michal Forišek. Computational complexity of two-dimensional platform games. In Fun with Algorithms, pages 214-227. Springer, 2010. https://people.ksp.sk/~misof/publications/copy/2010fun.pdf. 117
[Fre76] Michael Fredmann. New bounds on the complexity of the shortest path problem. SIAM Journal on Computing, 5(1):83-89, 1976.
https://epubs.siam.org/doi/pdf/10.1137/0205006. 379
[Fri02a] Erich Friedman. Pushing blocks in gravity is NP-hard, 2002. 135
[Fri02b] Erich Friedman. Spiral galaxies puzzles are NP-complete, 2002. https://slideplayer.com/slide/254461/. 102
[FSTZ98] Charles M. Fiduccia, Edward R. Scheinerman, Ann N. Trenk, and Jennifer S. Zito. Dot product representations of graphs. Discret. Math., 181(1-3):113-138, 1998. https://doi.org/10.1016/S0012-365X(97)00049-6. 304
[FT82] Edward Fredkin and Tommaso Toffoli. Conservative logic. International fournal of Theoretical Physics, pages 219-253, 1982.
https://link.springer.com/article/10.1007/BF01857727. 350
[FW90] Michael Formann and Frank Wagner. The VLSI layout in various embedding models. In Rolf H. Möhring, editor, Graph-Theoretic Concepts in Computer Science, 16rd International Workshop, WG '90, Berlin, Germany, Fune 20-22, 1990, Proceedings, volume 484 of Lecture Notes in Computer Science, pages 130-139. Springer, 1990. 174
[Gal09] François Le Gall. Exponential separation of quantum and classical online space complexity. Theory Comput. Syst., 45(2):188-202, 2009. https://arxiv.org/pdf/quant-ph/0606066.pdf. 473
[Gar20] Daniel Garisto. Light-based quantum computer exceeds fastest classical supercomputers. Scientific American, December 3, 2020, 2020. 478
[Gas09a] William Gasarch. Whats your game Mr. Bond? Nim?, 2009. https://blog.computationalcomplexity.org/2009/12/ whats-your-game-mr-bond-nim.html. 267
[Gas09b] William Gasarch. Whats your game Mr. Bond?-The sequel!, 2009. https://blog.computationalcomplexity.org/2010/06/ whats-your-game-mr-bond-sequel.html. 267
[Gas19] William Gasarch. Complexity Theory Column 100: The $\mathrm{P}=$ NP poll. SIGACT News, 50(1):28-34, 2019. https://www.cs.umd.edu/users/gasarch/papers/poll3.pdf. 27
[Gas21] William Gasarch. Hilbert's tenth problem: Refinements and variations, 2021. https://arxiv.org/abs/2104.07220. 341
[Gav77] F. Gavril. Some NP-complete problems on graphs. In Proceedings of the 11th Conference on Information Science. John Hopkins University, pages 91-95, 1977. 142
[GB07] Alexander Grigoriev and Hans L. Bodlaender. Algorithms for graphs embeddable with few crossings per edge. Algorithmica, 49(1):1-11, 2007.
https://doi.org/10.1007/s00453-007-0010-x. 155
[GGJ76] M. R. Garey, Ronald L. Graham, and David S. Johnson. Some np-complete geometric problems. In Ashok K. Chandra, Detlef Wotschke, Emily P. Friedman, and Michael A. Harrison, editors, Proceedings of the 8th Annual ACM Symposium on Theory of Computing, May 3-5, 1976, Hershey, Pennsylvania, USA, pages 10-22. ACM, 1976.
https://doi.org/10.1145/800113.803626. 307
[GGJ20] Mohsen Ghaffari, Christoph Grunau, and Ce Jin. Improved MPC algorithms for MIS, matching, and coloring on trees and beyond. In Hagit Attiya, editor, 34th International Symposium on Distributed Computing, DISC 2020, October 12-16, 2020, Virtual Conference, volume 179 of LIPIcs, pages 34:1-34:18. Schloss Dagstuhl - LeibnizZentrum für Informatik, 2020.
https://doi.org/10.4230/LIPIcs.DISC.2020.34. 424
[GGJK78] Michael R. Garey, Ronald Graham, David S. Johnson, and Donald E. Knuth. Complexity results for bandwidth minimization. SIAM fournal of Applied Mathematics, 34:477-495, 1978.
https://epubs.siam.org/doi/10.1137/0134037. 142
[GGN06] Jens Gramm, Jiong Guo, and Rolf Niedermeier. Parameterized intractability of distinguishing substring selection. Theory of Computing Systems, 39(4):545-560, 2006.
https://link.springer.com/content/pdf/10.1007/s00224-004-1185-z.pdf.
[$\mathrm{GHM}^{+} 11$] Venkatesan Guruswami, Johan Håstad, Rajsekar Manokaran, Prasad Raghavendra, and Moses Charikar. Beating the random ordering is hard: Every ordering CSP is approximation resistant. SIAM fournal on Computing, 40(3):878-914, 2011. https://doi.org/10.1137/090756144. 271, 272
[GHOP22] William Gasarch, Nathan Hayes, Anthony Ostuni, and Davin Park. Open Problems Column 100: The complexit of chromatic number when restricted to graphs with bounded genus or bounded crossing number. SIGACT News, 53(2), 2022. https://www.cs.umd.edu/~gasarch/open/cross.pdf. 80
[GHR95] Raymond Greenlaw, James Hoover, and Walter Ruzzo. Limits to Parallel Computation: P-Completeness Theory. Oxford University Press, New York, 1995. https://homes.cs.washington.edu/~ruzzo/papers/limits.pdf. 420
[GHS02] Venkatesan Guruswami, Johan Håstad, and Madhu Sudan. Hardness of approximate hypergraph coloring. SIAM fournal on Computing, 31(6):1663-1686, 2002. https://doi.org/10.1137/S0097539700377165. 268
[GJ77] Michael R. Garey and David S. Johnson. The rectilinear steiner tree problem is NPcomplete. SIAM Journal of Applied Mathematics, 32:826-834, 1977. https://www.jstor.org/stable/pdf/2100192.pdf. 132, 134
[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman \& Co., New York, NY, 1979. 14, 147, 151, 152, 153
[GJ83] Michael R. Garey and David S. Johnson. Crossing number is NP-complete. SIAM fournal on Algebraic Discrete Methods, 4(3):312-316, 1983. http://dx.doi.org/10.1137/0604033. 143
[GJS76] M. R. Garey, David S. Johnson, and Larry J. Stockmeyer. Some simplified NPcomplete graph problems. Theoretical Computer Science, 1(3):237-267, 1976.
https://www.sciencedirect.com/science/article/pii/0304397576900591. 76, 81, 142
[GJS21] Michael T. Goodrich, Riko Jacob, and Nodari Sitchinava. Atomic power in forks: A super-logarithmic lower bound for implementing butterfly networks in the nonatomic binary fork-join model. In Dániel Marx, editor, Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, Virtual Conference, January 10-13, 2021, pages 2141-2153. SIAM, 2021.
https://epubs.siam.org/doi/pdf/10.1137/1.9781611976465.128. 420
[GJT76] Michael R. Garey, David S. Johnson, and Robert E. Tarjan. The planar Hamiltonian circuit problem is NP-complete. SIAM fournal on Computing, 5(4):704-714, 1976. http://dx.doi.org/10.1137/0205049. 112
[GKC ${ }^{+}$21] Xun Gao, Marcin Kalinowski, Chi-Ning Chou, Mikhail Lukin, Boaz Barak, and Soonwon Choi. Limitations of linear cross-entropy as a measure for quantum advantage,
2021.
https://arxiv.org/abs/2112.01657. 479
[GKK ${ }^{+} 08$] Dmitry Gavinsky, Julia Kempe, Iordanis Kerenidis, Ran Raz, and Ronald de Wolf. Exponential separation for one-way quantum communication complexity, with applications to cryptography. SIAM fournal of Computing, 38(5):1695-1708, 2008. https://doi.org/10.1137/070706550. 470, 471, 473
[GKK12] Ashish Goel, Michael Kapralov, and Sanjeev Khanna. On the communication and streaming complexity of maximum bipartite matching. In Yuval Rabani, editor, Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, Kyoto, Japan, January 17-19, 2012, pages 468-485. SIAM, 2012. https://doi.org/10.1137/1.9781611973099.41. 417
$\left[\mathrm{GKM}^{+} 12\right]$ Rohit Gurjar, Arpita Korwar, Jochen Messner, Simon Straub, and Thomas Thierauf. Planarizing gadgets for perfect matching do not exist. In Branislav Rovan, Vladimiro Sassone, and Peter Widmayer, editors, Mathematical Foundations of Computer Science 2012-37th International Symposium, MFCS 2012, Bratislava, Slovakia, August 27-31, 2012. Proceedings, volume 7464 of Lecture Notes in Computer Science, pages 478-490. Springer, 2012.
https://dl.acm.org/doi/10.1145/2934310. 75
$\left[\mathrm{GKM}^{+}\right.$19] Buddhima Gamlath, Michael Kapralov, Andreas Maggiori, Ola Svensson, and David Wajc. Online matching with general arrivals. In David Zuckerman, editor, 60th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2019, Baltimore, Maryland, USA, November 9-12, 2019, pages 26-37. IEEE Computer Society, 2019. https://doi.org/10.1109/FOCS.2019.00011. 403
[GKMP09] Parikshit Gopalan, Phokion G. Kolaitis, Elitza N. Maneva, and Christos H. Papadimitriou. The connectivity of Boolean satisfiability: Computational and structural dichotomies. SIAM fournal on Computing, 38(6):2330-2355, 2009.
https://doi.org/10.1137/07070440X. 347
[GKR00] Naveen Garg, Goran Konjevod, and R. Ravi. A polylogarithmic approximation algorithm for the group steiner tree problem. Journal of Algorithms, 37(1):66-84, 2000. https://doi.org/10.1006/jagm. 2000.1096. 259
[GKSZ20] Mika Göös, Pritish Kamath, Katerina Sotiraki, and Manolis Zampetakis. On the complexity of modulo-q arguments and the Chevalley-Warning theorem. In Shubhangi Saraf, editor, 35th Computational Complexity Conference, CCC 2020, 7uly 28-31, 2020, Saarbrücken, Germany (Virtual Conference), volume 169 of LIPIcs, pages 19:1-19:42. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.
https://doi.org/10.4230/LIPIcs.CCC.2020.19. 459, 460
[GKU19] Mohsen Ghaffari, Fabian Kuhn, and Jara Uitto. Conditional hardness results for massively parallel computation from distributed lower bounds. In David Zuckerman, editor, 60th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2019,

Baltimore, Maryland, USA, November 9-12, 2019, pages 1650-1663. IEEE Computer Society, 2019.
https://doi.org/10.1109/FOCS. 2019.00097. 424, 428
[GLS81] Martin Grötschel, László Lovász, and Alexander Schrijver. The ellipsoid method and its consequences in combinatorial optimization. Combinatorica, 1(2):169-197, 1981. https://doi.org/10.1007/BF02579273. 185
[GMKS95] P.W. Goldberg, M.C.Golumbic, H. Kaplan, and R. Shamir. Four strikes against physical mapping of DNA. Journal of Computational Biology, 2(1):139-152, 1995. https://www.liebertpub.com/doi/10.1089/cmb.1995.2.139. 142
[GMVY18] Jugal Garg, Ruta Mehta, Vijay V. Vazirani, and Sadra Yazdanbod. $\exists R$-completeness for decision versions of multi-player (symmetric) nash equilibria. ACM Trans. Economics and Comput., 6(1):1:1-1:23, 2018.
https://doi.org/10.1145/3175494. 306
[GO12] Anka Gajentaan and Mark H. Overmars. On a class of $O\left(n^{2}\right)$ problems in computational geometry. Computational Geometry, 45(4):140-152, 2012. https://doi.org/10.1016/j.comgeo.2011.11.006. 357, 359, 362, 370
[Goe97] Michel X. Goemans. Semidefinite programming in combinatorial optimization. Mathematical Programming, 79:143-161, 1997.
https://doi.org/10.1007/BF02614315. 277
[Gol78] E. Mark Gold. Complexity of automaton identification from given data. Information and Computation, 37:302-320, 1978.
https://www.sciencedirect.com/science/article/pii/S0019995878905624. 52
[Gol97] P.A. Golovach. The total vertex separation number of a graph (in Russian). Diskretnaya Matematika, 10(1):87-94, 1997. 142
[Goo09] Michael T. Goodrich. On the algorithmic complexity of the Mastermind game with black-peg results. Inf. Process. Lett., 109(13):675-678, 2009.
https://doi.org/10.1016/j.ipl.2009.02.021. 81
[GP18] Allan Grønlund and Seth Pettie. Threesomes, degenerates, and love triangles. fournal of the Association of Computing Machinery (7ACM), 65(4):22:1-22:25, 2018. https://doi.org/10.1145/3185378. 359
[GPS89] Jacob E. Goodman, Richard Pollack, and Bernd Sturmfels. Coordinate representation of order types requires exponential storage. In David S. Johnson, editor, Proceedings of the 21st Annual ACM Symposium on Theory of Computing, May 14-17, 1989, Seattle, Washington, USA, pages 405-410. ACM, 1989. https://doi.org/10.1145/73007.73046. 304
[Gro96] Lov K. Grover. A fast quantum mechanical algorithm for database search. In Gary L. Miller, editor, Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing, Philadelphia, Pennsylvania, USA, May 22-24, 1996, pages 212-219.

ACM, 1996.
https://doi.org/10.1145/237814.237866. 467
[GSZ11] Michael T. Goodrich, Nodari Sitchinava, and Qin Zhang. Sorting, searching, and simulation in the mapreduce framework. In Takao Asano, Shin-Ichi Nakano, Yoshio Okamoto, and Osamu Watanabe, editors, Algorithms and Computation - 22nd International Symposium, ISAAC 2011, Yokohama, Fapan, December 5-8, 2011. Proceedings, volume 7074 of Lecture Notes in Computer Science, pages 374-383. Springer, 2011. https://arxiv.org/abs/1101.1902. 422
[GU19] Mohsen Ghaffari and Jara Uitto. Sparsifying distributed algorithms with ramifications in massively parallel computation and centralized local computation. In Timothy M. Chan, editor, Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019, pages 1636-1653. SIAM, 2019.
https://doi.org/10.1137/1.9781611975482.99. 424
[Gus93] Jens Gustedt. On the pathwidth of chordal graphs. Discrete Applied Mathematics, 45(3):233-248, 1993.
https://doi.org/10.1016/0166-218X(93)90012-D. 142
[GW95] Michel X. Goemans and David P. Williamson. Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. Journal of the ACM, 42(6):1115-1145, 1995.
https://dl.acm.org/doi/pdf/10.1145/227683.227684. 271, 277
[Had75] F. Hadlock. Finding a maximum cut of a planar graph in polynomial time. SIAM fournal on Computing, 4(3):221-225, 1975.
https://web.eecs.umich.edu/~pettie/matching/
Hadlock-maxcut-planar-graph-reduction-to-T-join.pdf. 96
[Ham14] Linus Hamilton. Braid is undecidable, 2014.
https://arxiv.org/pdf/1412.0784.pdf. 340
[Has99] Johan Hastad. Clique is hard to approximate within $n^{1-\varepsilon}$. Acta Mathematica, 1999. https://www.csc.kth.se/~johanh/cliqueinap.pdf. 229, 268
[Has01] Johan Hastad. Some optimal inapproximability results. Journal of the Association of Computing Machinery (7 (ACM), 48(4):798-859, 2001.
https://dl.acm.org/doi/10.1145/502090.502098. 232, 235, 251, 266, 268, 271
[HD09] Robert A. Hearn and Erik D. Demaine. Game, Puzzles, and Computation. A K Peters/CRC Press, 1st edition, July 2009. 326, 343, 344, 345, 346, 347, 348, 349, 350, 353
[Hea06] Robert A. Hearn. Games, puzzles, and computation. PhD thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2006.
http://hdl.handle.net/1721.1/37913. 343, 349
[Hea09] Robert A. Hearn. Amazons, Konane, and Cross Purposes are PSPACE-complete. Games of No Chance 3, 56:287-306, 2009. http://library.msri.org/books/Book56/files/31hearn.pdf. 349, 351
[Hem04] Edith Hemaspaandra. Dichotomy theorems for alternation-bounded quantified Boolean formulas, 2004.
http://arxiv.org/abs/cs/0406006. 310
[Her14] Timon Hertli. 3-SAT faster and simpler - Unique-SAT bounds for PPSZ hold in general. SIAM fournal on Computing, 43(2):718-729, 2014.
https://arxiv.org/abs/1103.2165. 175
[HHHK05] Vesa Halava, Tero Harju, Mika Hirvensalo, and Juhani Karhumaki. Skolem’s problem-on the border between decidable and undecidable. Technical Report 683, Turku Centre for Computer Science, 2005. https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.155.2606. 336
[HIN^{+}12] Takashi Horiyama, Takehiro Ito, Keita Nakatsuka, Akira Suzuki, and Ryuhei Uehara. Packing trominoes is NP-complete, \#P-complete and ASP-complete. In Proceedings of the 24th Canadian Conference on Computational Geometry, CCCG 2012, Charlottetown, Prince Edward Island, Canada, August 8-10, 2012, pages 211-216, 2012. http://2012.cccg.ca/papers/paper67.pdf. 135, 137
[Hir22] Shuichi Hirahara. NP-hardness of learning programs and partial MCSP. In 63rd IEEE Annual Symposium on Foundations of Computer Science (FOCS). IEEE, 2022. https://eccc.weizmann.ac.il/report/2022/119/. 30
[HJ12] Markus Holzer and Sebastian Jakobi. On the complexity of rolling block and Alice mazes. In Evangelos Kranakis, Danny Krizanc, and Flaminia L. Luccio, editors, Fun with Algorithms - 6th International Conference, FUN 2012, Venice, Italy, Fune 4-6, 2012. Proceedings, volume 7288 of Lecture Notes in Computer Science, pages 210-222. Springer, 2012. 349
[HJW85] John E. Hopcroft, Deborah Joseph, and Sue Whitesides. On the movement of robot arms in 2-dimensional bounded regions. SIAM Journal on Computing., 14(2):315333, 1985.
https://doi.org/10.1137/0214025. 173
[HKS ${ }^{+}$17] Craig Hamilton, Regine Kruse, Linda Sansoni, Sonja Barkhofen, Christine Silverhorn, and Igor Jex. Gaussian boson sampling. Physical Review Letters, 119, 2017. https://arxiv.org/pdf/1612.01199.pdf. 478
[HN90] Pavol Hell and Jaroslav Nesetril. On the complexity of H-coloring. 7. Comb. Theory, Ser. B, 48(1):92-110, 1990.
https://doi.org/10.1016/0095-8956(90)90132-J. 99
[Hof00] Michael Hoffmann. Motion planning admidst movable square blocs: Push-* is NPhard. In Proceedings of the 12th Canadian Conference on Computational Geometry,

Fredericton, New Brunswick, Canada, August 16-19, 2000, 2000.
https://people.inf.ethz.ch/hoffmann/pub/h-psnh-00.pdf. 64
[Hor51] Alfred Horn. On sentences which are true of direct unions of algebras. The fournal of Symbolic Logic, 16(1):14-21, 1951. 52
[HR97] Magnús M. Halldórsson and Jaikumar Radhakrishnan. Greed is good: Approximating independent sets in sparse and bounded-degree graphs. Algorithmica, 18(1):145163, 1997.
https://doi.org/10.1007/BF02523693. 246
[HR12] Ishay Haviv and Oded Regev. Tensor-based hardness of the shortest vector problem to within almost polynomial factors. Theory of Computing, 8(1):513-531, 2012. https://doi.org/10.4086/toc.2012.v008a023. 263
[HSSS21] MohammadTaghi Hajiaghayi, Hamed Saleh, Saeed Seddighin, and Xiaorui Sun. String matching with wildcards in the massively parallel computation model. In Kunal Agrawal and Yossi Azar, editors, SPAA '21: 33rd ACM Symposium on Parallelism in Algorithms and Architectures, Virtual Event, USA, 6-8 July, 2021, pages 275-284. ACM, 2021.
https://doi.org/10.1145/3409964.3461793. 425
[HT74] John E. Hopcroft and Robert Endre Tarjan. Efficient planarity testing. Journal of the ACM, 21(4):549-568, 1974. https://doi.org/10.1145/321850.321852. 82
[Imp03] Russell Impagliazzo. Hardness as randomness: A survey of universal derandomization, 2003.
http://arxiv.org/abs/cs/0304040. 33
[INKT21] Fumitaka Ito, Masahiko Naito, Naoyuki Katabami, and Tatsuie Tsukiji. EXPTIME hardness of an $n \times n$ custodian capture game. Algorithms, 14(3):70, 2021.
https://doi.org/10.3390/a14030070. 336
[IP01] Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. fournal of Computer and System Science, 62(2):367-375, 2001.
https://doi.org/10.1006/jcss.2000.1727. 176
[IPS82] Alon Itai, Christos H Papadimitriou, and Jayme Luiz Szwarcfiter. Hamilton paths in grid graphs. SIAM Journal on Computing, 11(4):676-686, 1982.
https://epubs.siam.org/doi/10.1137/0211056. 114, 115
[IPZ01] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly exponential complexity? Journal of Computing and System Science, 63(4):512-530, 2001.
https://cseweb.ucsd.edu/~russell/ipz.pdf. 176
[IW97] Russell Impagliazzo and Avi Wigderson. $\mathrm{P}=\mathrm{BPP}$ if E requires exponential circuits: Derandomizing the XOR lemma. In Frank Thomson Leighton and Peter W. Shor, editors, Proceedings of the Twenty-Ninth Annual ACM Symposium on the Theory of Computing, El Paso, Texas, USA, May 4-6, 1997, pages 220-229. ACM, 1997.
https://doi.org/10.1145/258533.258590. 33
[IW05] Piotr Indyk and David P. Woodruff. Optimal approximations of the frequency moments of data streams. In Harold N. Gabow and Ronald Fagin, editors, Proceedings of the 37th Annual ACM Symposium on Theory of Computing (STOC), pages 202-208. ACM, 2005.
https://doi.org/10.1145/1060590.1060621. 418
[IZ89] Russell Impagliazzo and David Zuckerman. How to recycle random bits. In 30th Annual Symposium on Foundations of Computer Science, Research Triangle Park, North Carolina, USA, 30 October - 1 November 1989, pages 248-253. IEEE Computer Society, 1989.
https://doi.org/10.1109/SFCS.1989.63486. 227
[Jan68] E. Janovkaya. Equilibrium points in polymatrix games (in Russian). Litovskii Matematicheskii Sbornik, 8:381-384, 1968. 453
[JdM12] Dejan Jovanovic and Leonardo de Moura. Solving non-linear arithmetic. ACM Commun. Comput. Algebra, 46(3/4):104-105, 2012.
https://doi.org/10.1145/2429135.2429155. 301
[JDU ${ }^{+} 74$ David S. Johnson, Alan J. Demers, Jeffrey D. Ullman, Michael R. Garey, and Ronald L. Graham. Worst-case performance bounds for simple one-dimensional packing algorithms. SIAM fournal of Computing, 3(4):299-325, 1974. https://doi.org/10.1137/0203025. 394
[Jer94] Mark Jerrum. Counting trees in a graph is \#P-complete. Inf. Process. Lett., 51(3):111116, 1994.
https://doi.org/10.1016/0020-0190(94)00085-9. 285
[Jer16] Emil Jerábek. Integer factoring and modular square roots. Journal of Computing and System Sciences, 82(2):380-394, 2016. https://arxiv.org/pdf/1207.5220.pdf. 460, 461
[JK21] Rajesh Jayaram and John Kallaugher. An optimal algorithm for triangle counting in the stream. In Mary Wootters and Laura Sanità, editors, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2021, August 16-18, 2021, University of Washington, Seattle, Washington, USA (Virtual Conference), volume 207 of LIPIcs, pages 11:1-11:11. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. 471
[JLS19] Arun Jambulapati, Yang P. Liu, and Aaron Sidford. Parallel reachability in almost linear work and square root depth. In David Zuckerman, editor, 60th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2019, Baltimore, Maryland,

USA, November 9-12, 2019, pages 1664-1686. IEEE Computer Society, 2019.
https://doi.org/10.1109/FOCS.2019.00098. 436
[JNV ${ }^{+}$21] Zhengfeng Ji, Anand Natarajan, Thomas Vidick, John Wright, and Henry Yuen. Mip* = RE. Commun. ACM, 64(11):131-138, 2021.
https://arxiv.org/abs/2001.04383. 474
[Joh87] David S. Johnson. The NP-completeness column: An ongoing guide. Fournal of Algorithms, 8(3):438-448, 1987.
https://doi.org/10.1016/0196-6774(87)90021-6. 147
[Jon98] Peter Jonsson. Near-optimal nonapproximability results for some NPO PB-complete problems. Information Processing Letters, 68(5):249-253, 1998.
http://dx.doi.org/10.1016/S0020-0190(98)00170-7. 260
[Jor11] Stephen Jordan. Quantum algorithms zoo, 2011. https://quantumalgorithmzoo.org/. 464
[JPY88] David S. Johnson, Christos H. Papadimitriou, and Mihalis Yannakakis. How easy is local search? Journal of Computer and System Sciences, 37(1):79-100, 1988.
https://doi.org/10.1016/0022-0000(88)90046-3. 460
[JT07] Marcin Jurdzinski and Ashutosh Trivedi. Reachability-time games on timed automata. In Lars Arge, Christian Cachin, Tomasz Jurdzinski, and Andrzej Tarlecki, editors, Automata, Languages and Programming, 34th International Colloquium, ICALP 2007, Wroclaw, Poland, Fuly 9-13, 2007, Proceedings, volume 4596 of Lecture Notes in Computer Science, pages 838-849. Springer, 2007. http://arxiv.org/abs/0907.3414. 336
[JZ22] Stacey Jeffery and Sebastian Zur. Multidimensional quantum walks, with applications to k-distinctness, 2022.
https://arxiv.org/abs/2208.13492. 468
[Kab02] Valentine Kabanets. Derandomization: A brief overview. Bull. EATCS, 76:88-103, 2002.
https://eccc.weizmann.ac.il/report/2002/008/. 33
[KAI79] Takumi Kasai, Akeo Adachi, and Shigeki Iwata. Classes of pebble games and complete problems. SIAM Journal of Computing, 8(4):574-586, 1979. https://epubs.siam.org/doi/abs/10.1137/0208046? journalCode=smjcat. 336
[Kal21] John Kallaugher. A quantum advantage for a natural streaming problem. In 62nd IEEE Annual Symposium on Foundations of Computer Science, FOCS 2021, Denver, CO, USA, February 7-10, 2021, pages 897-908. IEEE, 2021. 471
[Kap21] Michael Kapralov. Space lower bounds for approximating maximum matching in the edge arrival model. In Dániel Marx, editor, Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, Virtual Conference, January 10-13,

2021, pages 1874-1893. SIAM, 2021.
https://doi.org/10.1137/1.9781611976465.112. 417
[Kar68] Jerome J Karaganis. On the cube of a graph. Canadian Mathematical Bulletin, 11:295296, 1968. 112
[Kar72] Richard Karp. Reducibilities among combinatorial problems. In Raymond E. Miller and James W. Thatcher, editors, Complexity of computer computations, pages 85-103. Plenum Press, 1972.
https://cs6505.files.wordpress.com/2015/08/karp.pdf. 14, 25, 54, 76, 112
[Kay00] Richard Kaye. Minesweeper is NP-complete. Mathematical Intelligencer, 22(2):9-15, 2000.
https://web.mat.bham.ac.uk/R.W.Kaye/minesw/minesw.htm. 106
[KC00] Valentine Kabanets and Jin-yi Cai. Circuit minimization problem. In F. Frances Yao and Eugene M. Luks, editors, Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing, May 21-23, 2000, Portland, OR, USA, pages 73-79. ACM, 2000.
https://doi.org/10.1145/335305.335314. 30
[Kho01] Subhash Khot. Improved inaproximability results for maxclique, chromatic number and approximate graph coloring. In 42nd Annual Symposium on Foundations of Computer Science, FOCS 2001, 14-17 October 2001, Las Vegas, Nevada, USA, pages 600-609. IEEE Computer Society, 2001.
https://doi.org/10.1109/SFCS. 2001.959936. 268, 273
[Kho02] Subhash Khot. On the power of unique 2-prover 1-round games. In Proceedings of the 17th Annual IEEE Conference on Computational Complexity, Montréal, Québec, Canada, May 21-24, 2002, page 25. IEEE Computer Society, 2002.
https://dl.acm.org/doi/pdf/10.1145/509907.510017. 272
[Kho05] Subhash Khot. Hardness of approximating the shortest vector problem in lattices. Journal of the Assocation of Computing Machinery (7 ACM), 52(5):789-808, 2005. https://doi.org/10.1145/1089023.1089027. 262, 263
[Kho10] Subhash Khot. On the Unique Games Conjecture (invited survey). In Proceedings of the 25th Annual IEEE Conference on Computational Complexity, CCC 2010, Cambridge, Massachusetts, USA, Fune 9-12, 2010, pages 99-121. IEEE Computer Society, 2010.
https://doi.org/10.1109/CCC.2010.19. 266, 268, 272
[Kho19] Subhash Khot. On the proof of the 2-to-2 games conjecture, 2019.
https://cs.nyu.edu/~khot/PCP-Spring-20/2-to-2-Exposition.pdf. 235, 266, 268
[Kin15] William B. Kinnersley. Cops and robbers is EXPTIME-complete. fournal of Combimatorial Theory, Series B, 111:201-220, 2015.
https://doi.org/10.1016/j.jctb.2014.11.002. 336
[KKG21] Anna R. Karlin, Nathan Klein, and Shayan Oveis Gharan. A (slightly) improved approximation algorithm for metric TSP. In Samir Khuller and Virginia Vassilevska Williams, editors, STOC '21: 53rd Annual ACM SIGACT Symposium on Theory of Computing, Virtual Event, Italy, Fune 21-25, 2021, pages 32-45. ACM, 2021.
https://doi.org/10.1145/3406325.3451009. 221
[KKM18] Kamil Khadiev, Aliya Khadieva, and Ilanz Mannapo. Quantum online algorithms with respect to space and advice complexity. Lobachevskii fournal of Mathematics, 39(9):1377-1387, 2018. 471
[KKMO07] Subhash Khot, Guy Kindler, Elchanan Mossel, and Ryan O'Donnell. Optimal inapproximability results for MAX-CUT and other 2-variable CSPs? SIAM fournal on Computing, 37(1):319-357, 2007.
https://www.cs.cmu.edu/~odonnell/papers/maxcut.pdf. 271
[Kle43] Stephen Kleene. Recursive predicates and quantifiers. Transactions of the American Math Society, 53(3):41-73, 1943. 38
[$\left.K_{L M}{ }^{+} 14\right]$ Raimondas Kiveris, Silvio Lattanzi, Vahab S. Mirrokni, Vibhor Rastogi, and Sergei Vassilvitskii. Connected components in mapreduce and beyond. In Ed Lazowska, Doug Terry, Remzi H. Arpaci-Dusseau, and Johannes Gehrke, editors, Proceedings of the ACM Symposium on Cloud Computing, Seattle, WA, USA, November 3-5, 2014, pages 18:1-18:13. ACM, 2014.
https://doi.org/10.1145/2670979.2670997. 430
[KLS00] Sanjeev Khanna, Nathan Linial, and Shmuel Safra. On the hardness of approximating the chromatic number. Combinatorica, 20(3):393-415, 2000.
https://doi.org/10.1007/s004930070013. 268, 273
[KLS01] Michael Kearns, Michael L. Littman, and Satinder P. Singh. Graphical models for game theory. In Proceedings of the 17th Conference on Uncertainty in Artificial Intelligence, 2001.
http://arxiv.org/abs/1301.2281. 453
[KM94] Jan Kratochvíl and Jirí Matousek. Intersection graphs of segments. Journal of Combinatorial Theory, Series B, 62(2):289-315, 1994. https://www.sciencedirect.com/science/article/pii/S0095895684710719. 303
[KM12] Ross J. Kang and Tobias Müller. Sphere and dot product representations of graphs. Discrete and Compututational Geometry, 47(3):548-568, 2012.
https://doi.org/10.1007/s00454-012-9394-8. 304
[KMN11] Anna R. Karlin, Claire Mathieu, and C. Thach Nguyen. Integrality gaps of linear and semi-definite programming relaxations for knapsack. In Oktay Günlük and Gerhard J. Woeginger, editors, Integer Programming and Combinatoral Optimization - 15th International Conference, IPCO 2011, New York, NY, USA, Fune 15-17, 2011. Proceedings, volume 6655 of Lecture Notes in Computer Science, pages 301-314. Springer,
2011.
https://homes.cs.washington.edu/~karlin/papers/knapsack.pdf. 278
[KMS98] David R. Karger, Rajeev Motwani, and Madhu Sudan. Approximate graph coloring by semidefinite programming. Journal of the Assocation of Computing Machinery ($7 A C M), 45(2): 246-265,1998$.
https://doi.org/10.1145/274787.274791. 273
[KMS17] Subhash Khot, Dor Minzer, and Muli Safra. On independent sets, 2-to-2 games, and Grassmann graphs. In Hamed Hatami, Pierre McKenzie, and Valerie King, editors, Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada, Fune 19-23, 2017, pages 576-589. ACM, 2017. https://doi.org/10.1145/3055399.3055432. 235, 266
[KMS18] Subhash Khot, Dor Minzer, and Muli Safra. Pseudorandom sets in Grassmann graph have near-perfect expansion. In Mikkel Thorup, editor, 59th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2018, Paris, France, October 7-9, 2018, pages 592-601. IEEE Computer Society, 2018. https://doi.org/10.1109/FOCS.2018.00062. 235, 266
[KN97] Eyal Kushilevitz and Noam Nisan. Communication Complexity. Cambridge University Press, Cambridge, England, 1997. 408
[KNR99] Ilan Kremer, Noam Nisan, and Dana Ron. On randomized one-round communication complexity. Comput. Complex., 8(1):21-49, 1999.
https://doi.org/10.1007/s000370050018. 409
[KO87] Yan Ke and Joseph O'Rourke. Moving a ladder in three dimensions: Upper and lower bounds. In D. Soule, editor, Proceedings of the Third Annual Symposium on Computational Geometry, Waterloo, Ontario, Canada, June 8-10, 1987, pages 136146. ACM, 1987.
https://doi.org/10.1145/41958.41972. 370
[KO09] Subhash Khot and Ryan O'Donnell. SDP gaps and UGC-hardness for max-cut-gain. Theory of Computing, 5(1):83-117, 2009. https://doi.org/10.4086/toc.2009.v005a004. 271
[Kor04] Simon Korman. On the use of randomization in the online set cover problem. Master's thesis, Weizmann Institute of Science, Rehovot, Israel, 2004. Available at https://www.cs.umd.edu/~gasarch/BLOGPAPERS/korman.pdf. 403
[KP03] Phokion G. Kolaitis and Jonathan Panttaja. On the complexity of existential pebble games. In Matthias Baaz and Johann A. Makowsky, editors, Computer Science Logic, 17th International Workshop, CSL 2003, 12th Annual Conference of the EACSL, and 8th Kurt Gödel Colloquium, KGC 2003, Vienna, Austria, August 25-30, 2003, Proceedings, volume 2803 of Lecture Notes in Computer Science, pages 314-329. Springer, 2003. https://users.soe.ucsc.edu/~kolaitis/bio11/papers11/csl03.pdf. 336
[KP17a] John Kallaugher and Eric Price. A hybrid sampling scheme for triangle counting. In Philip N. Klein, editor, Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19, pages 1778-1797. SIAM, 2017.
https://doi.org/10.1137/1.9781611974782.116. 471
[KP17b] Iordanis Kerenidis and Anupam Prakash. Quantum recommendation systems. In Christos H. Papadimitriou, editor, 8th Innovations in Theoretical Computer Science Conference, ITCS 2017, January 9-11, 2017, Berkeley, CA, USA, volume 67 of LIPIcs, pages 49:1-49:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. 464
[KPP16] Tsvi Kopelowitz, Seth Pettie, and Ely Porat. Higher lower bounds from the 3SUM conjecture. In Robert Krauthgamer, editor, Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages 1272-1287. SIAM, 2016. https://doi.org/10.1137/1.9781611974331.ch89. 374
[KPS10] Subhash Khot, Preyas Popat, and Rishi Saket. Approximate Lasserre integrality gap for unique games. In Maria J. Serna, Ronen Shaltiel, Klaus Jansen, and José D. P. Rolim, editors, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, 13th International Workshop, APPROX 2010, and 14th International Workshop, RANDOM 2010, Barcelona, Spain, September 1-3, 2010. Proceedings, volume 6302 of Lecture Notes in Computer Science, pages 298-311. Springer, 2010. 278
[KR88] Richard Karp and Vijaya Ramachandran. A survey of parallel algorithms for sharedmemory machines, 1988.
http://www2.eecs.berkeley.edu/Pubs/TechRpts/1988/CSD-88-408.pdf. 420, 436
[KR92] Donald E. Knuth and Arvind Raghunathan. The problem of compatible representatives. SIAM Journal on Discrete Mathematics, 5(3):422-427, 1992. https: //doi.org/10.1137/0405033. 93
[KR08] Subhash Khot and Oded Regev. Vertex cover might be hard to approximate to within $2-\varepsilon$. Journal of Computer and System Sciences, 74(3):335-349, 2008. https://www.sciencedirect.com/science/article/pii/S0022000007000864. 271
[Kra99] Adam Krawczyk. The complexity of finding a second Hamiltonian cycle in cubic graphs. Journal of Computing and System Science, 58(3):641-647, 1999. https://doi.org/10.1006/jcss.1998.1611. 284, 458
[Kri75] Mukkai S. Krishnamoorthy. An NP-hard problem in bipartite graphs. ACM SIGACT News, 7(1):26-26, 1975.
https://dl.acm.org/doi/10.1145/990518.990521. 112
[Kro67] Melven Krom. The decision problem for a class of first-order formulas in which all disjunctions are binary. Zeitschrift für logik and Grundlagen d. Math (Has changed its name to Math Logic Quarterly), 13:15-20, 1967. https://onlinelibrary.wiley.com/doi/10.1002/malq.19670130104. 47
[KS46] Ulrich Krengel and Louis Sucheston. Semimarts and finite values. Bulletin of the American Mathematical Society, 83(4):745-747, 1946. 395
[KS92] Bala Kalyanasundaram and Georg Schintger. The probabilistic communication complexity of set intersection. SIAM Fournal on Discrete Mathematics, 5:545-557, 1992. https://epubs.siam.org/doi/pdf/10.1137/0405044. 410
[KS20] Young Kun Ko and Min Jae Song. Hardness of approximate nearest neighbor search under l-infinity, 2020.
https://arxiv.org/abs/2011.06135. 263
[KSS84] J. Kahn, M. Saks, and D. Sturtevant. A topological approach to evasiveness. Combinatorica, 4(4):297-306, 1984.
https://link.springer.com/content/pdf/10.1007/BF02579140.pdf. 428
[KV15] Subhash Khot and Nisheeth K. Vishnoi. The Unique Games Conjecture, integrality gap for cut problems and embeddability of negative-type metrics into ℓ_{1}. Journal of the ACM, 62(1):8:1-8:39, 2015.
https://doi.org/10.1145/2629614. 277
[KVV90] Richard M. Karp, Umesh V. Vazirani, and Vijay V. Vazirani. An optimal algorithm for on-line bipartite matching. In Harriet Ortiz, editor, Proceedings of the 22nd Annual ACM Symposium on Theory of Computing, May 13-17, 1990, Baltimore, Maryland, USA, pages 352-358. ACM, 1990. https://doi.org/10.1145/100216.100262. 401
[KW19] Daniel M. Kane and Richard Ryan Williams. The orthogonal vectors conjecture for branching programs and formulas. In Avrim Blum, editor, 10th Innovations in Theoretical Computer Science Conference, ITCS 2019, Fanuary 10-12, 2019, San Diego, California, USA, volume 124 of LIPIcs, pages 48:1-48:15. Schloss Dagstuhl - LeibnizZentrum für Informatik, 2019. https://doi.org/10.4230/LIPIcs.ITCS.2019.48. 375
[KZ97] Howard Karloff and Uzi Zwick. A 7/8-approximation algorithm for MAX 3-SAT? In 38th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 406-415. IEEE Computer Society, 1997. https://ieeexplore.ieee.org/document/646129. 231
[Lad75] Richard Ladner. On the structure of polynomial time reducibilities. fournal of the Association of Computing Machinery ($7 A C M$), 22:155-171, 1975.
https://dl.acm.org/doi/10.1145/321864.321877. 28
[Lam11] Michael Lampis. A kernel of order $2 k-c \log k$ for vertex cover. Information Processing Letters, 111(23-24):1089-1091, 2011.
https://doi.org/10.1016/j.ipl.2011.09.003. 191
[Las01a] Jean B. Lasserre. An explicit exact SDP relaxation for nonlinear 0-1 programs. In Karen Aardal and Bert Gerards, editors, Integer Programming and Combinatorial Optimization, 8th International IPCO Conference, Utrecht, The Netherlands, June 13-15, 2001, Proceedings, volume 2081 of Lecture Notes in Computer Science, pages 293-303. Springer, 2001. 278
[Las01b] Jean B. Lasserre. Global optimization with polynomials and the problem of moments. SIAM fournal on Optimzation, 11(3):796-817, 2001.
https://doi.org/10.1137/S1052623400366802. 278
[Lau83] Clemens Lautemann. BPP and the polynomial hierarchy. Information Processing Letters, 17(4):215-217, 1983.
https://doi.org/10.1016/0020-0190(83)90044-3. 33
[LC89] K. Li and K. H. Cheng. Complexity of resource allocation and job scheduling problems on partitionable mesh connected systems. In Proceedings of the 1st Annual IEEE Symposium on Parallel and Distributed Processing, pages 358-365, May 1989. 157
[Len81] Thomas Lengauer. Black-white pebbles and graph separation. Acta Informatica, 16:465-475, 1981.
https://doi.org/10.1007/BF00264496. 142
[Lev73] Leonid Levin. Universal search problems. Problems of Information Transmission, 9:115-116, 1973. 13, 14, 25, 46
[Lew78] Harry Lewis. Renaming a set of clauses as a Horn set. Journal of the Association for Computing Machinery ($7 A C M$), 25(1):134-135, 1978. https://dl.acm.org/doi/pdf/10.1145/322047.322059. 52
[Lew79] Harry R. Lewis. Satisfiability problems for propositional calculi. Mathematical Systems Theory, 13:45-53, 1979.
https://doi.org/10.1007/BF01744287. 73
[Lic82] David Lichtenstein. Planar formulae and their uses. SIAM 7. Comput., 11(2):329-343, 1982. https://epubs.siam.org/doi/pdf/10.1137/0211025. 82, 87, 89
[Lin02] Nathan Linial. Finite metric spaces: Combinatorics, geometry and algorithms. In Ferran Hurtado, Vera Sacristán, Chandrajit Bajaj, and Subhash Suri, editors, Proceedings of the 18th Annual Symposium on Computational Geometry, Barcelona, Spain, Fune 5-7, 2002, page 63. ACM, 2002.
https://doi.org/10.1145/513400.513441. 277
[LLL82] A. Lenstra, H. Lenstra, and L Lovasz. Factoring polynomials with rational coefficients. Mathematische Annalen, 261:513-534, 1982.
https://link.springer.com/content/pdf/10.1007/BF01457454.pdf. 262
[LLM ${ }^{+}$03] J. Kevin Lanctôt, Ming Li, Bin Ma, Shaojiu Wang, and Louxin Zhang. Distinguishing string selection problems. Information and Computation, 185(1):41-55, 2003. www.sciencedirect.com/science/article/pii/S0890540103000579. 204
[LLR95] Nathan Linial, Eran London, and Yuri Rabinovich. The geometry of graphs and some of its algorithmic applications. Combinatorica, 15(2):215-245, 1995.
https://doi.org/10.1007/BF01200757. 277
[LLZ02] Michael Lewin, Dror Livnat, and Uri Zwick. Improved rounding techniques for the MAX 2-SAT and MAX DI-CUT problems. In William J. Cook and Andreas S. Schulz, editors, Integer Programming and Combinatorial Optimization, 9th International IPCO Conference, Cambridge, MA, USA, May 27-29, 2002, Proceedings, volume 2337 of Lecture Notes in Computer Science, pages 67-82. Springer, 2002. https://dl.acm.org/doi/10.5555/645591.660076. 271
[LMM03] Richard J. Lipton, Evangelos Markakis, and Aranyak Mehta. Playing large games using simple strategies. In Daniel A. Menascé and Noam Nisan, editors, Proceedings 4th ACM Conference on Electronic Commerce (EC-2003), San Diego, California, USA, Fune 9-12, 2003, pages 36-41. ACM, 2003.
https://doi.org/10.1145/779928.779933. 457
[LO02] Peter Looges and Stephan Olariu. Optimal greedy algorithms for indifference graphs. Computers and Mathematics with Applications, 7:15-25, 2002. 304
[Lov75] László Lovász. On the ratio of optimal integral and fractional covers. Discrete Applied Mathematics, 13(4):383-390, 1975.
https://doi.org/10.1016/0012-365X(75)90058-8. 275
[LPV20] Andrea Lincoln, Adam Polak, and Virginia Vassilevska Williams. Monochromatic triangles, intermediate matrix products, and convolutions. In Thomas Vidick, editor, 11th Innovations in Theoretical Computer Science Conference, ITCS 2020, January 1214, 2020, Seattle, Washington, USA, volume 151 of LIPIcs, pages 53:1-53:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. https://doi.org/10.4230/LIPIcs.ITCS.2020.53. 388
[LR99] Frank Thomson Leighton and Satish Rao. Multicommodity max-flow min-cut theorems and their use in designing approximation algorithms. fournal of the Assocation of Computing Machinery (7 ACM), 46(6):787-832, 1999. https://doi.org/10.1145/331524.331526. 277
[LTW ${ }^{+} 90$ J Joseph Y.-T. Leung, Tommy W. Tam, C. S. Wong, Gilbert H. Young, and Francis Y. L. Chin. Packing squares into a square. Journal of Parallel and Distributed Computing, 10(3):271-275, 1990.
https://doi.org/10.1016/0743-7315(90)90019-L. 159
[Lub86] Michael Luby. A simple parallel algorithm for the maximal independent set problem. SIAM Journal on Computing, 15(4):1036-1053, 1986.
https://doi.org/10.1137/0215074. 424
[LY89] Ming Li and Yaacov Yesha. New lower bounds for parallel computation. Journal of the Assocation of Computing Machinery (JACM), 36(3):671-680, 1989. https://doi.org/10.1145/65950.65959. 420
[LY94] Carsten Lund and Mihalis Yannakakis. On the hardness of approximating minimization problems. Journal of the ACM, 41(5):960-981, 1994.
https://dl.acm.org/doi/pdf/10.1145/185675.306789. 229, 230
[Mar13] Daniel Marx. The square root phenomenon in planar graphs (slides), 2013. http://www.cs.bme.hu/~dmarx/papers/marx-faw-2013-planar.pdf. 182
[Mar14] Daniel Marx. W[1]-hardness (slides), 2014. https://fptschool.mimuw.edu.pl/slides/lec4.pdf. 194
[Mat70] Yuri Matijasevic. Enumerable sets are Diophantine (in Russian). Doklady Academy Nauk, SSSR, 191:279-282, 1970. Translation in Soviet Math Doklady, Vol 11, 1970. 341
[Mat93] Yuri Matijasevic. Hilbert's Tenth Problem. MIT Press, Cambridge, 1993. 341
[Mat14] Jirí Matousek. Intersection graphs of segments and $\exists R, 2014$. http://arxiv.org/abs/1406.2636. 297, 303
[MCFRQ22] Javier Martinez-Chfuentes, K.M. Fonseca-Romero, and Nicolas Quesada. Classical models are a better explanation of the Jiuzhang 1.0 Gaussian boson sampler, 2022. https://arxiv.org/pdf/2207.10058.pdf. 478
[McG78] Richard McGregor. On partitioning a graph: A theoretical and empirical study. PhD thesis, University of California at Berkeley, 1978. https://www2.eecs.berkeley.edu/Pubs/TechRpts/1978/ERL-m-78-14.pdf. 142
[McK87] Michael McKenna. Worst-case optimal hidden-durface removal. ACM Trans. Graph., 6(1):19-28, 1987.
https://doi.org/10.1145/27625.27627. 369
[McP05] Brandon McPhail. Light up is NP-complete, 2005.
http://www.mountainvistasoft.com/docs/lightup-is-np-complete.pdf. 103
[Meh84] Kurt Mehlhorn. Data Structures and Algorithms 2: Graph Algorithms and NPCompleteness, volume 2 of EATCS Monographs on Theoretical Computer Science. Springer, 1984.
https://doi.org/10.1007/978-3-642-69897-2. 188
[Meh14] Ruta Mehta. Constant rank bimatrix games are PPAD-hard. In David B. Shmoys, editor, Symposium on Theory of Computing, STOC 2014, pages 545-554. ACM, 2014. https://doi.org/10.1145/2591796.2591835. 457
[Mel21] Erika Melder. A chronology of Set Cover inapproximability results, 2021. https://arxiv.org/abs/2111.08100. 229
[Mer07] N. David Mermin, editor. Quantum computer science: an introduction. Cambridge Press, 2007. 463
[MG92] Jayadev Misra and David Gries. A constructive proof of Vizing's theorem. Inf. Process. Lett., 41(3):131-133, 1992.
https://doi.org/10.1016/0020-0190(92)90041-S. 264
[Mic00] Daniele Micciancio. The shortest vector in a lattice is hard to approximate to within some constant. SIAM fournal on Computing, 30(6):2008-2035, 2000. https://doi.org/10.1137/S0097539700373039. 262
[Mic12] Daniele Micciancio. Inapproximability of the shortest vector problem: Toward a deterministic reduction. Theory of Computing, 8(1):487-512, 2012.
https://doi.org/10.4086/toc.2012.v008a022. 263
[Mil76] Gary L. Miller. Riemann's hypothesis and tests for primality. Journal of Computing and System Science, 13(3):300-317, 1976.
https://doi.org/10.1016/S0022-0000(76)80043-8. 32
[Mil13] Carl Miller. Evasiveness of graph properties and topological fixed-point theorems (expository). Foundations and Trends in Theoretical Computer Science, 7(4):337-415, 2013.
https://arxiv.org/pdf/1306.0110.pdf. 428
[Min67] Marvin Minsky. Computation: Finite and Infinite Machines, pages 255-258. PrenticeHall, Inc., Englewood Cliffs, NJ, 1st edition, 1967. 338
[Mit99] Joseph Mitchell. Guillotine subdivisions approximate polygonal subdivisions: A simple polynomial-time approximation scheme for geometric TSP, k-MST, and related problems. SIAM Journal of Computing, 28(4):1298-1309, 1999.
https://epubs.siam.org/doi/abs/10.1137/S0097539796309764. 221
[MLLL ${ }^{+}$12] Enrique Martin-Lopez, Anthony Laing, Thomas Lawson, Roberto Alvarez, Xiao-Oi Zhou, and Jeremy O'Brian. Experimental realization of Shor's quantum factoring algorithm using qubit recycling. Nature Photonics, 6, 2012.
https://arxiv.org/abs/1111.4147. 465
[Mnë88] Nicolai Mnëv. The universality theorems on the classication problem of configuration varieties and convex polytopes varieties. In O.Y. Viro, editor, Topology and Geometry-Rohlin Seminar, volume 1346 of Lecture Notes in Mathematics, pages 527544. Springer, 1988. 301, 305
[MNV12] Meena Mahajan, Prajakta Nimbhorkar, and Kasturi R. Varadarajan. The planar k means problem is NP-hard. Theoretical Computer Science, 442:13-21, 2012. https://doi.org/10.1016/j.tcs.2010.05.034. 98
[Mon86] Burkhard Monien. The bandwidth minimization problem for caterpillars with hair length 3 is NP-complete. SIAM fournal of Algebraic and Discrete Methods, 7:505-512,
1986.
https://epubs.siam.org/doi/abs/10.1137/0607057?mobileUi=0. 142
[Mor88] Bernard Moret. Planar NAE3SAT is in P. SIGACT News, 19(2):51-54, 1988. https: //dl.acm.org/doi/pdf/10.1145/49097.49099. 96, 349
[Mos15] Dana Moshkovitz. The projection games conjecture and the NP-hardness of $\ln \mathrm{n}$ approximating set-cover. Theory of Computing, 11:221-235, 2015.
https://doi.org/10.4086/toc.2015.v011a007. 230
[MPS85] Fillia Makedon, Christos Papadimitriou, and Ivan Sudborough. Topological bandwidth. SIAM Journal of Algebraic and Discrete Methods, 6(3):418-444, 1985.
https://epubs.siam.org/doi/pdf/10.1137/0606044. 142
[MR07] Anna Moss and Yuval Rabani. Approximation algorithms for constrained node weighted steiner tree problems. SIAM fournal of Computing, 37(2):460-481, 2007. https://doi.org/10.1137/S0097539702420474. 258
[MR08] Wolfgang Mulzer and Günter Rote. Minimum-weight triangulation is NP-hard. Journal of the Association of Computing Machinery ($7 A C M), 55(2): 11: 1-11: 29,2008$. https://doi.org/10.1145/1346330.1346336. 99
[MS88] Burkhard Monien and Ivan Hal Sudborough. Min Cut is NP-complete for edge weighted treees. Theoretical Computer Science, 58:209-229, 1988. https://doi.org/10.1016/0304-3975(88)90028-X. 142
[MS08] Luke Mathieson and Stefan Szeider. The parameterized complexity of regular subgraph problems and generalizations. In James Harland and Prabhu Manyem, editors, Theory of Computing 2008. Proc. Fourteenth Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, NSW, Australia, January 22-25, 2008. Proceedings, volume 77 of CRPIT, pages 79-86, 2008. http://crpit.scem.westernsydney.edu.au/abstracts/CRPITV77Mathieson. html. 195
[MT20] Shohei Mishiba and Yasuhiko Takenaga. QUIXO is EXPTIME-complete. Inf. Process. Lett., 162:105995, 2020.
https://doi.org/10.1016/j.ipl.2020.105995. 336
[MTY13] Kazuhisa Makino, Suguru Tamaki, and Masaki Yamamoto. Derandomizing the HSSW algorithm for 3-SAT. Algorithmica, 67(2):112-124, 2013.
https://doi.org/10.1007/s00453-012-9741-4. 175
[MV19] Andrew McGregor and Hoa T. Vu. Better streaming algorithms for the maximum coverage problem. Theory of Computing Systems, 63(7):1595-1619, 2019. https://doi.org/10.1007/s00224-018-9878-x. 418
[MW17] Cody Murray and Ryan Williams. On the (non) NP-hardness of computing circuit complexity. Theory of Computing, 13(4):1-22, 2017.
10.4086/toc. 2017.v013a004. 30
[Nas50] John Nash. Equilibrium points in n-person games. Proceedings of the National Academy of Sciences, 36:48-49, 1950. https://www.pnas.org/doi/10.1073/pnas.36.1.48. 442
[NC16] Michael A. Nielson and Isaac L. Chuang. Quantum Computation and Quantum Information (10th Anniversary edition). Cambridge University Press, 2016. 463
[Neu28] John Von Neumann. Zur theorie der gesellschaftsspiele. Mathematische Annalen, 100:295-320, 1928. 442
[New00] Atlantha Newman. Approximating the maximum acyclic subgraph. Master's thesis, MIT, 2000. 271
[Nie02] Rolf Niedermeier. Invitation to Fixed-Parameter Algorithms. PhD thesis, University of Tubingen, 2002. This is the author's Habilitationsschrift. 191
[Nie06] Rolf Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford University Press, 2006. 187, 193, 202
[Nik] Nikoli. Nikoli puzzles. https://www.nikoli.co.jp/en/puzzles/. 91, 103, 122, 285, 295
[Nik08] Nikoli. Akari \& Suoku. Sterling, 2008. 91, 103, 122, 285, 295
[NS22] Danupon Nanongkai and Michele Scquizzato. Equivalence classes and conditional hardness in massively parallel computations. Distributed Comput., 35(2):165-183, 2022.
https://arxiv.org/abs/2001.02191. 436
[NSS95] Moni Naor, Leonard J. Schulman, and Aravind Srinivasan. Splitters and near-optimal derandomization. In 36th Annual Symposium on Foundations of Computer Science, Milwaukee, Wisconsin, USA, 23-25 October 1995, pages 182-191. IEEE Computer Society, 1995.
https://doi.org/10.1109/SFCS.1995.492475. 230
[NW94] Noam Nisan and Avi Wigderson. Hardness vs randomness. Journal of Computer and Systems Science, 49:149-167, 1994.
http://www.math.ias.edu/~avi/PUBLICATIONS/. 33
[Opa79] Jaroslav Opatrny. Total ordering problem. SIAM fournal on Computing, 8(1):111114, 1979.
https://epubs.siam.org/doi/pdf/10.1137/0208008. 142
[OW08] Ryan O'Donnell and Yi Wu. An optimal sdp algorithm for max-cut, and equally optimal long code tests. In Cynthia Dwork, editor, Proceedings of the 40th Annual ACM Symposium on Theory of Computing, Victoria, British Columbia, Canada, May 17-20, 2008, pages 335-344. ACM, 2008.
https://doi.org/10.1145/1374376.1374425. 271
[OW12] Joël Ouaknine and James Worrell. Decision problems for linear recurrence sequences. In Alain Finkel, Jérôme Leroux, and Igor Potapov, editors, Reachability Problems - 6th International Workshop, RP 2012, Bordeaux, France, September 17-19, 2012. Proceedings, volume 7550 of Lecture Notes in Computer Science, pages 21-28. Springer, 2012.
https://doi.org/10.1007/978-3-642-33512-9_3 and https://people.mpi-sws.org/~joel/publications/positivity12.pdf. 336
[Pap76] Christos H. Papadimitriou. The NP-completeness of the bandwidth minimization problem. Computing, 16(3):263-270, 1976. https://doi.org/10.1007/BF02280884. 142
[Pap85] Christos H. Papadimitriou. Games against nature. fournal of Computer and System Sciences, 31(2):288-301, 1985.
https://www.sciencedirect.com/science/article/pii/0022000085900455. 328
[Pap94] Christos H. Papadimitriou. On the complexity of the parity argument and other inefficient proofs of existence. Journal of Computer and Systems Sciences, 48(3):498532, 1994.
https://doi.org/10.1016/S0022-0000(05)80063-7. 42, 438, 443, 448, 450, 458, 459, 461
[Pas11] Grant Olney Passmore. Combined Decision Procedures for Nonlinear Arithmetics, Real and Complex. PhD thesis, University of Edinburgh, 2011.
https://www.cl.cam.ac.uk/~gp351/passmore-phd-thesis.pdf. 301
[Pat92] Ramamohan Paturi. On the degree of polynomials that approximate symmetric Boolean functions (preliminary version). In S. Rao Kosaraju, Mike Fellows, Avi Wigderson, and John A. Ellis, editors, Proceedings of the 24th Annual ACM Symposium on Theory of Computing, May 4-6, 1992, Victoria, British Columbia, Canada, pages 468-474. ACM, 1992.
https://doi.org/10.1145/129712.129758. 433
[Pǎt10] Mihai Pǎtraşcu. Towards polynomial lower bounds for dynamic problems. In Leonard J. Schulman, editor, Proceedings of the 42nd ACM Symposium on Theory of Computing, STOC 2010, Cambridge, Massachusetts, USA, 5-8 7une 2010, pages 603610. ACM, 2010.
https://doi.org/10.1145/1806689.1806772. 361, 371, 373
[PB83] J. Scott Provan and Michael O. Ball. The complexity of counting cuts and of computing the probability that a graph is connected. SIAM fournal on Computing, 12(4):777788, 1983.
https://doi.org/10.1137/0212053. 285, 294, 295
[PCZ22] Feng Pan, Keyang Chen, and Pan Zhang. Solving the sampling problem of the sycamore quantum circuits. Phys. Rev. Lett., 129:090502, Aug 2022.
https://arxiv.org/abs/2111.03011. 479
[Pee03] René Peeters. The maximum edge biclique problem is NP-complete. Discrete Applied Mathematics, 131(3):651-654, 2003. https://doi.org/10.1016/S0166-218X(03)00333-0. 147
[PGA19] Edwin Pednault, John Gunnels, and Giacomo Scott Aaronson. Levarging secondary stoarge to simulate deep 54-qubit Sycamore circuits, 2019.
https://arxiv.org/abs/1910.09534. 478
[Pie03] Krzysztof Pietrzak. On the parameterized complexity of the fixed alphabet shortest common supersequence and longest common subsequence problems. Fournal of Computer and Systems Science, 67(4):757-771, 2003.
https://doi.org/10.1016/S0022-0000(03)00078-3. 196
[Pil18] Alexander Pilz. Planar 3-SAT with a clause/variable cycle. In David Eppstein, editor, Proceedings of the 16th Scandinavian Symposium and Workshops on Algorithm Theory, volume 101 of LIPIcs, pages 31:1-31:13, Malmö, Sweden, June 2018. https://doi.org/10.4230/LIPIcs.SWAT.2018.31. 86
[PJ09] Grant Olney Passmore and Paul B. Jackson. Combined decision techniques for the existential theory of the reals. In Jacques Carette, Lucas Dixon, Claudio Sacerdoti Coen, and Stephen M. Watt, editors, Intelligent Computer Mathematics, 16th Symposium, Calculemus 2009, 8th International Conference, MKM 2009, Held as Part of CICM 2009, Grand Bend, Canada, Fuly 6-12, 2009. Proceedings, volume 5625 of Lecture Notes in Computer Science, pages 122-137. Springer, 2009. 301
[Ple79] Ján Plesník. The NP-completeness of the Hamiltonian cycle problem in planar digraphs with degree bound two. Information Processing Letters, 8(4):199-201, 1979. 114
[Plo13] Serge Plotkin. Online algorithms, 2013. http://web.stanford.edu/class/cs369/files/cs369-notes. 401
[PM90] Francis Pelletier and Norman Martin. Post's functional completeness theorem. Notre Dame fournal of Formal Logic, 31(2):462-475, 1990. https://www.sfu.ca/~jeffpell/papers/PostPellMartin.pdf,. 101
[Poa20] Jian-Wei Pan and 18 other authors. Quantum computational advantage using photons. Science, 370, 2020.
https://arxiv.org/abs/2012.01625. 478
[Poc10] Henry Pocklington. The determination of the exponent to which a number belongs, the practical solution of certain congruences, and the law of quadratic reciprocity. Proceedings of the Cambridge Philosophy Society, 16:1-16, 1910. 13
[Poo14] Bjorn Poonen. Undecidable problems: A sampler, 2014. https://arxiv.org/pdf/1204.0299.pdf. 341
[Pos41] Emil Post. The two-valued iterative system of mathematical logic. Annals of Mathematics Studies. Princeton University Press, 1941. 101
[Pos46] Emil Post. A variant of a recursively unsolvable problem. Bulletin of the American Mathematical Society, 52(4):264-268, 1946.
https://www.ams.org/journals/bull/1946-52-04/S0002-9904-1946-08555-9/ S0002-9904-1946-08555-9.pdf. 338
[PPdM12] Grant Olney Passmore, Lawrence C. Paulson, and Leonardo Mendonça de Moura. Real algebraic strategies for metitarski proofs. In Johan Jeuring, John A. Campbell, Jacques Carette, Gabriel Dos Reis, Petr Sojka, Makarius Wenzel, and Volker Sorge, editors, Intelligent Computer Mathematics - 11th International Conference, AISC 2012, 19th Symposium, Calculemus 2012, 5th International Workshop, DML 2012, 11th International Conference, MKM 2012, Systems and Projects, Held as Part of CICM 2012, Bremen, Germany, fuly 8-13, 2012. Proceedings, volume 7362 of Lecture Notes in Computer Science, pages 358-370. Springer, 2012. 301
[PPZ99] Ramamohan Paturi, Pavel Pudlák, and Francis Zane. Satisfiability coding lemma. Chicago Journal of Theoretical Computer Science, 1999, 1999. http://cjtcs.cs.uchicago.edu/articles/1999/11/contents.html. 175
[Pre12] John Preskill. Quantum computing and the entanglement frontier, 2012. https://arxiv.org/pdf/1203.5813.pdf. 477
[Pre19] John Preskill. Why I called it quantum supremacy. Quanta, 2019. 477
[PV84] Christos Papadimitriou and Umesh V Vazirani. On two geometric problems related to the travelling salesman problem. Journal of Algorithms, 5(2):231-246, 1984. 119, 121
[PW10] Mihai Pǎtraşcu and Ryan Williams. On the possibility of faster SAT algorithms. In Moses Charikar, editor, Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2010, Austin, Texas, USA, Fanuary 17-19, 2010, pages 1065-1075. SIAM, 2010.
https://doi.org/10.1137/1.9781611973075.86. 372
[PY91] Christos H. Papadimitriou and Mihalis Yannakakis. Optimization, approximation, and complexity classes. Journal of Computing and System Sciences, 43(3):425-440, 1991. https://doi.org/10.1016/0022-0000(91)90023-X. 238, 242, 244, 271
[Rab80] Michael Rabin. A probabilistic algorithm for testing primality. Journal of Number Theory, 12(1):128-138, 1980.
https://www.sciencedirect.com/science/article/pii/0022314X80900840. 32
[Raz92] Alexander Razborov. On the distributional complexity of disjointness. Theoretical Computer Science, 106:385-390, 1992.
https://www.sciencedirect.com/science/article/pii/030439759290260M. 410
[Raz98] Ran Raz. A parallel repetition theorem. SIAM fournal on Computing, 27(3):763-803, 1998.
https://dl.acm.org/doi/10.1145/225058.225181. 230, 268
[Rei84] John H. Reif. The complexity of two-player games of incomplete information. Journal of Computer and System Sciences, 29(2):274-301, 1984. http://www.sciencedirect.com/science/article/pii/0022000084900345. 335
[Rel22] Press Release. The Nobel prize in physics in 2022, 2022. https://www.nobelprize.org/prizes/physics/2022/summary/. 475
[Ren00a] Paul Rendell. A Turing machine in Conway’s game of life, 2000. https://www.ics.uci.edu/~welling/teaching/271fall09/ Turing-Machine-Life.pdf. 339
[Ren00b] Paul Rendell. A Turing machine in Conway's game of life:implementation, 2000. http://rendell-attic.org/gol/tm.htm. 339
[Ren11] Paul Rendell. A universal Turing machine in Conway's game of life. In Proceedings of the 9th Annual IEEE Conference on High Performance Computing and Simulation (HPCS). IEEE, 2011.
https://ieeexplore.ieee.org/document/5999906. 339
[$\left.\mathrm{RHM}^{+} 22\right]$ Václav Rozhon, Bernhard Haeupler, Anders Martinsson, Christoph Grunau, and Goran Zuzic. Parallel breadth-first search and exact shortest paths and stronger notions for approximate distances. CoRR, abs/2210.16351, 2022.
https://doi.org/10.48550/arXiv.2210.16351. 436
[Ric53] H. G. Rice. Classes of recursively enumerable sets and their decision problems. Transactions of the the American Mathematics Society, 74:358-366, 1953.
https://www.ams.org/journals/tran/1953-074-02/
S0002-9947-1953-0053041-6/S0002-9947-1953-0053041-6.pdf. 337
[Ric08] Elaine Rich. Automata, computability, and complexity: Theory and application. Prentice Hall, 2008. 448
[RK04] Oded Regev and Eyal Kaplan. Lecture 2: LLL algorithm, 2004. 262
[Rob83] John M. Robson. The complexity of Go. Proceedings of the International Federation for Information Processing, pages 413-417, 1983. 335
[Rob84a] John M. Robson. Combinatorial games with exponential space complete decision problems. Proceedings of Mathematical Foundations of Computer Science, 176, 1984. http://dl.acm.org/doi/10.5555/645716.665284. 335
[Rob84b] John M. Robson. N by N checkers is Exptime complete. SIAM fournal on Computing, 13:252-267, 1984.
https://epubs.siam.org/doi/10.1137/0213018. 333
[Ros73] Arnold L. Rosenberg. On the time required to recognize properties of graphs: A problem. SIGACT News, 5(4):15-16, 1973.
https://dl.acm.org/doi/pdf/10.1145/1008299.1008302. 428
[Rot13a] Thomas Rothvoß. Approximating bin packing within o(log OPT * $\log \log$ OPT) bins. In 54th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2013, 2629 October, 2013, Berkeley, CA, USA, pages 20-29. IEEE Computer Society, 2013. https://doi.org/10.1109/FOCS.2013.11. 264
[Rot13b] Thomas Rothvoß. The Lasserre hierachy in approximation algorithms, 2013. https://sites.math.washington.edu//~rothvoss/lecturenotes/ lasserresurvey.pdf. 278
[Roy59] Bernard Roy. Transitive et connexite (in French). C.R. Acad. Sci Paris, 249:216-218, 1959. 378
[RR06] Oded Regev and Ricky Rosen. Lattice problems and norm embeddings. In Jon M. Kleinberg, editor, Proceedings of the 38th Annual ACM Symposium on Theory of Computing, Seattle, WA, USA, May 21-23, 2006, pages 447-456. ACM, 2006. https://doi.org/10.1145/1132516.1132581. 262
[RSST97] Neil Robertson, Daniel Sanders, Paul Seymour, and Robin Thomas. The four color theorem. Journal of Combinatorial Theory (Series B), 70:2-44, 1997. https://www.sciencedirect.com/science/article/pii/S0095895697917500. 81, 185
[Rub18] Aviad Rubinstein. Hardness of approximate nearest neighbor search. In Ilias Diakonikolas, David Kempe, and Monika Henzinger, editors, Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018, pages 1260-1268. ACM, 2018.
https://doi.org/10.1145/3188745.3188916. 263
[RV78] Ronald Rivest and Jean Vuillemin. On recognizing graph properties from adjacency matrices. Theoretical Computer Science, 3:371-384, 1978. https://www.sciencedirect.com/science/article/pii/0304397576900530. 428
[RV13] Liam Roditty and Virginia Vassilevska Williams. Fast approximation algorithms for the diameter and radius of sparse graphs. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors, Symposium on Theory of Computing Conference, STOC'13, Palo Alto, CA, USA, Fune 1-4, 2013, pages 515-524. ACM, 2013.
https://doi.org/10.1145/2488608.2488673. 387, 389
[RVW18] Tim Roughgarden, Sergei Vassilvitskii, and Joshua R. Wang. Shuffles and circuits (on lower bounds for modern parallel computation). Journal of the Assocation of Computing Machinery (7 ACM), 65(6):41:1-41:24, 2018.
https://dl.acm.org/doi/10.1145/3232536. 426
[RW90] Daniel Ratner and Manfred Warmuth. The ($n^{2}-1$)-puzzle and related relocation problems. Journal of Symbolic Computation, 10(2):111-137, 1990. 255
[RZ04] Liam Roditty and Uri Zwick. On dynamic shortest paths problems. In Susanne Albers and Tomasz Radzik, editors, Algorithms - ESA 2004, 12th Annual European Symposium, Bergen, Norway, September 14-17, 2004, Proceedings, volume 3221 of Lecture Notes in Computer Science, pages 580-591. Springer, 2004. Journal version in Algorithmica 2011. 379
[Sav70] Walter J. Savitch. Relationships between nondeterministic and deterministic tape complexities. Journal of Computer and System Sciences, 4(2):177-192, 1970.
https://www.sciencedirect.com/science/article/pii/S002200007080006X. 37
[SB86] Jerry Slocum and Jack Botermans. Puzzles Old and New: How to Make and Solve Them. University of Washington Press, 1986. 162
[SC79] Larry J. Stockmeyer and Ashok K. Chandra. Provably difficult combinatorial games. SIAM Journal on Computing, 8(2):151-174, May 1979.
http://www.oocities.org/stockmeyer@sbcglobal.net/games.pdf. 327, 329
[Sch78] Thomas J. Schaefer. The complexity of satisfiability problems. In Proceedings of the 10th Annual ACM Symposium on Theory of Computing, pages 216-226, San Diego, California, May 1978.
https://dl.acm.org/doi/10.1145/800133.804350. 52, 56, 70, 310
[Sch87] Claus-Peter Schnorr. A hierarchy of polynomial time lattice basis reduction algorithms. Theoretical Computer Science, 53:201-224, 1987.
https://doi.org/10.1016/0304-3975(87)90064-8. 262
[Sch90] Walter Schnyder. Embedding planar graphs on the grid. In David S. Johnson, editor, Proceedings of the 1st Annual ACM-SIAM Symposium on Discrete Algorithms, pages 138-148, San Francisco, January 1990.
http://dl.acm.org/citation.cfm?id=320176.320191. 86
[Sch09] Marcus Schaefer. Complexity of some geometric and topological problems. In David Eppstein and Emden R. Gansner, editors, Graph Drawing, 17th International Symposium, GD 2009, Chicago, IL, USA, September 22-25, 2009. Revised Papers, volume 5849 of Lecture Notes in Computer Science, pages 334-344. Springer, 2009.
https://ovid.cs.depaul.edu/documents/convex.pdf. 297, 302, 303
[Sch12] Marcus Schaefer. Thirty essays on geometric graph theory, chapter Realizability of graphs and linkages, pages 461-482. Springer, 1st edition, 2012. 304
[Sch20] Marcus Schaefer. The real logic of drawing graphs (youtube talk), 2020.
https://www.youtube.com/watch?v=4_Rq2M1wIEQ. 298
[Sch21] Marcus Schaefer. On the complexity of some geometric problems with fixed parameters. Journal of Graph Algorithms and Applications, 25(1):195-218, 2021.
https://doi.org/10.7155/jgaa.00557. 303, 305
[Ser78] Anatoliy Serdyukov. On some extremal walks in graphs (in Russian). Upravlyaemye Sisetmy, 17:76-79, 1978. 221
[Set02] Takahiro Seta. The complexities of puzzles, cross sum, and their another solution problems (asp) (senior honors thesis, university of tokyo).
https://www.cs.umd.edu/users/gasarch/BLOGPAPERS/takahiro.pdf, 2002. 288, 290
[Sey95] Paul D. Seymour. Packing directed circuits fractionally. Combinatorica, 15(2):281288, 1995.
https://doi.org/10.1007/BF01200760. 272
[Sho91] Peter W. Shor. Stretchability of pseudolines is NP-hard. In Peter Gritzmann and Bernd Sturmfels, editors, Applied Geometry And Discrete Mathematics, Proceedings of a DIMACS Workshop, Providence, Rhode Island, USA, September 18, 1990, volume 4 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pages 531-554. DIMACS/AMS, 1991.
https://math.mit.edu/~shor/papers/Stretchability_NP-hard.pdf. 300, 301
[Sho94] Peter W. Shor. Algorithms for quantum computation: Discrete logarithms and factoring. In 35th Annual Symposium on Foundations of Computer Science, Santa Fe, New Mexico, USA, 20-22 November 1994, pages 124-134. IEEE Computer Society, 1994. https://doi.org/10.1109/SFCS.1994.365700. 29, 465, 466
[Sho99] Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev., 41(2):303-332, 1999. https://doi.org/10.1137/S0036144598347011. 29, 465, 466
[Sim77] Janos Simon. On the difference between one and many. In Automata, Languages, and Programming (ICALP 1977), volume 52 of Lecture Notes in Computer Science, pages 480-491. Springer-Verlag, 1977. 295
[Sip83] Michael Sipser. A complexity theoretic approach to randomness. In Proceedings of the 15th Annual ACM Symposium on Theory of Computing, 25-27 April, 1983, Boston, Massachusetts, USA, pages 330-335. ACM, 1983.
https://doi.org/10.1145/800061.808762. 33
[Sla97] Peter Slavik. A tight analysis of the greedy algorithm for set cover. fournal of Algorithms, 25(2):237-254, 1997.
https://doi.org/10.1006/jagm.1997.0887. 229
[Soa96] Robert Soare. Computability and recursion. Bulletin of Symbolic Logic, 2(4), 1996. http://www. people.cs.uchicago.edu/~soare/History/compute.pdf. 38, 39
[Soa13] Robert Soare. Why Turing's thesis is not a thesis. In Turing centenary volume. Cambridge University Press, 2013. 20
[SRG20] Matthew Stephenson, Jochen Renz, and Xiaoyu Ge. The computational complexity of angry birds. Artif. Intell., 280:103232, 2020.
https://doi.org/10.1016/j.artint.2019.103232. 336
[SS13] Michael E. Saks and C. Seshadhri. Space efficient streaming algorithms for the distance to monotonicity and asymmetric edit distance. In Sanjeev Khanna, editor, Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2013, New Orleans, Louisiana, USA, January 6-8, 2013, pages 1698-1709. SIAM, 2013.
https://doi.org/10.1137/1.9781611973105.122. 418
[SS17] Marcus Schaefer and Daniel Stefankovic. Fixed points, Nash equilibria, and the existential theory of the reals. Theory of Computing Systems, 60(2):172-193, 2017. https://doi.org/10.1007/s00224-015-9662-0. 297, 300, 302, 306
[SS20] Michael Saks and Rahul Santhanam. Circuit lower bounds from NP-hardness of MCSP under Turing reductions. In Shubhangi Saraf, editor, 35th Computational Complexity Conference, CCC 2020, July 28-31, 2020, Saarbrücken, Germany (Virtual Conference), volume 169 of LIPIcs, pages 26:1-26:13. Schloss Dagstuhl - LeibnizZentrum für Informatik, 2020.
https://doi.org/10.4230/LIPIcs.CCC.2020.26. 30
[SS22] Marcus Schaefer and Daniel Stefankovic. Beyond the existential theory of the reals, 2022.
https://arxiv.org/abs/2210.00571. 306
[SSV13] John Smolin, Graeme Smith, and Alexander Vargo. Oversimplifying quantum factoring. Nature, 499:163-165, 2013. 465
[SSvR11] Allan Scott, Ulrike Stege, and Iris van Rooij. Minesweeper may not be NP-complete but it is hard nontheless. The Mathematical Intelligencer, 33:5-17, 2011. https://link.springer.com/content/pdf/10.1007/s00283-011-9256-x.pdf. 110
[ST13] Uwe Schöning and Jacob Toran. The satisfiability problem. Lehaman's Media, 2013. 176
[Ste07] Rob Stegmann. Rob's puzzle page: Pattern puzzles, 2007. 162
[Sto76] L. J. Stockmeyer. The polynomial-time hierarchy. Theoretical Computer Science, 3(1):1-22, October 1976.
https://www.sciencedirect.com/science/article/pii/030439757690061X. 34
[Str80] Walter Stromquist. How to cut a cake fairly. American Mathematics Monthly, 87(8):640-644, 1980. 451
[SU96] Ed Scheinerman and Dan Ullman. Fractional graph theory. Dover, 1996. http://www.ams.jhu.edu/ers/books/ fractional-graph-theory-a-rational-approach-to-the-theory-of-graphs/. 185
[SU08] Marcus Schaefer and Christopher Umans. Completeness in the Polynomial-Time hierarchy, 2008.
http://ovid.cs.depaul.edu/documents/phcom.pdf. 36
[SWY15] Yaoyun Shi, Xiaodi Wu, and Wei Yu. Limits of quantum one-way communication by matrix hypercontractive inequality, 2015.
https://www.cs.umd.edu/~xwu/papers/GHM_v4.pdf. 473
[SY11] Arezou Soleimanfallah and Anders Yeo. A kernel of order $2 k-c$ for vertex cover. Discrete Mathematics, 311(10-11):892-895, 2011.
https://doi.org/10.1016/j.disc.2011.02.014. 191
[SZ06] Jeff Stuckman and Guo-Qiang Zhang. Mastermind is NP-complete. INFOCOMP Journal of Computer Science, pages 25-28, 2006. http://arxiv.org/abs/cs/0512049. 81
[SZZ18] Katerina Sotiraki, Manolis Zampetakis, and Giorgos Zirdelis. PPP-completeness with connections to cryptography. In Mikkel Thorup, editor, 59th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2018, Paris, France, October 7-9, 2018, pages 148-158. IEEE Computer Society, 2018. https://arxiv.org/abs/1808.06407. 461
[Tan19] Ewin Tang. A quantum-inspired classical algorithm for recommendation systems. In Moses Charikar and Edith Cohen, editors, Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, STOC 2019, Phoenix, AZ, USA, June 2326, 2019, pages 217-228. ACM, 2019. https://eccc.weizmann.ac.il/report/2018/128. 464
[Tar48] Alfred Tarski. A decision method for elemenary algebra and geometry, 1948. http://www.rand.org/content/dam/rand/pubs/reports/2008/R109.pdf. 298
[TC05] John Tromp and Rudy Cilibrasi. Limits of Rush Hour Logic complexity. Manuscript, February 2005. http://arxiv.org/abs/cs/0502068. 346
[Tho78] Andrew B. Thomason. Hamiltonian cycles and uniquely edge colourable graphs. Annals of Discrete Mathematics, 3:259-268, 1978. 284, 458
[Tip16] Simon Tippenhauer. On planar 3-SAT and its variants. PhD thesis, Fachbeheich Mathematik and Informatik der Freien Universitat Berlin, 2016.
https://www.mi.fu-berlin.de/inf/groups/ag-ti/theses/download/ Tippenhauer16.pdf. 98
[Tis13] Catalin-Stefan Tiseanu. Promised streaming algorithms and finding psudeorepetitions. Master's thesis, University of Maryland, College Park, MD, 2013. 410
[Tod91] Seinosuke Toda. PP is as hard as the polynomial-time hierarchy. SIAM fournal of Computing, 20(5):865-877, 1991. https://doi.org/10.1137/0220053. 282
[Tov84] Craig Tovey. A simplified NP-complete satisfiability problem. Discrete Applied Mathematics, 8:85-89, 1984.
https://www.sciencedirect.com/science/article/pii/0166218X84900817. 49, 245
[Tra84] Boris Trakhenbrot. A survey of Russian approaches to perebor (brute-force searches) algorithms. Annals of the History of Computing, 6:384-400, 1984.
https://ieeexplore.ieee.org/document/4640789. 14, 25, 46
[Tre11] Luca Trevisan. Lecture 8: A linear programming relaxation of set cover, 2011. http://theory.stanford.edu/~trevisan/cs261/lecture08.pdf. 274
[Tre12] Luca Trevisan. Pseudorandomness and derandomization. XRDS: Crossroads, The ACM Magazine for Students, 18(3):27-31, 2012.
https://doi.org/10.1145/2090276.2090287. 33
[TSSW00] Luca Trevisan, Gregory B. Sorkin, Madhu Sudan, and David P. Williamson. Gadgets, approximation, and linear programming. SIAM fournal of Computing, 29(6):20742097, 2000.
https://doi.org/10.1137/S0097539797328847. 251
[Tur37] A. M. Turing. On computable numbers, with an application to the Entscheidungsproblem. Proceedings of the London Mathematical Society 2, 42 with a correction in 43:230-65, 1937.
https://www.cs.virginia.edu/~robins/Turing_Paper_1936.pdf. 73
[Tut46] William T Tutte. On Hamiltonian circuits. The fournal of the London Mathematical Society, pages 98-101, 1946. 284
[Tut56] William T Tutte. A theorem on planar graphs. Transactions of the American Mathematical Society, pages 99-116, 1956.
https://www.ams.org/journals/tran/1956-082-01/ S0002-9947-1956-0081471-8/S0002-9947-1956-0081471-8.pdf. 112
[UA93] Unknown-Author. Magic the Gathering official website, 1993.
https://magic.wizards. com/en. 340
[UL97] Christopher Umans and William Lenhart. Hamiltonian cycles in solid grid graphs. In Foundations of Computer Science, 1997. Proceedings., 38th Annual Symposium on, pages 496-505. IEEE, 1997.
https://ieeexplore.ieee.org/document/646138. 115
[UN] N. Ueda and T. Nagao. NP-completeness results for NONOGRAM via parsimonius reductions. Tech Report TR96-0008, Dept of CS, Tokoyo Institute of Technology. 283
[Und78] P. Underground. On graphs with Hamiltonian squares. Discrete Mathematics, 21(3):323, 1978.
https://doi.org/10.1016/0012-365X(78)90164-4. 112
[Unk] Unknown. Metitarski theorem prover.
https://www.cl.cam.ac.uk/~lp15/papers/Arith/. 301
[Unk19] Unknown. (strong) Exponetial Time Hypothesis, 2019.
https://www.mpi-inf.mpg.de/fileadmin/inf/d1/teaching/summer19/ finegrained/lec2.pdf. 212
[Urq10] Alasdair Urquhart. Von Neumann, Gödel and complexity theory. Bulletin of Symbolic Logic, 16(4):516-530, 2010. 14
[US15] Akihiro Uejima and Hiroaki Suzuki. Fillmat is NP-complete and APSP-complete. fournal of Information processing, 23(3):310-316, 2015. https://doi.org/10.2197/ipsjjip.23.310. 285
[Vad01] Salil P. Vadhan. The complexity of counting in sparse, regular, and planar graphs. SIAM fournal on Computing, 31(2):398-427, 2001. https://doi.org/10.1137/S0097539797321602. 285
[Val79a] Leslie G. Valiant. The complexity of computing the permanent. Theoretical Computer Science, 8:189-201, 1979.
http://dx.doi.org/10.1016/0304-3975(79)90044-6. 281, 283, 291, 295
[Val79b] Leslie G. Valiant. The complexity of enumeration and reliability problems. SIAM Journal on Computing, 8(3):410-421, 1979.
http://dx.doi.org/10.1137/0208032. 281, 285, 295
[Val79c] Leslie G. Valiant. Negative results on counting. In Theoretical Computer Science, 4th GI-Conference, Aachen, Germany, March 26-28, 1979, Proceedings, pages 38-46, 1979. 281, 295
[Vaz01] Vijay Vazirani. Approximation Algorithms. Springer, 2001. 227, 232
[vdZ15] Tom C. van der Zanden. Parameterized complexity of graph constraint logic. In Thore Husfeldt and Iyad Kanj, editors, 10th International Symposium on Parameterized and Exact Computation (IPEC 2015), volume 43 of Leibniz International Proceedings in Informatics (LIPIcs), pages 282-293, Dagstuhl, Germany, 2015. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. 347
[vEB81] Peter van Emde Boas. Another NP-complete problem and the complexity of computing short vectors in a lattice. Tech Report 8104, University of Amsterdam, Dept of Mathematics, Neverthlands, 1981.
https://staff.fnwi.uva.nl/p.vanemdeboas/vectors/abstract.html. 262
[Veg90] Gert Vegter. The visibility diagram: a data structure for visibility problems and motion planning. In John R. Gilbert and Rolf G. Karlsson, editors, SWAT 90, 2nd Scandinavian Workshop on Algorithm Theory, Bergen, Norway, fuly 11-14, 1990, Proceedings, volume 447 of Lecture Notes in Computer Science, pages 97-110. Springer, 1990.
https://dl.acm.org/doi/10.5555/88723.88746. 370
[Vig12] Giovanni Viglietta. Hardness of Mastermind. In Evangelos Kranakis, Danny Krizanc, and Flaminia L. Luccio, editors, Fun with Algorithms - 6th International Conference, FUN 2012, Venice, Italy, Fune 4-6, 2012. Proceedings, volume 7288 of Lecture Notes in Computer Science, pages 368-378. Springer, 2012.
https://arxiv.org/abs/1111.6922. 81
[Vig14] Giovanni Viglietta. Gaming is a hard job, but someone has to do it! Theory of Computing Systems, 54(4):595-621, 2014.
http://dx.doi.org/10.1007/s00224-013-9497-5. 125, 128, 309, 311, 314
[Viz64] Vadim Vizing. On an estimate of the chromatic class of a p-graph. Diskret. Analiz., 3:25-30, 1964. 252, 264
[VW18] Virginia Vassilevska Williams and R. Ryan Williams. Subcubic equivalences between path, matrix, and triangle problems. Fournal of the Association of Computing Machinery ($\mathcal{F A C M}$), 65(5):27:1-27:38, 2018.
https://doi.org/10.1145/3186893. 382, 384, 387, 388
[VY11] Elad Verbin and Wei Yu. The streaming complexity of cycle counting, sorting by reversals, and other problems. In Dana Randall, editor, Proceedings of the TwentySecond Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2011, San Francisco, California, USA, fanuary 23-25, 2011, pages 11-25. SIAM, 2011. https://doi.org/10.1137/1.9781611973082.2. 472
[Wag13] Samuel Wagstaff. The joy of factoring. AMS, Providence, 2013. 29, 465
[War62] Stephen Warshall. A theorem on Boolean matrices. Journal of the Association of Computing Machinery ($7 A C M$), 9:11-12, 1962. 378
[Wika] Wikipedia. 15 puzzle. 255
[Wikb] Wikipedia. 2-satisfiability.
https://en.wikipedia.org/wiki/2-satisfiability. 47
[Wikc] Wikipedia. Braid (video game). 340
[Wikd] Wikipedia. Discrete logarithm. 29
[Wike] Wikipedia. Eternity II puzzle. 162
[Wikf] Wikipedia. Eternity puzzle. 156
[Wikg] Wikipedia. Quantum psuedo-telepathy. 475
[Wikh] Wikipedia. Samegame. https://en.wikipedia.org/wiki/SameGame. 169
[Wil05] Ryan Williams. A new algorithm for optimal 2-constraint satisfaction and its implications. Theoretical Computer Science, 348(2-3):357-365, 2005.
https://doi.org/10.1016/j.tcs.2005.09.023. 183, 374
[Wil18] R. Ryan Williams. Faster all-pairs shortest paths via circuit complexity. SIAM fournal on Computing, 47(5):1965-1985, 2018.
https://doi.org/10.1137/15M1024524. 379
[WS11] David Williamson and David Shmoys. Design of Approximation Algorithms. Cambridge University Press, 2011. 232
[WW10] Virginia Vassilevska Williams and Ryan Williams. Subcubic equivalences between path, matrix and triangle problems. In 51th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2010, October 23-26, 2010, Las Vegas, Nevada, USA, pages 645-654. IEEE Computer Society, 2010. Journal version is in JACM, 2018. 379
[Yao77] Andrew Chi-Chih Yao. Probabilistic computations: Toward a unified measure of complexity (extended abstract). In 18th Annual Symposium on Foundations of Computer Science, Providence, Rhode Island, USA, 31 October - 1 November 1977, pages 222-227. IEEE Computer Society, 1977. https://doi.org/10.1109/SFCS.1977.24. 399
[Yat00] Takayuki Yato. On the NP-completeness of the Slither Link puzzle. IPSF SIGNotes Algorithms, 74:25-32, 2000. 122
[Yat03] Takayuki Yato. Complexity and completeness of finding another solution and its application to puzzles. Master's thesis, The University of Tokyo, 2003. 290
[YG80] Mihalis Yannakakis and Fanica Gavril. Edge domination sets in graphs. SIAM fournal of Applied Mathematics, 38(3):364-372, 1980. 147
[YJ94] Lin Yixun and Yuan Jingiang. Profile minimization problem for matrices and graphs. Acta Mathematicae Applicattae Sinica, 10:107-112, 1994. https://link.springer.com/content/pdf/10.1007/BF02006264.pdf. 142
[YLLW98] Jinjang Yuan, Yixun Lin, Yan Liu, and Shiying Wang. NP-completeness of the profile problem and the fill-in problem on co-bipartite graphs. Journal of Mathematical Studies, Project: Labeling and Embedding of Graphs, 1998. 142
[YS03] Takayuki Yato and Takahiro Seta. Complexity and completeness of finding another solution and its application to puzzles. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, E86-A(5):1052-1060, 2003. http://mountainvistasoft.com/docs/ASP.pdf. 283, 284, 285
[YSI05] Takayuki Yato, Takahiro Seta, and Tsuyoshi Ito. Finding yozume of generalized tsume-shogi is Exptime-complete. IEICE Trans. Fundamemtals of Electronics, Communication and Computer Sci., 88-A(5):1249-1257, 2005. https://doi.org/10.1093/ietfec/e88-a.5.1249. 336
[Yu16] Jingjin Yu. Intractability of optimal multirobot path planning on planar graphs. IEEE Robotics Autom. Lett., 1(1):33-40, 2016.
https://doi.org/10.1109/LRA.2015.2503143. 98
[Zhu17] Dmitriy Zhuk. A proof of CSP dichotomy conjecture. In Chris Umans, editor, 58th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA, October 15-17, 2017, pages 331-342. IEEE Computer Society, 2017. https://doi.org/10.1109/FOCS.2017.38. 99
[Zuc07] David Zuckerman. Linear degree extractors and the inapproximability of Max Clique and Chromatic Number. Theory of Computing, 3(6):103-128, 2007. http://theoryofcomputing.org/articles/v003a006/index.html. 229
[Zwi98] Uri Zwick. All pairs shortest paths in weighted directed graph $\frac{3}{4}$ exact and almost exact algorithms. In 39th Annual Symposium on Foundations of Computer Science, FOCS '98, November 8-11, 1998, Palo Alto, California, USA, pages 310-319. IEEE Computer Society, 1998.
https://doi.org/10.1109/SFCS.1998.743464. 379
[Zwi02] Uri Zwick. All pairs shortest paths using bridging sets and rectangular matrix multiplication. Journal of the ACM, 49(3):289-317, 2002.
https://doi.org/10.1145/567112.567114. 389

Index

$\Pi_{1}, 35$
$\Pi_{k}, 35$
$\Sigma_{1}, 35$
$\Sigma_{k}, 35$
$\exists \mathbb{R}, 301$
$\exists \mathbb{R}$-complete, 301
$\exists \mathbb{R}$-hard, 301
$\exists^{p} y, 22$
$\forall^{p} y, 22$
$\bar{G}, 54$
\#Planar 3SAT, 287
\#P, 282
\#P-complete, 282
\#P-hard, 282
\#Bip-PM, 292
\#SAT, 281
\#bipartite matching, 285
\#monotone 2-SAT, 285
\#th-post-2SAT, 294
\#3SAT, 286
\#SAT, 286
\#Нam Cycle, 288
\#Planar Rectilinear 3SAT, 287
\#SLitherlink, 291
\#clique, 286
\#3SAT-3, 286
0-1 programming, 24, 274
1-in-3SAT, 52
1-in-EUaSAT-b, 51
1-planar, 155
15 puzzle, 255
1vs2 cycle, 41
1vs2cycle, 428, 431
2-COL perfect matching, 56
2-Nash, 448
2-Sperner, 447
2-player constraint graph, 350

2-prover-1-round-game, 267
3-dimensional motion planning, 370
3-partition, 152
3COL, 23, 76, 180
another solution, 284
degree 4, 76, 181
planar, 76, 181
planar and degree 4, 76
3D-matching, 153
3D-matching-2, 252
3DMotPlan, 370
3SUM
conjecture, 359
problem, 357
3SUM', 362
4-clique conjecture, 388
4-color theorem, 81
A reduces to $\mathrm{B}, 21$
$\mathrm{A} \leq_{p} \mathrm{~B}, 21$
adaptive massively parallel computation, 420, 430
AH, 39
Akari, 103
all edges monochromatic triangle problem, 388
all pairs shortest path, 40, 378
all-pairs min cut, 388
Amazons, 351
amortized query time, 373
amortized update time, 373
AMPC, 420, 430
another solution problem, 283
approximate
Euclidean TSP, 219
approximation algorithms, 219
$(\varepsilon, \delta), 406$
APX, 220
LAPX, 220

PAPX, 220
PTAS, 220
APSP, 40, 378
conjecture, 379
complete, 380
hard, 380
APX, 220, 246
APX-complete, 239
APX-hard, 239
arithmetic circuit, 452
arithmetic circuit SAT, 453
arithmetic hierarchy, 39
art gallery
problem, 297
ASP, 283
complete, 285
reducible, 284
Balanced Complete Bipartite Subgraph, 147
bandwidth, 139
beautiful problem, the, 153
betweeness, 141
betweenness centrality, 381
BHHM, 472
BHM, 470
biclique, 147
bin packing, 264, 392
binary logic, 69
BIP-Mat, 292
blind games, 335
block game, 330
boolean circuit, 46, 199
boolean formula, 17
boolean hidden hypermatching, 472, 477
boolean hidden matching, 470
boolean matrix multiplication, 388
boolean variable, 17
Boulderdash, 127
bounded 2-player constraint logic, 350
bounded 2-Player constraint logic game, 350
bounded bandwidth, 347
bounded game, 325
bounded probablistic polynomial time, 33
bounded team private constraint logic, 353
bounded team private constraint logic game, 353

BPP, 33
braid game, 340
Brook's theorem, 80
Brouwer, 444, 448, 450
Brouwer's fixed point theorem, 442
C-approximation, 219
c-monious reduction, 283
c.e., 39

C $[\mathrm{t}, \mathrm{d}], 201$
cache, 396
cash register model, 406
center problem, 381
centrality measures, 380
CGS, 345
chain of length $n, 97$
checkers, 324,333
losing, 333
mate-in-1, 333
chess, $36,324,333$
Chevalley, 459
Christofides-Serdyukov algorithm, 221
chromatic number, 268
CHSH game, 475
Church-Turing thesis, 20
circuit SAT, 46, 101, 199
Clickomania, 169
clique, $23,180,194,227,268$
another solution problem, 286
parameterized, 187, 215
closest vector problem, 183
clue, 295
CNF, 45
CoAPSP verification, 389
collinear, 364
collison, 461
coloring
$\delta+1,430$
a k-colorable graph, 273
valid, 445
communication complexity, 409, 470
quantum 1-way, 473
randomized 1-way, 470
competitive ratio, 392
component-stable MPC algorithms, 429
computably enumerable, 38
concatenation, 25
concurrent, 365
conditional lower bounds, 428
configuration, 344
non-crossing, 96
valid, 344
connected bisection problem, 154
connected components, 422
coNP, 26
completeness, 27
hardness, 27
constraint graph, 343
constraint graph satisfaction, 345
constraints, 344
convolution 3SUM, 362
Cook reductions, 22
Cook-Levin theorem, 25, 154, 192, 283, 360, 420
counter machines, 338
Cross Purposes, 351
crossing number, 143
bipartite, 143, 144
cryptarithm, 59
cut in a graph, 139
cutwidth, 139
CVP, 183
decidable, 38
decision problem, 19, 448
decision tree for a graph property, 427
degree of a graph, 75
depth of a circuit, 201
depth of a point, 376
determinant, 291
deterministic constraint logic, 349
deterministic TM empty string acceptance, 202
Diam, 381
diameter of a graph, 381, 422
discrete log, 29, 466
quantum algorithm for, 466
disj (abbreviaion for disjoint), 410
disjoint problem in comm. comp., 409
disk packing, 160
distinct subsets, 461
distinguished substring selection, 204

DL, 466
DNF, 46
DNFSAT, 46
dominating set, 180, 199, 214
W[1]-hard, 197
bounded degree, 246
connected, 203
planar, 88, 182
Donkey Kong Country, 315
Dota 2, 403
DSPACE, 37
dSUM, 372
dual Horn SAT, 52
dual-rail logic, 69
edge
active, 349
inactive, 349
edge bisection, 141
edge chromatic number, 264
edge dominating set, 147
edge folding polyhedron, 172
edge matching, 163,252
edge matching puzzle, 253
edit distance, 469
approximate, 469
exact, 469
quantum subquardatic approximation, 469
end of line, 42,438
envy-free allocation, 451
EOL, 42, 438, 448, 450
EPTAS, 204
Eternity, 156
Eternity II, 162
ETH, 30, 176, 178
ETR, 298
Euclidean TSP, 117, 221
Euler, 13
Eulerian cycle, 13, 24, 111
Eulerian cycles, 285
exact covering by 3sets, 153
existential theory of the reals, 298
EXP, 36
expander graph, 243
exponential time hypothesis, 30

EXPSPACE, 36
extended Church-Turing thesis, 21
extended Riemann hypothesis, 32
FACT, 465
factoring, 24, 465
quantum algorithm for, 465
fast fourier transform, 425
fault, 396
feedback arc set, 271
fewest clues problem, 295
FIFO, 397
find sink, 460
finite game, 441
fixed-angle linkage, 96
fixed-parameter tractable, 31, 190
flat space, 97
flattening fixed-angle chains, 97
FP, 20
FPT, 31, 190
fractional graph coloring, 184
frequency moments, 418
frequency vector, 418
function, 448
functionally complete set of gates, 101
Gödel, 14
gadget
clause, 61, 76, 288
constant, 60
copy, 57
crossing, 137
crossover, 56, 76
edge, 117, 137
for circuit SAT reductions, 101
for coloring, 56
for logical connectives, 288
for packing puzzles, 164
for pushgames, 65
for tiles, 210
forcing, 119, 137
fork, 119
fpr games, 68
location traversal, 127
logical connective, 348
parity shift, 92
single-use path, 127
sliding block, 346
splitting, 57
straight, 347
to show games PSPACE-hard, 351
turn, 86, 347
uncrossable edge, 155
variable, 60, 330
vertex, 117
wire, 86
game of life, 326, 338
Game theory, 41, 439
gap reduction, 224
GAP(g,a(n),b(n)), 223, 224
gate
gadget, 101
large, 201
general packing, 305
geomBase, 362
geombase', 363
go, 335
graph homomorphism, 184
graph isomphism, 24
graph orientation, 135
greedy algorithm, 399
grid graphs, 115
degree 3, 119
Grover's algorithm, 467
Hall's theorem, 50
halt, 337
Ham game, 329
Hamiltonian
cycle, 13, 24, 111, 112, 180
cycle planar, 182
cycle problem on cubic graphs, 284
cycle, another solution problem, 290
cycles in large 3-regular graphs, 459
directed, 112, 180, 214
directed cycle, 89
directed path, 112
path, 112, 180
planar directed cycle, 89
variants, 111

Hibert's problems, 340
Hilbert10, 341
hitting set, 202
Hobby-Rice theorem, 460
hole in union problem, 367
HoleInU, 367
Horn SAT, 52
imperfect information, 325
independent set, 24, 180, 194, 199
bounded degree, 246, 250
parameterize, 215
index, 409
index problem in comm. comp., 409
index-same problem in comm. comp., 409
integer programming, 25
integrality gap, 275, 277
intersection graphs of convex sets, 303
intersection graphs of line segments, 303
is-tree, 412
jigsaw, 166
k-clique counting, 472
k-clique distinguisting, 472
k-dot graphs, 304
k-scattered set, 210
k -sphere graphs, 304
k-unit disk graph, 211
Karp reductions, 22
kCC, 472
kCD, 472
kernelization, 190
Koane, 351
label
cover, 267
cover unique, 269
labeled trees, counting, 285
Ladner's theorem, 28
LAPX, 220
lawn mowing, 125
layout, 137
League of Legends, 403
left-right neighbor, 206
Legend of Zelda, 315
lemmings, 319
LFFO, 397
LIFO, 397
Light Up, 103
linear blowup reduction, 178
linear layout of a graph, 137
linear programming, 274
linkage, 96
linked planar 3SAT, 86
list coloring, 208
literal, 18
literals, 45
local max cut, 460
Lode Runner, 128
longest road card, 122
LRU, 397
magic square game, 475
Magic: the gathering, 340
makespan, 154
marking algorithm, 398
massively parallel computation, 41, 420, 421
Mastermind, 81
MAT, 292
matching
\#bipartite, 285
bipartite perfect, 374
graph, 292
online, 399
mate-in-0, 122
mate-in-1
checkers, 333
Phutball, 72
matrix form, 440
matrix product verification problem, 387
Max 2SAT, 242, 246, 268, 271
Max 3SAT, 218, 231, 232, 244
Max 3SAT-a, 242
Max 3SAT-L, 244, 246
Max acyclic subgraph, 271
Max Coverage, 229
max edge biclique amd variants, 147
Max Ind Set on 3-reg, 3-edge col graphs, 252
Max NAE 3SAT, 242, 246
max-conn-comp(k), 410
maxcut, 96, 246, 268, 271
maximal independent set, 424
maximal matching, 292, 400, 429
maximum feasible linear system, 261
maximum matching, 407, 408
MCSP, 30
median, 381
METAFONT labeling, 93
metric TSP, 221
Miller-Rabin test, 32
milling, 125
min covex cover, 305
min triangle cover, 305
Min-2SAT-deletion, 272
min-max product problem, 388
MinCut, 272
Minesweeper, 104
consistency, 106
inference, 110
minimum circuit size problem, 30
minimum linear arrangement, 139
minimum spanning tree, 119
minimum-weight triangluation, 99
minmax theorem, 442
MIP, 474
MIP*, 474
missing 1 problem, 406
mixed strategy, 41, 441
modified cut, 141
molecular geometry, 96
monotone 1-in-3SAT, 52
monotone a-SAT, 51
monotone graph property, 427
monotone NAE-aSAT-Eb, 51
mortal matrices, 341
motion planning, 256
MPC, 41, 420, 421
MST, 119
multi-robot planning problems on planar graphs, p-norm, 183
multicolored clique, 196
multicolored independent set, 196
multiprocessor scheduling, 154
multiprover interaction, 474

Nash, 450
Nash equilibrium, 41, 306, 440, 441
NE, 440, 441
negative triangle, 381
Nick's class, 420
Nine-men-morris, 324
no-repeat rule, 335
conditional, 335
non-uniform circuits, 420
nondeterministic constraint logic, 345
nondeterministic Turing machine acceptance, 193
NP, 23
complete, 25
hard, 25
intermediary, 28
optimization problem, 218
NPSPACE, 37
numerical-3d-matching, 152
odd deg, 458
offline vertices, 399
one-way protocol, 409
online
bin packing, 392
matching, 399
problem, 392
set cover, 402
vertices, 399
algorithms, 40
nearest neighbor, 263
problems, 40
ONN, 263
optimization problem, 218
oracle Turing machine-bit access, 225
orthogonal vector problem, 182, 374
OrthVec, 374
OTM-BA, 225
P (polynomial time), 20

Pac-Man, 129
packing
rect-rect, 156
sq-rect, 159
sq-sq, 157
tri-rect, 160
tri-tri, 160
PAPX, 220
parallel algorithm, 41
parallel random access machine, 419
parity, 433
parsimonious reduction, 283
partial order realizability, 305
partial vertex cover, 195
partition, 151
pattern matching, 425
PCP theorem, 227, 266, 268
peek game, 329
perfect code, 213
perfect hypermatching, 472
perfect information, 325
perfect matching, 292, 413, 470
in bipartite graphs, 292
permanent, 291
PH, 35
philosopher's footbal, 71
Phutball, 72
pin joint, 117
pixels, 115
planar, 81
k-means, 98
3SAT, 82
circuit SAT, 102
k-scattered set, 210
maxcut, 96
motion planning, 369
NAE 3SAT, 96
rectilinear monotone 3SAT, 93
planar rectilinear 3SAT, 93
platform game, 128
PlMotPlan, 369
PLS, 460
point-covering problem, 368
point-line-duality, 366
PointCov, 368
poly matrix Nash, 454
polygonal grid graph, 121
polymatrix game, 454
polynomial hierarchy, 35, 282, 302
polynomial local search, 460
polynomial oracle-TM bit access, 225
polynomial OTM-BA, 225
polynomial parity argument, 458
polynomial parity arguments on directed graphs, 450
polynomial pigeonhole principle, 461
polynomial-time many-one reductions, 22
polynomial-time Turing reductions, 22
polynomials, 426
polyominos, 167
pool, 350
PosBetCent, 381
positive betweeness centrality, 381
Post correspondonce problem, 338
Post's functional completeness theorem, 101
PostCorrProb, 338
PPA, 458
PPAD, 450
complete, 450
hard, 450
PPP, 461
PRAM, 419
preprocessing, 373
private information games, 335
projective plane duality, 365
promise problem, 109
prophet inequality, 394
prophet secretary, 395
proportional allocation, 451
protocol, 409
pseudopolynomial, 150
PSPACE, 36
PTAS, 203, 220, 246, 250
push games, 63, 135
PVC, 195

QBF, 37, 310
QBF game, 327
QSAT, 310
quadratic blowup reduction, 178
quantified boolean formula, 37, 310
quantum
1-way communication complexity, 473
algorithms, 463
computers, 463
games, 474
streaming, 471
streaming algorithms, 470
subquadradic algorithms, 469
supremacy, 477
Quoridor, 324
r-Nash, 442
r.e., 39
radius problem, 381
random circuit sampling, 477
random walk
classical, 468
quantum, 468
randomized poly time, 32
randomized polynomial oracle TM bit access, 225
randomized rounding, 277
Raz's parallel repetition theorem, 268
RCS, 477
Rec, 38
reconfiguration, 347
NAE-SAT, 347
SAT, 347
rectilinear crossing number, 304
rectilinear formula, 93
recursed, 339
recursive, 38
recursively enumerable, 39
reduction, 21
approximation preserving, 238
APX, 239
FNP, 450
k-linear, 216
parameterized, 191
PTAS, 239
strict, 239
regular expression matching, 375
regular graph, 75
renameable HORN SAT, 52
replacement paths problems, 387
rich 2-to-1 game conjecture, 278
role-matching, 403
RP, 32
RPOTM-BA, 225

Rubi's square, 144
Rubik's cube, 144
Rush Hour game, 346
SAT, 19, 22
SAT games, 327
Savitch's theorem, 37
Schaefer's dichotomy theorem, 71, 310
scheduling with precedence constraints, 273
SDP, 276
search, 467
search problems, 448
secretary problem, 395
semidefinite programming, 276
semiwires, 69
separator problem, 365
set cover, 24, 197, 229, 401
set membership problem, 19
SETH, 31, 176, 178
setpack, 81
Settlers of Caton longest road card, 122
Shakashaka, 91
shortest path, 24, 415
shortest vector problem, 183, 262
signed edge matching puzzle, 164
single source graph reachibility, 436
single source shortest path, 436
sinks, 429
Skolem's problem, 336
sliding block game, 346
sliding window, 407
Slitherlink, 122
another solution problem, 291
solid grid graph, 115
space hierarchy theorem, 36
sparsets cut, 272
sparsity, 272
Sperner, 448, 450
Sperner's Lemma, 445
sqrt-sum, 307
square of a graph, 112
SSGR, 436
SSSP, 436
stable solution, 440
standard form, 440

Steiner tree, 133
edge weighted, 259
Euclidean, 133
group, 259
node-weighted, 257
Rectlinear, 134
stereochemistry, 96
stochastic SAT, 328
stochastic games, 320
streaming, 407
1-pass, 471
1-pass quantum, 471
algorithms, 41, 405
parameterized, 407
quantum, 470
semi, 407
strips covering box, 366
strong exponential time hypothesis, 31
strongly connected Steiner subgraph problem, 197
strongly NP-complete, 28
strongly NP-hard, 28, 149
strongly polynomial, 150
subcubic, 40, 379
subcubic equivalent, 380
subexponential, 29
subgraph isomorphism, 184
sublinear, 422
subquadratic, 40, 359
quantum algorithms, 469
subset sum, 24, 151
with repetition, 151
sumcut, 141
SUPERMARIO, 67
superthin grid graph, 121
SVP, 183, 262
Sycamore, 478
TC, 470
TD, 470
team private constraint graph, 353
Tetris, 24, 170
th-pos-2SAT, 294
thin grid graph, 121
tiling
k-grid, 206
k-grid $\leq, 209$
time hierarchy theorem, 36
total search problems, 448
transitive closure bottleneck, 436
traversal problem, 468
tree diameter, 416
triangle counting, 470
triangle cover triangle, 367
triangle distinguishing, 470
triangle measure problem, 368
triangulation of a set of points, 99
trichromatic triangle, 445
TriCovTri, 367
TriMeas, 368
trominos, 136
packing, 137
TSP, 24, 222
turnstile model, 406
unbalanced, 42, 438
unbalanced vertex, 437
unbounded 2-player constraint logic, 350
unbounded 2-player constraint logic game, 350
unbounded game, 325
unbounded team private constraint logic, 353
unbounded team private constraint logic game, 353
uncondtional lower bounds, 426, 432
uniform circuits, 420
unique 2-prover-1-round game, 269
unique game conjecture, 270
unique set cover, 251
unit-distance graphs, 299, 304
up-down neighbor, 206
utility function, 450
variable vertex, 452
vertex cover, 24, 180, 214, 233-235, 266, 268
bounded degree, 246, 250
counting, 294
degree k, 188, 189, 191
degree 3, 87, 132
degree 3 planar, 87, 132
induces a connected subgraph, 132
on k-hypergraphs, 271
parameterized, 187
planar, 87, 88, 132, 182
vertex separation, 141
Viglietta's metatheorems, 125, 311, 314
VisBetSeg, 368
visibility between segments, 368
visible triangle, 369
VisTri, 369
Vizing's theorem, 252
von Neumann, 14
W[t], 201
complete, 201
hard, 201
Wang tiles, 163
weakly NP-complete, 28
weakly NP-hard, 28, 149
weakly polynomial, 150
weft of a circuit, 201
weighted 2SAT, 193
weighted circuit SAT, 199
WP, 201
XP, 202
Yao's lemma, 399
Zelda II, 128

[^0]: *Copyright in this work has been licensed exclusively to The MIT Press, https://mitpress.mit.edu, which will be releasing the final version to the public in 2024. All inquiries regarding rights should be addressed to the MIT Press, Rights and Permissions Department.

[^1]: 1"Many-one" or "many-to-one" means that the reduction can map multiple inputs to the same output. There are also 1-reductions where f has to be one-to-one.

[^2]: A Variety of Push games
 Instance: A board, initial square, and target square.
 Question: Can the goal be achieved? Table 1.38 contains variants of the game.

[^3]: ${ }^{1}$ This result is from unpublished work by Kyle Burke, Erik Demaine, Gabe van Eycke, and Neil McKay (2011).

[^4]: ${ }^{1}$ Flake \& Baum’s Rush Hour hardness proof [FB02] predates and provided inspiration for NCL.

[^5]: ${ }^{2}$ This result was claimed in Hearn \& Demaine [HD09]; however, the proof had a very subtle flaw. The flaw is discussed and a correct proof is given by Demaine et al. [DHHL22].

[^6]: Set Cover
 Instance: $n \in \mathbb{N}$ and E a collection of subsets of $\{1, \ldots, n\}$. We will let $m=|E|$.
 Question: What is the size of the smallest collection of sets from E that contain (cover) all of the elements of F.

